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PREFACE 
 

OZCOTS 2021 
 

10th Australian Conference on Teaching Statistics 
 

OZCOTS 2021 theme: Statistics education in today’s world 
 

OZCOTS 2021 built on the success of the timing and format of OZCOTS 2008, 2010, 2012 and 2016 
as a conjoint event with the Australian and New Zealand Statistical Conference (ANZSC). Initially, 
we planned it to be in July 2020 in Gold Coast, unfortunately due to COVID-19 pandemic, we deferred 
it to 2021 and then we held it as the first fully online Conference. ANZSC2021 and OZCOTS 
overlapped by one day on Thursday 8 July. 
 
Every day the teaching and learning of statistics is becoming more important than ever to industry, 
government, business and for everyone in the society from cradle to nursing home. The roles of 
statistical understanding and statistical thinking are vital in all disciplines, increasingly driven by big 
data, evidence-based agendas, and technological advances which generate data as well as enabling 
more complex problem-solving, data visualisation and analysis. To avoid “lies, lies, big lies and 
statistics” we need to reach further in the society so that “lies” can be separated from “statistics”. 
 
The OZCOTS program included keynote and contributed papers, and discussions on issues across the 
statistical education spectrum of interest to the whole statistical profession. The program aimed to 
address challenges of the intersection of data science and statistics across different disciplines and 
learning strategies. It includes topics ranging across the curricula and technology for teaching 
introductory and undergraduate statistics; resources and online learning; statistics learning for 
postgraduates, researchers and workers; and research in the teaching of statistics. 
 
The majority of OZCOTS participants came from Australia (n=80) and New Zealand (n=16) as 
intended with additional participants from US (n=3), Japan (n=2), and one participant from each of the 
countries listed: Finland, Austria, China and UK. Most of the participants were academics (n=81), 
some from government organisations (n=17) and a few from private sector (n=7). 
 

Ayse Aysin Bilgin 
OZCOTS Program Chair 
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OZCOTS 2021 Paper Refereeing Process 
 
 
Papers referred to in the proceedings as refereed were reviewed and accepted as meeting the requisite 
standards by at least two referees selected from a panel of peers approved by the OZCOTS 2021 
Conference Committee. 
 
The Conference Committee took the view that the review of papers would give conference participants 
and other readers confidence in the quality of the papers specified as “refereed” in the proceedings. 
The refereeing process also provided a mechanism for peer review and critique and so contributed to 
the overall quality of statistics education research and teaching. While the refereeing process essentially 
relied on subjective judgments, referees were asked to compare the paper being reviewed against the 
accepted norms for reporting of research. It was expected that each accepted paper would represent a 
significant contribution to advancement of statistics education and/or the research process in statistical 
education. Authors verified that the refereed published papers for these proceedings were substantially 
different from papers that have previously been published elsewhere. 
 
OZCOTS 2021 gratefully acknowledges the following referees for their assistance: Pip Arnold, 
Manfred Borovcnik, Daniel Frischemeier, Ian Gordon, Rossi Hassad, Rhys Jones, Sibel Kazak, Adam 
Molnar, Brian Phillips, Susanne Podworny, Alexey Ponomarenko, Tania Prvan, Amy Renelle, Alice 
Richardson, Eric Sowey. 
 
 



OZCOTS 2021 Keynote Speakers and Abstracts 

OZCOTS 2021 – Keynote Speakers biographies 

Professor Robert Gould 

Robert is a teaching professor and vice-chair of undergraduate studies in the Department of Statistics 
at UCLA.  He has been active in statistics education and data science education since 1994. As lead 
principal investigator of the Mobilize project, he is the architect of the Mobilize Introduction to Data 
Science course, a year-long high school course implemented in 16 school districts. 

He is the founder of the DataFest, a 48-hour undergraduate data analysis competition sponsored by 
the American Statistical Association and held at 42 sites around the world.  With two-year college 
professors Colleen Ryan and Rebecca Wong, he co-authored an introductory statistics book 
published by Pearson Higher Education. 

Robert was elected Fellow of the American Statistical Association in 2012 and in 2019 was awarded 
the CAUSE Lifetime Achievement Award for Statistics Education and the American Statistical 
Association Waller Distinguished Teaching Career Award. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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Professor Helen MacGillivray 

Prof Helen MacGillivray was only the second Australian and second female to be President of the 
International Statistical Institute in its 130 year history. She was an inaugural Australian Senior 
Learning and Teaching Fellow, first female President and Honorary Life Member of the Statistical 
Society of Australia, and a past President of the International Association for Statistical Education. 
She is Editor of Teaching Statistics, a Principal Fellow of the Higher Education Academy, and was 
inaugural Chair of the UN Global Network of Institutions for Statistical Training. She has received 
many national awards and grants, and published textbooks, chapters, keynotes, invited and refereed 
papers on authentic statistical learning and assessment, curricula design, learning support and 
research topics in distributions. 

Prof Helen MacGillivray has been on organising committees for many international and national 
conferences. She has chaired reviews of university departments and centres across Australia and 
internationally. Her many leadership roles include founding and directing university-wide Maths 
Access Centres, Symposia in Statistical Thinking, and mentored developmental programs in 
university teaching. Helen has played key roles in mathematics and statistics school education on 
curriculum, professional development, resources, assessment and a variety of innovative and 
successful extension and enrichment programs for thousands of high school students. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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Professor Manfred Borovcnik 

Prof Borovcnik’s scientific career started with the Bayesian controversy. As a consequence his 
interest grew in a comparative study of approaches towards inference. Based on his long-term 
experience as a statistical consultant, he experimented with students how projects in applied statistics 
can be used for education. 

