REDUCING HIGH-FREQUENCY TIME SERIES DATA IN DRIVING STUDIES

Jeffrey D. Dawson, Amy Johnson O'Shea, Joyee Ghosh, University of Iowa, USA

IASE, Kuala Lumpur, Malaysia

August 14, 2019

Acknowledgments:

NIA, NINDS, NHLBI, CDC, Nissan, Toyota;

UI Neuroergonomics Research Team;

UNMC Driving Research Team

Outline

- Intro to Driving Research
- Example of lane position data
- Comments about "Big Data" aspects of driving
- Specific model to handle "semi-reflective" data
- Methods to fit this model
- Simulations
- Lessons learned

Driving in U.S.—Public Health Issue

- 1.2 vehicles per drivers licenses in US
- \triangleright 87% of those >= 16 years old have licenses
- Crashes are ~7th most common cause of death (not grouped w/ other accidental deaths)
 - 1st in ages 15 to 24 yrs
 - 1st-2nd among accidental causes in all age groups
 1 yrs
- High-risk groups
 - Young, inexperienced
 - Users of alcohol and other drugs
 - Elderly
 - Cognitively and/or physically impaired
- Trade-offs: safety, performance, quality of life, etc.

3 Pieces of Our Driving Research

Off-road Factors

- Demographics
- Disease status
 - Alzheimer's
 - Parkinson's
 - Sleep Apnea
 - Healthy
- Neuropsych tests
 - Vision
 - Cognition
 - Motor Skills
 - Interventions

Driving Simulators

- Motion based
- Fixed base
- PC screen

On-road Outcomes

- (Closed track)
- Public fixedroute
- Naturalistic driving
- DOT/DMV records

Fixed Base Simulator: "SIREN" (Rizzo et al, 2004)

Baseline Segment (AD Subject)

Baseline Segment (Non-AD Subject)

Big Data Definitions

- Many exist—Gil Press of Forbes listed 5 and then added 7 more (https://www.forbes.com/sites/gilpress/2014/09/03/12-big-data-definitions-whats-yours/#3c0167b013ae)
- Wikipedia (one of many)—"Big data is [sic?] data sets that are so voluminous and complex that traditional data-processing application software are inadequate to deal with them."

Big Data—Give me a V! (or 5 or 14 or 42)

https://www.elderresearch.com/blog/42-v-of-big-data ("voodoo")

Consider Five V Attributes/Issues

- Volume—Size of generated and stored data.
- Velocity—Could refer to capture rate but could also refer to timeliness of analysis
- Variety—Complexity (how many variables from how many sources, e.g., sensors and video).
- Veracity (truthfulness)—Accuracy (vs. noise and bias)
- Value—Benefit of analyzing the data (to businesses, individuals/society, etc.)

Arguments Against (some) Driving Data Being Called "Big"

- For some, Big Data problems are tied to idea of exploring data without a priori hypotheses ("data mining" or "analytics"), whereas our studies have specific aims and hypotheses.
- "Voluminous", "complex", and "traditional" in earlier definition are vague terms
 - To some, any tool newer than Excel is nontraditional
 - To others, high performance computing with parallel processors and code designed to make optimum use of them may be traditional.

Big Data Issues Seen in Driving Studies (departing from "V's")

- 1. Size (e.g., 90 days of driving \rightarrow 1.62 million rows of data for one subject)
- 2. Disconnect between data creation & analysis (even if there are planned hypotheses, many analyses are not *a priori*)
- 3. Limitation of traditional methods (focus of this paper to reduce data)
- 4. Multidisciplinary aspects (make sure collaborators understand importance of accommodating random effects)

The Proposed Model

▶ At time t>3, model the lane position as:

$$Y_t = g(Y_{t-1}, Y_{t-2}, Y_{t-3}) + |e_t|I_t,$$

where $e_t \sim N(0, \sigma_e^2)$

and $Prob(I_t=-1) = p_t$; $Prob(I_t=1) = 1-p_t$

The Proposed Model (Con't)

