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How do you decide to attend a conference?

• Inspiration (INS): Will the conference give me new inspirations for 
my work?
• Community (COM): Will I connect with colleagues? 
• Own results (OWN): Do I have new ideas and results to present?
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Decision algorithms in complex, „risky“ situations

• Medical diagnosis and intervention
• Financial investment
• Risk analysis
• Pattern recognition
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To make sense of these data, discover structure, etc. we need 
tools that are

• flexible and robust
• Simple enough to understand
• Provide results that are easy to interpret

Þ Classification And Regression Trees (CART)
(Implementation: Powerful Algorithms)  
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Decision Trees
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“Our philosophy in data analysis is to look at the data from 
a number of different viewpoints.  Tree structured 
methods offer an interesting alternative for looking at 
classification and problems.  It has sometimes given clues 
to data structure not apparent from a linear regression 
analysis. Like any tool, its greatest benefit lies in its 
intelligent and sensible application.”                                                       

--Breiman, Friedman, Olshen, Stone
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Purpose of this talk

• Help to understand how decision trees built
• How  created?
• What kind of choices?
• Which measures of quality?

• Intro to data science: „supervised learning”
• Critically reflect on algorithms

Engel, Erickson, Martignon 2019 IASE Satellite Kuala Lumpur



Decision algorithms 

• Training sample: used for learning a decision rule

• Test sample: used for evaluating the quality of the decision rule 
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Example: Kyphosis after spinal surgery (Chambers & Hastie 1992)
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Sample 81 „cases“= children who after spinal surgery had or didn‘t have 
postoperative kyphosis (=a type of spinal deformation)
• Age: age of the child in months
• Start: the number of the first (topmost) vertebra operated on
• Kyphosis: indicates presence or absence of kyphosis
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What makes a tree a good tree?

• How and where to split?
§ Create regions where the data are more homogeneous; 

- Need some purity measure (open to creativity;  e.g. Gini diversity index, 
cross entropy,  misclassification rate, ..)

• How to assign value to terminal node?
§ Majority vote (possibly weighted)

• When to stop tree growth? (Similar to variable selection in linear  
regression -> tendency for overfitting)
§ CART prunes an oversize tree based on cross-validation
§ Threshold for purity reduction
§ Minimum number of observations per node
§ Maximum number of nodes
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Teaching about classification trees: Crucial issues

Based on experience at high school (data science course) and college (math 
teacher students):

• Role of training sample
• Some choices seem haphazardly: how to justify?
• Meaning of nodes and purity measure
• Problem of oversized trees
• Assumptions and limitations
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• Step 1: Hands-on, with data cards
• E.g. given a deck of 48 cards with infos about football and handball players 

(the „training sample“) with physical characteristics  such as height, weight, 
age (as predictor) and their sport (target variable), develop a classification 
rule to „predict“ their sport. Then take another 10 cards (the „test sample“) to 
measure the quality of your decision rule

• Step 2: Technology, ARBOR - a plug-in tool to CODAP (developed by 
the second author)

Teaching about classification trees: Solutions
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• ARBOR  slows down the algorithm, let‘s YOU decide next steps
• Lets YOU do the decisons stepwise and records a measure of tree quality
• YOU can define YOUR OWN measure of tree quality
• Very unlikely to result in the optimal tree, but YOU can investigate consequences of 

your choice of splitting criteria
• ARBOR allows you to use the CODAP capacity to find reasonable or good next steps

https://codap.concord.org/releases/latest/static/dg/en/cert/index.html#shared=100528
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Xenobiologist: a data game diagnosing extraterrestrials

https://codap.xyz

https://codap.concord.org/releases/latest/static/dg/en/cert/index.html?di=https://codap.xyz/
plugins/xeno/xeno.html

https://codap.concord.org/releases/latest/static/dg/en/cert/index.html#shared=112182

https://codap.concord.org/releases/latest/static/dg/en/cert/index.html#shared=33583
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Summary

• Classification and Regression Trees are an exploratory method to find structure is 
messy data
• Easy to interpret result
• Based on heavy algorithms, 
• Entrance to Data Science methods like Random Forests, Bagging, Boosting
• ARBOR is a learning tool to better understand how CART works
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