Prof Borovcnik’s concern with distance studies resulted in the design of blended-learning courses in 
statistics for non-mathematical studies. To find ways to elementarise inference led him to investigate 
the potential of EDA and resampling in the 1990s. In probability, he was fascinated by ideas of 
Fischbein with his interplay between intuitions and mathematics. This emerged into projects on key 
concepts of probability and the twin character of probability and risk, which in turn initiated 
investigations on risk also related to decisions in health issues. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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KEYNOTE 1 

DATA EDUCATION IN PRE-COLLEGE. PROMISES AND CHALLENGES 

Robert Gould 
UCLA 

rgould@stat.ucla.edu 

Call it data acumen, data literacy, data fluency, data science or statistics. By any name, the time is right 
to design and implement data education pathways from the earliest ages through graduate school. 
Currently, in the United States, separate data education curricula are promoted by mathematicians, 
computer scientists, and statisticians with little coordination and agreement between parties. Based on 
experience with the Mobilize Introduction to Data Science course, a curriculum designed in partnership 
with the University of California, Los Angeles Department of Statistics, the UCLA Graduate School of 
Education and Information Sciences, and the Los Angeles Unified School district, we will discuss the 
promise of data science education. To fulfill this promise, fundamental challenges must be faced, 
including professional development and a clear sense of the desired outcomes of a data education 

KEYNOTE 2 

LEADERSHIP ACROSS THE EDUCATIONAL DIVERSITY OF STATISTICS AND DATA 
SCIENCE 

Helen MacGillivray 
h.macgillivray@qut.edu.au

Statistics is inextricably linked to all endeavours involving data, variation and uncertainty across 
disciplines, business, government and society. Statistics both serves and leads developments, and hence 
has inherent diversity and diffusion which are simultaneously its strength and vulnerability. Such 
considerations are not new, but have recently received increased commentary, as has the nature of 
statistical leadership, particularly in collaborative settings. The increasing spotlight on Data Science 
delivers opportunities for renewal of advocacy and realisation of the contributions of Statistics in all 
human endeavour. This is reinforced in general agreement ranging from Data Science CEO’s to 
leading researchers, that Data Science is essentially collaborative, and that the Statistical Sciences are 
the heart of Data Science. 

Nowhere is the above more relevant and important than across all levels of education. The lessons, 
both good and bad, from Statistics must be heeded in Data Science, and the nature of the Statistical 
Sciences must be revitalised in tandem with Data Science. This presentation probes past and current 
developments and challenges within the context of statistical leadership, and of ‘greater’ Statistics and 
‘greater’ Data Science, and emphasizes how we can all contribute to statistical leadership across the 
educational diversity of Statistics and Data Science.  

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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KEYNOTE 3 
 

APPROACHES TO ELEMENTARISE STATISTICAL INFERENCE 
 

Manfred Borovcnik 
Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria 

Manfred.Borovcnik@aau.at 
 
The complexity in the concepts and the difficulties in the individual concept acquisition in statistical 
inference are well known. That has induced the search for new learning forms, such as the ideas of 
visualisation and simulation. Computer-intensive methods of the discipline of statistics have also served 
as incentive for didactic innovations. We compare two ways of elementarisation. 
 
Informal inference may be used as a joint label for endeavours to simplify, visualise , or simulate the 
hypothetical model behind statistical inference. That means, the statistical model remains in the 
background but is still the target of teaching so that it forms the background for educational decisions. 
That also implies that the theoretical character of such models is visualised by simpler means. This way 
of elementarisation – as a transient stage – should create learning paths to the full complexity of 
statistical inference. 
 
“Informal Inference” – going back to the computer-intensive methods in statistics such as Bootstrap 
and re- randomisation – is an educational approach that reduces statistical inference to methods solely 
based on resampling given data. The approach of “Informal Inference” reduces statistical inference 
completely to the observed data developing the methods solely based on resampling this data. 
“Shuffling” the data provides tests of significance of natural null hypotheses and intervals that mimic 
confidence intervals. 
 
We illustrate both approaches and give a detailed discussion about the relative merits. We develop an 
analogy to decision making, in medicine and economy to clarify the tight connection of statistical 
inference to decision making. This analogy helps to understand the meaning and the restrictions of the 
methods. The abstract quality indices of methods of statistical inference get a natural interpretation 
within the discussed contexts. The framework of decisions also makes clear that probability points far 
beyond a simple frequentist interpretation and has to be captured by models though we make extensive 
use of simulation of the consequences of these theoretical models. 
 
In conclusion, we suggest using resampling (Bootstrap and re- randomisation ) as a transient stage to 
statistical inference but aim at ways of elementarising the full complexity of statistical inference. The 
examples in the presentation show how to build conceptual understanding and disclose the meaning of 
concepts by meta-knowledge based on simplifications of – the full complexity of – statistical inference. 
The advent of Big Data will not decrease the role of statistical inference as it does not replace inference 
by other methods but uses complex methods of statistical inference in a different way. 
 
 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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THE INFLUENCE OF UNREFERENCED INSTRUCTOR PRACTICES ON STUDENT 

LEARNING 
 

Ian Gordon 
Statistical Consulting Centre 

University of Melbourne 
irg@unimelb.edu.au  

 
It is a truism that there are many modes of statistical learning. Competent statistical educators 
understand this and attempt to use a variety of approaches, such as verbal, symbolic and visual. 
Students learn by listening, seeing and trying things themselves; they learn individually and in groups. 
These insights are part of foundational and well-known frameworks in the theory of education. 
 
Less well recognized, perhaps, is the role that the habits and practices of instructors play, particularly 
those that are not explicitly referenced, but which display and perhaps reveal the real thinking of the 
instructor. In some cases, neither the student nor the instructor may be aware of the learning that is 
taking place, which is potentially concerning: what if the messages being communicated are unintended 
and undesirable? 
 
In this paper I explore such communication in statistical education. The simplest examples include the 
order in which topics are covered, the revealed habits when thinking about a statistical problem, and 
the “go to” steps in analyzing data. I address the need for a greater reflection by instructors on the 
impact of unreferenced practices and habits, and the connection to statistical thinking in context. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 
6



OZCOTS 2021 Contributed Paper (Abstract) Warren 

 
ENGAGING DIVERSE UNDERGRADUATE COHORTS WITH DATA STORIES: 

INSIGHTS FROM FIRST-YEAR STUDENT-DRIVEN PROJECTS 
 

Di Warren 
University of Sydney 

diana.warren@sydney.edu.au  
 
It is widely agreed that real data stories are invaluable in engaging statistic undergraduates, with much 
literature on the value of contextualised data in domain-specific statistics courses. What remains 
unclear, however, is what stories to choose for large, diverse first year offerings. What type of data best 
motivates students to develop statistical literacy, when the cohort involves students from many different 
backgrounds, majors and courses? 
 