- Parameterize $(Y_{t-1}, Y_{t-2}, Y_{t-3})$ as:
 - Flat Component: $W_{1t} = Y_{t-1}$
 - Linear Comp.: $W_{2t} = Y_{t-1} + (Y_{t-1} Y_{t-3}) / 2$
 - \circ Quad. Comp.: $W_{3t} = 3 Y_{t-1} 3 Y_{t-2} + Y_{t-3}$
- Then, $g(Y_{t-1}, Y_{t-2}, Y_{t-3}) = \beta_1 W_{1t} + \beta_2 W_{2t} + \beta_3 W_{3t}$

Projection Examples

Projection Example

Getting Rid of One Parameter

•Recall that we have parameterized,

$$g(Y_{t-1}, Y_{t-2}, Y_{t-3}) = \beta_1 W_{1t} + \beta_2 W_{2t} + \beta_3 W_{3t}$$

•Add constraints that it is weighted average:

$$\beta_1 + \beta_2 + \beta_3 = 1$$
, where all $\beta_i \ge 0$

• Therefore:

$$\begin{split} Y_t &= (1-\beta_2-\beta_3)W_{1t} + \beta_2W_{2t} + \beta_3W_{3t} + err \\ Y_t - W_{1t} &= \beta_2(\ W_{2t} - W_{1t}\) + \beta_3(\ W_{3t} - W_{1t}\) + err \end{split}$$

oThus, the model can be re-parameterized in terms of two β's.

Baseline Segment (AD Subject)

The Proposed Model (con't)

- ► Recall: $I_t = log[p_t / (1 p_t)] = \lambda_0 + \lambda_1 Y_{t-1}$
 - The intercept, λ_0 , accommodates a subject's natural driving "center"
 - $\lambda_0 = 0$: subject's mean position is lane center
 - $\lambda_0 < 0$: subject's mean position is left of center
 - $\lambda_0 > 0$: subject's mean position is right of center
 - The higher λ_1 , the greater the probability that a subject turns back to center as the vehicle nears a lane boundary ("semi-reflective", since boundaries can be breached)

Method of Fitting 1: "SP" (Single Pass)

- Create polynomial components
 - Flat Component: $W_{1t} = Y_{t-1}$
 - Linear Component: $W_{2t} = Y_{t-1} + (Y_{t-1} Y_{t-3}) / 2$
 - Quad. Component : $W_{3t} = 3 Y_{t-1} 3 Y_{t-2} + Y_{t-3}$
- (Ignoring usual assumptions), use linear regression to find β_2 , and β_3
- Find β_1 by subtraction
- Calculate residuals and note the sign
- Use sign of residuals, the flat component, and logistic regression to get λ_0 and λ_1
- Use residuals to estimate σ_e^2

Methods 2 and 3 (likelihood-based)

Letting θ be the vector of all parameters of interest, it can be shown that the conditional log-likelihood for the model (starting at 4th observation for one person) is

$$\begin{split} \sum_{t=4}^{I} log[f(y_{t}, I_{t}|y_{t-1}, y_{t-2}, \cdots, y_{1}; \boldsymbol{\theta})] \\ &= \sum_{t=4}^{T} \left\{ log(2) - \frac{1}{2} log[2\pi] - log[\sigma_{e}] - log[1 + exp(\lambda_{0} + \lambda_{1}y_{t-1})] \right. \\ &\left. - \frac{1}{2} \frac{(y_{t} - \mu_{t})^{2}}{\sigma_{e}^{2}} + [\lambda_{0} + \lambda_{1}y_{t-1}] 1_{y_{t} < \mu_{t}} \right\}. \end{split}$$

Method 2: Grid search ("Grid")

- For each parameter (6-1=5 parameters)
 - Choose a min and max.
 - Have 5 equally spaced parameter settings (4 intervals)
- Calculate conditional log-likelihood for all combos
- Choose values which gave max.
- Use those values plus/minus one interval length to get new min and max (hence, total width reduced by 50% in each iteration)
- Repeat until converged.

