ࡱ> 241 bjbj 4aa RR"""""6668n z6tiiiz||||||,w )#"iiiii""i""ziz66 f0C$C$86"60iiiiiiC$iiiiiiiiiR :   INTERPRETING THE CONCEPT OF ARITHMETIC MEAN FROM A SEMIOTIC VISION Marcos Pinho and Caroena Alves dos Santos Universidade do Sudoeste da Bahia, Brazil Escola Superior de Estatstica da Bahia, Brazil gazpinho@click21.com.br The communication to be presented is based upon a previous study undertaken in six learning manuals used in high schools at Salvador, Bahia. In addition, this study is part of a Ph.D research being carried out by the author in the Experimental and Mathematic Teaching Sciences Doctoral Programme held at Compostela University, Spain. The topics are the arithmetic mean and its relationship with collected data. The analytic procedures are based on previous research carried out by Godino and Batanero (2003), who describe a theoretical semiotic model for learning, starting from the theory proposed by Hjelmslev (1943), who employs the sign functions (relating expression and content) that is called semiotic function by Eco (1983). Besides, they analyze the semiotic and epistemological components involved in mathematical activities, which, in turn, are related to the ontological, epistemological and psychological aspects of mathematical learning-teaching process. From such an analysis, we can find four kinds of semiotic functions through the analysis of basic and systemic meanings that serve to assess the interpretative processes presented in different mathematical situations. This study was also aimed at analyzing students personal understanding, rather than taking into account the replies from the whole group (Sax, 1989). Our findings are based on the replies from a sample of students to a questionnaire, and they indicate that most students either do not master this content or simply manage to do references to arithmetic mean without a deep knowledge of the same. Likewise, based upon these findings, we propose some assessment criteria as a way to distinctly evaluate the individual students` answers to the questionnaire in this pilot study. REFERENCES Eco, U. (1979). Tratado de Semitica General. Barcelona: Lumen. Godino, j. D. & Batanero, C. (1994). Significado personal e institucional de los objetos matemticos (Institutional and personal meaning of mathematical objects). Recherches en Didactique des Mathmatiques, 27(2), 151-169 Hjemslev, L. (1971). Prolegmenos a una teora del lenguaje (Introduction to a theory of language). Madrid: Gredos (Original work, 1943). Millman, J. & Greene, J. (1989). The specification and development of test of achievement and ability. In R. L. Linn (Ed.), Educational Measurement (pp. 335366). London: Macmillan. Sax, G. (1989). Principles of educational and psychological measurement and evaluation. Belmont, CA: Wadsworth.     DE-BhjhUhxph2$ 6 hxph2$ h2$ h2$ *-DEo} |2gd2$ gd2$ gd2$ $a$gd2$ gd2$ gd2$ 2&P|:p\v. A!"#$% 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666`H66666666666666666666666666666666666666666666666666666666666666666p62&6FVfv2(&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv8XV~_HmH nH sH tH <`<  NormalCJ_HmH sH tH D@D A Heading 1$$@&a$ 5;*>@>   Heading 2$@& ;aJ*<@< 6x Heading 3$@&6aJDA D Default Paragraph FontViV  Table Normal :V 44 la (k (No List <B@<  Body Text$`a$6O6 6xAbstract$a$60U`0 Hyperlink>*B*FOBF   References$h^h`a$PK!pO[Content_Types].xmlj0Eжr(΢]yl#!MB;.n̨̽\A1&ҫ QWKvUbOX#&1`RT9<l#$>r `С-;c=1g~'}xPiB$IO1Êk9IcLHY<;*v7'aE\h>=^,*8q;^*4?Wq{nԉogAߤ>8f2*<")QHxK |]Zz)ӁMSm@\&>!7;wP3[EBU`1OC5VD Xa?p S4[NS28;Y[꫙,T1|n;+/ʕj\\,E:! t4.T̡ e1 }; [z^pl@ok0e g@GGHPXNT,مde|*YdT\Y䀰+(T7$ow2缂#G֛ʥ?q NK-/M,WgxFV/FQⷶO&ecx\QLW@H!+{[|{!KAi `cm2iU|Y+ ި [[vxrNE3pmR =Y04,!&0+WC܃@oOS2'Sٮ05$ɤ]pm3Ft GɄ-!y"ӉV . `עv,O.%вKasSƭvMz`3{9+e@eՔLy7W_XtlPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-!pO[Content_Types].xmlPK-!֧6 -_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!!Z!theme/theme/theme1.xmlPK-! ѐ'( theme/theme/_rels/themeManager.xml.relsPK]#    8@0( :Documents:fol B S  ?CE  A   8 _1 iC  QP vE` >g )x3|  ^`OJQJo( 8^8`OJQJo( ^`OJQJo(o  p^ `OJQJo(  @ ^ `OJQJo( x^x`OJQJo( H^H`OJQJo(o ^`OJQJo( ^`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( hh^h`OJQJo( iC8 QP_1A>g)x3|vE` 2$ 4uLGjj\ @zM `@UnknownG*Ax Times New Roman5Symbol3 *Cx Arial? Courier New;WingdingsA$BCambria Math"1h5R'\3u',\&  !4 3qHPn>}2!xx ]Key Words: Statistics Education, Mathematical Statistics, Active Learning, Mathematics MajorsAllan J. Rossman John Shanks8          Oh+'0 (4H \h    '`Key Words: Statistics Education, Mathematical Statistics, Active Learning, Mathematics MajorsAllan J. Rossman Normal.dotm John Shanks4Microsoft Macintosh Word@F#@`ڋ@|_f@  ՜.+,0\ hp  >'Dell Computer Corporation  ^Key Words: Statistics Education, Mathematical Statistics, Active Learning, Mathematics Majors Title  "#$%&'(*+,-./03Root Entry F>s 51Table{$WordDocument4SummaryInformation(!DocumentSummaryInformation8)CompObj` F Microsoft Word 97-2004 DocumentNB6WWord.Document.8