This study focuses on a formative collaborative data project from a new suite of first year data science 
and statistics units at the University of Sydney, in which students choose their own data. Using the 
choice of data as a proxy for interest, we analyse the nature of the data over thousands of projects in 
different units. Interesting themes emerge, regarding source, nature, background, size, and the 
increasing need for data wrangling skills. We also suggest implications for curricula, including the co-
creation of data stories with students. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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STATISTICS: YOUR TICKET TO ANYWHERE 

 
Ayse Aysin Bilgin, David Bulger and Thomas Fung 

Macquarie University, NSW 
ayse.bilgin@mq.edu.au 

 
A wide variety of university degree programs include a mandatory first-year statistics unit. However, 
students often can’t see how statistics relates to their degree and future career, and therefore they are 
usually disengaged with their learning in such service units. As a result, it is common to see a large 
body of students in first-year statistics classes and very few in higher-level statistics classes. 
 
In this presentation, we will share our successful initiative, “Statistics: Your Ticket to Anywhere!” We 
organized an information session for the high-achieving students in the previous year’s first-year 
statistics classes. The main goal was to persuade students to adopt statistics as a second major; that is, 
not to poach students from other departments, but rather, to persuade students of the relevance of 
statistics to the careers they were planning. Our recent alumni prepared and delivered the majority of 
the presentation. They shared their journeys from first year to third year at university and then beyond. 
The alumni described how statistics improved their employability skills, such as problem solving and 
critical thinking, and showed how a range of professions depends on statistics to enable better use of 
the resources available to humanity. 

 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
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OZCOTS 2021 Contributed Paper (Refereed) Batterham & Krivitsky 

RELATIONSHIP BETWEEN STATISTICS ANXIETY AND FINAL MARKS IN 
INTRODUCTORY BIOSTATISTICS IN UNDERGRADUATE HEALTH SCIENCES 

STUDENTS 
 

Marijka Batterham1 and Pavel N. Krivitsky2  
1 Statistical Consulting Centre, University of Wollongong, Australia 

2School of Mathematics and Statistics, University of NSW, Australia 
marijka@uow.edu.au 

 
The aim of this study was to determine if statistics anxiety was associated with performance in an 
introductory statistics subject in undergraduate health science students. Statistics anxiety was assessed 
using the statistics anxiety rating scale (STARS). Final mark in the undergraduate subject 
“Fundamentals of Biostatistics” was recorded. Of the 267 students enrolled, 109 (41%) consented to 
participate. Significant negative correlations were evident between the final mark and the statistics 
anxiety subscales for Worth of statistics, and for Computational anxiety, with higher scores in these 
subdomains are associated with higher anxiety. This indicates those performing better in the subject 
felt statistics was more worthwhile and had a higher computational self-concept. There was substantial 
missing data for some of the subscales so relationships were confirmed by multiple imputation. 
Principal components analysis was used to verify which questions were associated with the subscales. 
The results suggest that strategies to increase students perceived worth of statistics and their perceived 
computational skills may result in a better student performance and less anxiety.  
 
INTRODUCTION 

Statistics anxiety is defined as “the feelings of anxiety encountered when taking a statistics course 
or doing statistics analyses; that is gathering processing, and interpreting” (Cruise et al., 1985). There 
are a number of different scales for assessing statistics anxiety with the STARS, the statistics anxiety 
rating scale, (Cruise &  Wilkins, 1980) being the most widely used. This scale measures six separate 
components: worth of statistics, interpretation anxiety, test and class anxiety, computational self-
concept, fear of asking for help and fear of statistics teachers.  

Statistics anxiety has generally been studied in graduate students with limited studies in 
undergraduate students primarily including assessments of psychology students (Nesbit &  Bourne, 
2018, Primi &  Chiesi, 2018). Previous research in graduate students has shown that statistics anxiety 
is experienced by 80% of students (Onwuegbuzie &  Wilson, 2003). The primary aim of this study was 
to assess statistics anxiety in undergraduate health sciences students. If statistics anxiety is associated 
with outcomes in undergraduate health science students and there are identifiable factors associated 
with this anxiety, course material or extra resources and support can be developed to reduce this anxiety. 
In addition, examination of the STARS revealed questions that appeared to not be relevant to our student 
population and therefore a secondary aim of the study was to investigate how students would respond 
to these questions (would they complete these questions) and whether responses in our sample followed 
the same subdomain groupings as those developed in the original scale. 
 
METHODS 

Students were recruited in 2017 and 2018 in order to meet the required sample size. 382 students 
enrolled in the subject, 267 were eligible to sit the exam (115 withdrew from the subject). Students were 
asked to participate in the study during their tutorial session, time was allocated at the end of the tutorial 
for students to complete the scale. Participation was voluntary. Students completed the scales which 
were then collected and stored by a staff member not associated with the subject until the completion 
of semester and release of marks. This allowed students to participate without concern that their 
responses may influence their marks in the subject. After the session completion subject marks and 
requested demographic data were released for consenting students by the University of Wollongong 
Information Management Unit. The study had institutional ethics approval. Multiple imputation (MI) 
was used to account for the missing data in the subscales. In multiple imputation, multiple datasets (10 
in the study) are generated using fully conditional specification (an iterative markov chain monte carlo 
method) and analysed by standard methods. Estimates were combined using combined using Rubins’ 
rules. To pool the imputed correlation coefficients they are first converted using Fishers Z 
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transformation and then back-transformed after pooling (Van Buuren, 2018), the pooled variance 
accounts for both the within and between imputation variability. In order to address the primary 
outcome assessing statistics anxiety and examining the relationship between statistics anxiety and 
subject marks and demographic characteristics, descriptive statistics were produced. Correlations, 
regressions and t tests were performed for both the original dataset and the pooled imputed datasets. 
The MI results give an approximation of the results of the full dataset and provide a sensitivity analysis 
for the complete case data. In order to address the secondary question about the appropriateness of the 
scale for the use in our sample principal components analysis with varimax rotation and extraction set 
to 6 factors (to be consistent with the original scale) was performed to verify the subdomains. Analyses 
were performed using IBM® SPSS® Statistics Version 25 (IBM Corp, Armonk NY). Eighty-five 
students were required to show significance based on a small effect using Cohen’s criteria for 
correlation. 
 