Method 3: Modified Newton-Raphson ("NRmod")

- Likely problematic, there is the usual theoretical justification is not there (with likelihood is not smooth, and *I_t* being discontinuous and dependent on βs)
- Used SP method for starting values
- Used "half-stepping" approach to maximizing

Simulation settings

- $\beta_1 = 0.0546$, $\beta_2 = 0.4666$, $\beta_3 = 0.4788$
- $\sigma_e^2 = 0.0000214$ (i.e., $\sigma_e = 0.00463$)
- $\lambda_0 = 0.634, \ \lambda_1 = 2.289$
- ▶ This was setting for all subjects (n=20)
- Each subject had 700 data points with first 100 being a burn-in after first 3 data points coming from simple random walk
- We looked at mean, variance, % bias, and confidence interval coverage of estimates

Simulation results

- All methods had some bias
 - SP had 0.1 to 11% in magnitude
 - Grid had 0.1 to 10% in magnitude
 - NRmod had 1.9 to 33% in magnitude
- All had <95% coverage for some parameters</p>
 - ∘ SP:<50% for β s; ~95% for σ_e^2 , λ_0 ; 84% for λ_1
 - Grid: 88-95% for all but λ_1 (which had 41%)
 - NRmod had 75% for λ_1 , 0% for λ_1 , others 10-68%
- Interpretation: Since λ_1 is often most important, SP is "best", but still needs improvement.

Lessons Learned

- Note 1. We must find good metrics to reduce complicated data into meaningful parameters
 - The "re-centering" parameter has reasonable interpretability
 - Our model has shown good empirical properties (e.g., illustrating difference between drivers with and without Alzheimer's disease)
 - Unfortunately, this simulation study showed bias and a range of coverage properties for all estimation methods considered.

Lessons Learned (cont'd)

- 2. Random effects must be accommodated
 - P-values can be inappropriately reduced by a factor of 10¹⁴ if you don't
 - We accommodated by doing separate analysis for each person, but with the same structure

Lessons Learned (cont'd)

- 3. Important to know how to do "looping algorithms" to read in and process data
 - With 10,000 files of data, you do not want to type in all of those filenames!

Lessons Learned (cont'd)

• 4. Even the "slow but sure" Grid searches are not guaranteed to find global maximum when there are several local maxima caused by "bumps".

Bumpy likelihood caused problems!

2D Graphs for λ_1 and β_2

References

- Boer, E. R. (2000). Behavioral entropy as an index of workload. 44th Annual Meeting of the Human Factors and Ergonomics Society (HFES2000). San Diego, CA.
- Dawson, J. D., Cavanaugh, J. E., Zamba, K. D. & Rizzo, M. (2010). Modeling lateral control in driving studies. Accident; Analysis and Prevention, 42(3), 891-897.
- Hamilton, J.D. (1994). Time series analysis. Princeton, NJ.: Princeton University Press.
- Johnson, A. M. (2013). *Modeling time series data with semi-reflective boundaries*, PhD thesis, University of Iowa. https://ir.uiowa.edu/cgi/viewcontent.cgi?article=4995&context=etd.
- Johnson, A. M., Dawson, J. D., & Rizzo, M. (2011). Lateral control in a driving simulation: Correlations with neuropsychological tests and on-road safety errors. Proceedings of Driving Assessment 2011: The Sixth International Driving Symposium on Human Factors in Driving Assessment, Training, and Vehicle Design.
- ▶ Kendall, M.G., & Ord, J.K. (1990). *Time series (3rd ed.).* London: Edward Arnold.
- Rizzo M (2004). Safe and unsafe driving. In: Rizzo M, Eslinger PJ, (Eds.). Principles and Practice of Behavioral Neurology and Neuropsychology (pp. 197-222). Philadelphia, Pennsylvania: WB Saunders.
- O'Shea, A. M. J., & D. Dawson, J. D. (2018). Modeling time series data with semireflective boundaries. *Journal of Applied Statistics*. 1-13. 10.1080/02664763.2018.1561834.

"Thanks!"