RESULTS 

One hundred and nine students consented to participate in the study (41% of those eligible to 
sit the exam). There was missing data for all fields and numbers available for each variable are indicated 
in Table 1, Demographic Characteristics.  
 

Table 1 Demographic Characteristics 

Variable Sample size (n) Mean(SD), Median(range) or 
frequency (%) 

age n=94 
21.7(5.4), 20(18,49), 

Gender 
Male 

Female 

n=95 
21 (22%) 
74 (78%) 

Student type 
Domestic 

International 

n=94 
91 (97%) 
3 (3%) 

Main degree type 
Nutrition 

Exercise Science 
Public Health 

Medical & Health Science 
Exercise Science and Rehab 

Other Science 

n=94 
41 (43.6%) 
26 (27.7%) 
6 (6.4%) 
8 (8.5%) 
9 (9.6%) 
4 (4.3%) 

Mark “Fundamentals of Biostatistics” n=92, 77.4(10.6), 79 (17,93) 
ATAR n=61, 82.5(10.2), 84.9 (52, 97) 

 
Table 2 contains the primary results for the analysis including the mean scores for the 

subdomains and correlation coefficients for the association between the subdomains and the subject 
mark. The total sample size of 91 for imputation reflects those who consented to the study, had an exam 
mark and completed at least some of the questions. Both complete case and imputed analyses are shown 
and produced substantially similar estimates with the results between the two differing more in the 
variables with more missing data as would be expected. There was no significant difference between 
genders in the scores in any of the subdomains for the raw subdomains, mean differences ranged from 
-3.48 (-7.03,0.07) for the test subscale to 0.26 (-8.21,8.73) for the worth subscale. There were also no 
differences in the pooled datasets for gender, mean differences and CIs from -2.53 (05.83,0.77) to 0.18 
(-7.30,7.66), P values (0.132-0.962). Age did not correlate significantly with any of the subdomains in 
the original (r=-0.133, P=0.245 to r=0.034, P=0.776) or pooled data (r=-0.062, P=0.584 to 0.086, 
P=0.412). Given the small sample sizes in student type and degree type comparisons were not 
performed. Entry model regression with the 6 subdomains as predictors of mark showed that none of 
the subdomains were significant predictors, there was evidence of multicollinearity with VIFs around 
3-5 for some subdomains (particularly the worth subdomain) for the original dataset and the 
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imputations, in addition condition indexes > 15 and variance proportions ~0.90 for some subdomains 
in the different imputed datasets indicated high multicollinearity, forward stepwise regression indicated 
that Computational subdomain was the only significant predictor of mark (pooled Beta = -0.486,   
t=-2.821, P=0.005). 

 
Table 2. Descriptive statistics between subscales and exam mark 

Subdomain Mean(SD) Imputed 
mean(pooled 

SD) 

Correlations for 
each domain with 

mark 

Correlations 
Pooled estimate 

(MI) 
Worth of statistics 40.79(14.34) 

n=60 
42.34(18.02) 

n=91 
-0.311 P=0.016 

n=60 
-0.269, P=0.011 

n=91 
Interpretation 

anxiety 
27.58(7.33) 

n=68 
27.86(7.30) 

n=91 
-0.152 P=0.215 

n=68 
-0.099, P=0.358 

n=91 
Test and class 

anxiety 
27.27(6.81) 

n=66 
28.15(7.40) 

n=91 
-0.019 P=0.877 

n=66 
-0.062, P=0.564 

n=91 
Computational self-

concept 
16.65(5.49) 

n=79 
16.01(6.05) 

n=91 
-0.291 P=0.009 

n=79 
-0.289, P=0.006 

n=91 
Fear of asking for 

help 
9.51(3.49) 

n=84 
10.01(3.62) 

n=91 
-0.079 P=0.473 

n=84 
-0.037, P=0.734 

n=91 
Fear of teacher 12.47(4.92) 

n=74 
11.69(5.39) 

n=91 
-0.165, P=0.159 

n=74 
-0.187, P=0.083 

n=91 
 

In order to address the appropriateness of the STARS scale in our sample the questions included 
in the scale, the subdomains they belong to, the number of missing responses and the PCA loading are 
shown in Table 3.  
 

Table 3. STARS questions, number of missing responses and loading from PCA. 
No. Question missing Factor 
 C= Computational Self Concept sub domain   
C25 I have not done maths for a long time. I know I will have problems getting through statistics 2 C 
C31 I cannot even understand high school maths; how can I possibly do statistics? 8 C 
C34 Since I have never enjoyed maths I do not see how I can enjoy statistics 6 C 
C38 I do not have enough brains to get through statistics 3 C 
C39 I could enjoy statistics if it were not so mathematical 4 C 
C48 Statistics is not really bad. It is just too mathematical 4 C 
C51 I am too slow in my thinking to get through statistics 6 L 
 H=fear of asking for help sub domain   
H3 Going to ask my statistics teacher for individual help with material I am having difficulty 

understanding 
4 H 

H16 Asking one of your lecturers for help in understanding statistical analyses 4 H 
H19 Asking someone in the computer lab for help in understanding output 0 L 
H23 Asking a fellow student for help in understanding output 1 L 
 I=interpretation anxiety sub domain   
I2 Interpreting the meaning of a table in a journal article 6 I 
I5 Making an objective decision based on empirical data 2 I 
I6 Reading a journal article that includes some statistical analyses 1 I 
I7 Trying to decide which analysis is appropriate for my research project 15 T 
I9 Reading an advertisement for a car which includes figures on km/litre, depreciation, etc 4 I 
I11 Interpreting the meaning of a probability value once I have found it 1 I 
I12 Having to enter data onto a computer package 0 I 
I14 Determining whether to reject or retain the null hypothesis 1 I 
I17 Trying to understand the odds in a lottery 11 L 
I18 Watching a student search through a load of computer output from his/her research 12 L 
I20 Trying to understand the statistical analyses described in the abstract of a journal article 2 L 
 L=fear of statistics teachers sub domain   
L30 Statistics teachers are so abstract they seem inhuman 10 W 
L32 Most statistics teachers are not human 13 W 
L43 Statistics teachers speak a different language 4 W 
L44 Statisticians are more number oriented than they are people oriented 7 W 
L46 Statistics teachers talk so fast you cannot logically follow them 3 T 
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Table 3 (cont’d). STARS questions, number of missing responses and loading from PCA. 
No. Question missing Factor 
 T=test and class anxiety sub domain   
T1 Studying for an examination in a statistics course  3 T 
T4 Doing the coursework for a statistics course 0 T 
T8 Doing an examination in a statistics course 12 T 
T10 Walking into the room to take a statistics test 13 T 
T13 Finding that another student in class got a different answer than I did to a statistical problem 0 T 
T15 Waking up in the morning on the day of a statistics test 13 T 
T21 Enrolling in a statistics course 3 L 
T22 Going over a final examination in statistics after it has been marked 24 T 
 W=worth of statistics sub domain   
W24 I am a subjective person, so the objectivity of statistics is inappropriate for me 22 I 
W26 I wonder why I have to do all these things in statistics when in actual life I will never use them 5 W 
W27 Statistics is worthless to me since it is empirical and my area of specialization is abstract 10 W 
W28 Statistics takes more time than it is worth 4 W 
W29 I feel statistics is a waste 7 W 
W33 I lived this long without knowing statistics, why should I learn it now? 7 W 
W35 I do not want to learn to like statistics 6 W 
W36 Statistics is for people who have a natural leaning toward maths 6 C 
W37  Statistics is a pain I could do without 2 W 
W40 I wish the statistics requirement would be removed from my academic program 5 W 
W41 I do not understand why someone in my field needs statistics 7 W 
W42 I do not see why I have to fill my head with statistics. It will have no use in my career 6 W 
W45 I cannot tell you why, but I just do not like statistics 7 W 
W47 Statistical figures are not fit for human consumption 11 L 
W49 Affective skills are so important in my (future) profession that I do not want to clutter my thinking 

with something as cognitive as statistics 
11 W 

W50 I am never going to use statistics so why should I have to take it? 10 W 
 

No. refers to the question order, W=worth of statistics, I=interpretation anxiety, T=test and 
class anxiety, C=computational self-concept, H=fear of asking for help and L=fear of statistics 
teachers. Missing is the number of missing responses out of the 109 respondents and factor refers to 
the results of the Principal Component Analysis 

 
DISCUSSION 

The aim of this study was to assess whether statistics anxiety was related to the final mark in 
an introductory undergraduate biostatistics subject completed by health sciences students, and to assess 
if statistics anxiety was related to demographic variables. A secondary aim was to examine how students 
would respond to questions which may not be appropriate at their degree stage, for example asking 
questions about a statistics exam when they had not yet sat for a statistics exam. 

In addressing the primary aim of assessing whether statistics anxiety was associated with 
performance significant negative associations were evident between the “worth of statistics” and 
“computational self-efficacy” subdomains and the final mark. With regard to the relationship between 
the “worth of statistics” and the final mark. “Fundamentals of Biostatistics” is a second year 
undergraduate subject and students generally take this subject before they have any exposure to research 
methods in their chosen discipline. Without a context in which to understand why the subject is 
necessary it is not surprising to see this relationship between the perceived worth of statistics and the 
exam mark. While a focus of the subject has been on presenting relevant examples to engage the 
students, these results indicate that further time should be spent demonstrating the use of statistics in 
health sciences. The mean score for this subdomain in our study was similar to that previously found in 
undergraduate Chinese students (40.12 (12.25), n=201 studying education (Liu et al., 2011)). This mean 
in the Liu et al., study and that in our study are higher than reported means in undergraduate students 
in London 32.22 (14.94), n=93 (Walsh &  Ugumba-Agwunobi, 2002) and the USA 35.33 (13.70) n=191 
undergrad/55 graduate students (Baloǧlu, 2003), although lower than the mean (46.23 (no SD provided) 
of a summary of 10 studies in undergraduate psychology students (Nesbit &  Bourne, 2018). The authors 
of the study in Chinese students identified that the higher worth score may also be related to these 
students having low exposure to empirical research.  

Advanced high school mathematics is not a prerequisite for all our health science degrees. Some 
students struggle with calculator skills, for example being unfamiliar with exponential and logarithmic 
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functions and factorials. This also makes the sections on probability with hand calculations difficult for 
these students. Most students entering the subject have not previously used a statistical package, the 
subject involves a 90-minute practical session each week involving calculations and using SPSS®. 
Assessment tasks involve some calculations and using SPSS® to perform analysis and interpretation of 
output. The negative relationship between the subject mark and computational self-efficacy (where a 
higher score indicates more anxiety associated with computational/mathematical skills) may be 
explained by these factors and indicates that this is also an area where extra teaching resources should 
be developed. The computational self-efficacy scores were similar to previous studies in China (17.55 
(4.86), n=210), London (14.12 (6.97), n=93) and the USA (15.99 (6.30), n=191 undergraduates/55 
graduates) and lower than the mean in the 10 combined psychology studies (21.23, no SD provided). 

There were no relationships between statistics anxiety and age or gender in this study. Sample 
sizes were not adequate to meaningfully investigate relationship between student status 
(domestic/international) and degree program. 

In addressing the secondary aim of investigating the appropriateness of the STARS scale in our 
sample it should be noted that some of the questions, particularly in the Test and Interpretation 
subdomains had high non response rates (Table 3). Although the STARS scale has been used in other 
undergraduate student populations in our subject the students have not previously sat for a statistics 
exam or necessarily completed a research project, therefore some of the questions in these domains are 
not relevant for them. The overall response rate was low, with 34% (91) providing a response which 
could be used for imputation. Although demographic and academic data on the participants who did 
and did not complete the study are available in the University records the ethics approval for this study 
did not allow the collection of any information that was not explicitly consented too by each student. 
Therefore, while the data is available we were unable to conduct any non response analysis to 
investigate the bias in subject marks or demographics between those who did and did not participate in 
the study. Given that the missing data were substantial particularly for some subscales the provision of 
the imputed estimates and the similarity to the original data estimates suggests that the results are robust 
to the missing data. Providing the multiple imputation estimates allows us to address the uncertainty 
about the missing data by creating plausible imputed values and combining these to appropriately 
account for the within and between imputation variance. 

Further work could reconsider the STARS with the less relevant questions excluded and 
perform factor analysis to determine the remaining subdomains. The Statistics Anxiety Scale (SAS) 
(Vigil-Colet et al., 2008) assesses statistics anxiety without assessing attitudes towards statistics and the 
Attitudes towards statistics (ATS) Scale (Wise, 1985) assess attitudes toward the field of statistics and 
the course. Both scales in addition to the STARS have previously been used in psychology 
undergraduate students in Australia and Singapore (Chew &  Dillon, 2014) to assess their validity. The 
STARS has been shown to have superior validity and reliability and has been validated and used in 
many different countries (Chew et al., 2018), however it would be worth establishing whether one of 
these other scales may be more relevant for undergraduate health students. 

In conclusion this study demonstrated that final mark in an introductory biostatistics subject for 
undergraduate health science students was related to their perception of the worth of statistics and their 
perceived computational and mathematical skills. Developing teaching resources to improve these 
aspects of the course may result in improved performance and a better student experience. Further 
research on developing or testing statistics anxiety scales specific for undergraduate students in a first 
statistics class may undercover relationships that were not apparent in the current research. 
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Most doctoral students in education and social science disciplines struggle to become proficient in 
statistical analysis for multiple reasons (e.g., instruction, textbooks, motivation, attitudes, etc.). A factor 
that seems to have been overlooked is the design of software used for statistical analysis. Most software 
has not been designed for non-statisticians or students who are not familiar with computer 
programming. Hence, this paper explores human-computer interaction (HCI) factors in contemporary 
software tools to identify possible issues that contribute to or hinder successful statistical problem-
solving. HCI factors include the range of statistical operations available; technical properties (user 
interface design, data visualization, entry, and manipulation); and usage properties (speed, ease of 
used, and efficiency). SPSS, RStudio, R Commander & jamovi software systems were selected for 
detailed evaluation. Analysis suggests that HCI factors are likely to interfere significantly with the 
completion of statistical tasks for doctoral students in education and social sciences. 
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It is easier to engage with statistics training when presented with examples from familiar subject areas. 
However, when teaching students of varying professional backgrounds, finding relatable examples can 
be especially challenging. Classroom-based data generation exercises offer a solution with students 
involved in the process from data collection through to choice and use of appropriate analyses. One 
such exercise that forms an integral part of an introductory statistics course is based on beermat 
(coaster) flipping, a popular pub game in the UK. We recently moved the data collection process online 
allowing students to enter data via smartphones. Furthermore, a web application has been developed 
using the shiny package in R. This application automizes data analysis and allows students to explore 
the results interactively and independently. The application comes to life with visual demonstrations of 
core concepts such as the central limit theorem and bootstrapping. This technology further engages 
students and the ensuing discussion comparing outputs and interpretation is a welcome addition to 
classroom interactivity. We present details of this exercise, focussing on use of the web application, 
example outputs, student feedback and guidance for best practice to maximise learning outcomes. 
 
INTRODUCTION 

Teaching statistics has transitioned from focus on probability theory and statistical inference as 
an abstract concept, to practical application and statistical reasoning in many applied disciplines 
(Bradsheet 1996, Smith 1998). Topics typically taught in today’s classroom include the principles of 
good research design, data collection and generation of answers to research questions through data 
analysis. We have witnessed a shift towards cooperative learning; a technique giving students more 
ownership of their learning by allowing students to experience first-hand a quantitative research process 
(Garfield 1993). A natural synergy of this transition has been to engage students through group exercises 
that reflect a real quantitative research.  

Smith (1998) states “students are more easily convinced of the power of statistical reasoning if 
they see it applied to questions that are interesting and real to them”. In a homogenous classroom, a 
meaningful project is naturally one that relates to the group’s primary research field. In a heterogenous 
group, such as those containing students from different programmes or short courses, hands-on data 
generation exercises are advocated. This type of activity gives students a sense of shared ownership 
over the data and provides motivation to learn universal statistical concepts applicable to many fields. 
Lee & Famoye (2006) state “data generated from students themselves tend to draw their attention and 
motivate interest more than a dataset disconnected from their everyday life”. 

In this paper, we present a collaborative exercise refined over a decade by the Centre for 
Applied Statistics Courses (www.uck.ac.uk/stats-courses), who are based in University College London 
(UCL) (United Kingdom). This exercise is run within a stand-alone statistics course titled “Introduction 
to Statistics and Research Methods” that typically attracts heterogeneous students. They are asked to 
play a game in pairs that involves flipping a beermat (known as a coaster in the US and Australia); a 
game made popular in pubs across the UK. Instructions are provided in Figure 1 on how to successfully 
flip a beermat. The main research question explored during this course is – is beermat flipping ability 
related to height? Previously, this exercise was performed using paper-based data collection forms, and 
analysis was performed by a statistician (Koutoumanou & Wade 2017). As of 2019, the data is entered 
by students in an online database and analysis are now automated, receptive and interactive though a 
new web application developed using the shiny package in R (Chang et al. 2021).  

We provide further details of the development of this exercise split into two parts; data 
generation and statistical analysis. We present example output, summarise anonymous feedback from 
students and reflect on its effectiveness measured in terms of learning outcomes. A teacher may wish 
to recreate the exercise in their own statistical course or simply gain inspiration for a similar exercise. 
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Figure 1: How to successfully flip a beermat 

 
A DATA GENERATION EXERCISE 

The development of this data generation exercise falls broadly into three phases: (1) Up to 2018, 
when data collection was paper-based, and analysis was performed manually through the SPSS software 
package. (2) In 2019, the data collection and analysis were automated with the intention of running the 
exercise with students face-to-face in the classroom. (3) From 2020, the exercise was adapted for online 
teaching due to the COVID-19 pandemic. Given the popularity of online courses, this format is set to 
continue after students can return to the classroom. In this section we provide details of what the 
exercise entailed for the student and the teacher at each stage. 

 
1. Manual (2010-2018) 

Students are handed a paper form and beermat and arranged randomly into pairs by calling out 
numbers in the classroom. The tallest person is asked to perform the task first. This is not the optimal 
study design and may introduce confounding bias (due to a learning effect), which the students are 
expected to recognise and thus provides a discussion point. 

 

 
Figure 2: A paper data entry form collected from a student (left) compared against our new online 

form (right) (note: the questions have changed a little in the process) 
 
The paper form is shown in Figure 2 (left). Questions that students were asked on this paper 

form include (1) What is your height? (2) Gender? (3) Flip the beermat once, did you catch it? (4) Now 
perform 20 flips, how many catches from 20 flips? (5) See how many flips you can do in 1 minute. (6) 
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How long does it take you (in seconds) to 10 catches? (7) Finally, do one more flip, did you catch it? 
Questions 1-2 provide demographic details of the participants that can be used to explore relationships 
with subsequent measurements of beermat flipping ability (questions 3 – 7). We gather information in 
a variety of formats to subsequently demonstrate to students how the type of data impacts approach to 
analysis. For example, students are asked to perform one flip at the beginning and end of the exercise, 
providing within-person paired data so that improvement/deterioration can be investigated (questions 3 
and 7).  
 
2. Automated (2019) 
 Most stages of the exercise were automated in 2019, now requiring little time on the part of the 
statistician. Students can enter data directly into an online spreadsheet through a google form (as shown 
in Figure 2, right). As a side note, we now ask students whether they were born in the UK rather than 
gender, since this information is less sensitive. 
 
3. Online (from 2020) 
 In 2020, the core introductory course moved online due to the COVID-19 pandemic, and so did 
the beermat flipping exercise. Given much of the exercise had been automated in the previous year, this 
meant coincidently that minimal changes were required to adapt to teaching and performing this 
exercise online. First, we recognised that not everyone will have access to a beermat in the home, so 
instead recommend using some form of credit or membership card instead. Arranging students into 
pairs can no longer be done physically, so instead we make use of the breakout rooms facility in Zoom 
(zoom.us). This arrangement runs much more smoothly that the equivalent task in the classroom. We 
found that such interactive exercises that allow students to connect is essential in a virtual environment 
to avoid disengagement with a lecture-style delivery. 
 
STATISTICAL ANALYSIS 
 The development of the analysis phase of this exercise falls broadly into two time periods: (1) 
Before automation up to 2018, when the statistician performed analysis manually and students were 
provided with static printed results, and (2) After automation from 2019, when analysis is performed 
through a web application. Little has changed since providing online courses, so we describe the 
exercise within this setting in phase (2) alongside the equivalent classroom-based exercise. In this 
section, we provide details of what analysis entails. 
 
1. Manual (2010-2019) 

The paper forms are completed by students and entered manually into a spreadsheet by a 
statistician outside the classroom. SPSS syntax was created so that results can be generated 
automatically, and a report of the results is produced containing only graphs and tables. The report is 
printed for the students in time for the next class, where results can be discussed either as a whole class 
or in smaller groups. This exercise is either for revision in the final afternoon of the course or run in 
stages to give students a regular break from the core materials. 

Students are presented with a series of questions that prompt them to relate the exercise to the 
course materials and relate readily to the type of questions the student might face in a real research 
project. These prompts touch on ideas of sampling bias, sample size, the limitations of pairing, 
appropriate analysis methods and whether the study could have been improved in some way. More 
specifically, there are questions relating to study design and those that require use of the printed output, 
such as: 
• Could the order of performing the flips, tallest always first, have affected the results? 
• How could the outcomes be displayed to show the relationship between ability to flip beermats and 

height?  
• How could you assess whether the ability to catch a single toss improves with practice? 
• How would you analyse the within pair differences to see whether there was a consistent tendency 

for taller individuals to have a better (or worse) ability to flip beermats? 
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2. Automated (from 2019) 
As of 2019, the data (collected electronically) can be immediately incorporated into the analysis 

and results can be viewed in real-time through a web application developed using the shiny package in 
R (Chang et al. 2021). The application reads in the data from an online spreadsheet that automatically 
collects all entries from the data entry form. Screenshots are provided from this application in Figures 
3 and 4. The application is available through the link tinyurl.com/OZCOTS-app and source code 
available via tinyurl.com/OZCOTS-code. Similar questions are proposed to the students in the 
classroom as those before the exercise was automated (see above). The key difference being that 
students can now access the application, make their own selections for choice of analysis and see the 
results appear in real time. 

 

 
Figure 3: Data and leader board tab of the web application 

 
Figure 3 presents a screenshot of the ‘data and leader board’ tab of the application. First, 

students can select data belonging to any cohort of students from the left-hand side of the application 
(label 1). The most recent date is selected as a default since this date most likely belongs to the student’s 
cohort, although any combination of dates can also be selected too to increase the sample size. Data 
collected on the selected dates then becomes the analysis dataset for all other tabs in the application. 
On this same tab, a leader board is presented (label 2), which can be sorted in order of any of the 
variables (label 3). The student might choose to order by some variable relating to beermat flipping 
ability to see how they fared in relation to their peers. 

 

 
Figure 4: Linear regression tab of the web application 

 
Figure 4 presents a screenshot of the application from the final ‘regression’ tab. We provide 

this as a typical example how students can interact and create results with other results tabs being set 
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up in a similar way. The students are able to select only a numeric variable as the outcome (since only 
linear regression is taught during the course) (label 1) and one or more independent variables that can 
take any form (binary or numeric) (label 2). In the screenshot, ‘number of successful flips in one minute 
is chosen as the outcome and ‘height’ and ‘born in the UK’ as the two independent variables. Results 
are shown as they would appear in the R console (label 3) and also equivalent results pasted into an 
equation format (label 4). One of the strengths of these shiny apps is the ability to merge results into 
the text, providing students with a fuller explanation than you would typically see in the output for a 
statistical software package.  
 
FEEDBACK 

We present feedback that was collected anonymously via an online questionnaire after an 
iteration of the course in 2019 within a classroom. 28 of 35 students taking part in the course responded. 
Students were asked to rate the data generation exercise, the ease of data entry and the web application 
showing the results on scales of 1 (poor) to 5 (excellent). . There were 23 (82%) respondents that rated 
the data generation aspect of the exercise a four or above; the equivalent numbers in relation to the data 
entry form and web application were 23 (82%) and 22 (79%) respectively (Figure 5). 

 

 
Figure 5: Feedback on data generation, data entry and the web application components of the 

exercise on a scale of 1 (poor) to 5 (excellent). Frequencies (x-axis) and score (y-axis) presented. 
 

We received 15 free text comments, of which 8 (53%) were solely positive, 6 (40%) neutral and one 
(7%) negative. Of the positive comments, one student stated, “it was a great ice breaker, and being able 
to apply what we learned to this data (via [the] app) helped me to understand how to apply the concepts 
to real data”. Another student commented “[I] thought this was really useful and I was really impressed 
by how well integrated it was throughout the course”. The six neutral comments included four students 
that suggested more time allocated for the exercise, one student felt a simple written example without 
participation would have personally fulfilled the same purpose, and a final student stated, “I would like 
to see this being run on SPSS or Stata”. Our students have very different preferences for statistical 
software and varying computer programming skills, but perhaps the application could provide access 
to the data for download and include the R code used to generate results. 
 
CONCLUSIONS 

Data generation exercises such as that demonstrated in this paper give students an opportunity 
to take ownership over their learning. These exercises give students shared interest, which is particularly 
challenging in a diverse classroom and facilitates understanding of steps involved in typical research 
processes. Our exercise encourages aspects of statistical thinking as defined by Wild (1999), closely 
mimicking a typical interrogative research cycle, where students interpret results and critically appraise 
them in light of the limitations of the data collection process. 

Related classroom exercises that involve students generating their own data can also be found. 
Zeleke & Lee (2010) suggest research questions such as “is hand size a good predictor of height” and 
“how many raisins in a 0.5 oz. raisin box”. Zetterqvist (1997) gives similar examples of exercises within 
a chemistry class, such as “determine the concentration of copper in a piece of impregnated wood”. 
Other exercises focus on theoretical understanding. For example, demonstrating the central limit 
theorem by having students pick random numbers in small groups (Zacharopoulou 2006). These 
exercises typically involve manual data collection and analysis, setting a clear distinction from the 
beermat exercise demonstrated in this paper. For example, Zeleke & Lee (2010) ask volunteer students 
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to collect the paper data entry forms and create appropriate plots, but stated a limitation of their exercises 
were lack of time and recommend online resources for data collection to speed up the process. 
Applications developed through the shiny package, much like our application, are commonplace in 
statistical education as demonstrated in a review by Doi (2016). However, these are generally built to 
explain concepts such as the central limit theorem, rather than incorporate student-generated data. 

Automating data collection and analysis saves time for lecturers and students, providing an 
opportunity for data collection and analysis to take place within the same class. These stages of the 
research process don’t typically run as smoothly in real life and this point should be emphasised in 
class. One of the themes coming from feedback was that students like to see how analysis might be 
carried out in a particular software package; this can be challenging in a classroom filled with diverse 
student preferences, but highlights how providing the data, code and examples for different packages 
could further enhance the exercise. This would be a simple process and illustrates the value of student 
feedback to improve classroom activities and make them more inclusive. The feedback collected for 
this exercise meant that a full evaluation of the learning outcomes was not possible, but will be a 
valuable avenue for future research. The online environment has led to the rapid development of this 
useful tool, the benefits of which will also be apparent with face-to-face courses when these return.   

 
REFERENCES 
Bradstreet, T. E. (1996). Teaching introductory statistics courses so that non-statisticians experience 

statistical reasoning. The American Statistician, 50(1), 69-78. 
Chang, W., Cheng, J., Allaire J.J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, 

D., & Borges, B. (2021). shiny: Web Application Framework for R. R package version 1.6.0. 
https://CRAN.R-project.org/package=shiny  

Doi, J., Potter, G., Wong, J., Alcaraz, I., and Chi, P. (2016), Web Application Teaching Tools for 
Statistics Using R and Shiny. Technology Innovations in Statistics Education, 9(1), 1–33. 

Fawcett, L. (2018). Using interactive shiny applications to facilitate research-informed learning and 
teaching. Journal of Statistics Education, 26(1), 2-16. 

Garfield, J. (1993). Teaching Statistics Using Small-Group Cooperative Learning. Journal of Statistics 
Education, 1(1). 

Koutoumanou, E. & Wade, A. (2017). Students Generating and Using Their Own Data in a 5-day Basic 
Statistics Course. United States Conference on Teaching Statistics (USCOTS, May, 2017). 

Lee, C., & Famoye, F. (2006). Teaching statistics using a real time online database created by students. 
Proceedings of the Seventh International Conference on Teaching Statistics (ICOTS7, July, 2006). 

Smith, G. (1998). Learning statistics by doing statistics. Journal of Statistics Education, 6(3). 
Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International statistical 

review, 67(3), 223-248. 
Zacharopoulou, H. (2006). Two learning activities for a large introductory statistics class. Journal of 

Statistics Education, 14(1). 
Zeleke, A., & Lee, C. (2010). Teaching introductory statistics using student generated data in a large 

class. Proceedings of the Eighth International Conference on Teaching Statistics (ICOTS8, July, 
2010). 

Zetterqvist, L. (1997). Statistics for chemistry students: how to make a statistics course useful by 
focusing on applications. Journal of Statistics Education, 5(1).  

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

21



OZCOTS 2021 Contributed Paper (Refereed) Dong & Liu 

PERFORMANCE OF ELEMENTARY STUDENTS ON STATISTICAL OPEN-ENDED 
ITEMS: LARGE-SCALE TEST IN CHINA 
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Beijing Normal University, China 

758727149@qq.com 

Effective assessment of statistical open-ended items is an important part of Statistics Teaching. Based 
on the SOLO taxonomy, take the large-scale test data of fourth-grade students in D city in southern 
China as samples to deeply describe students' performance on the two categories of "pose questions" 
and "pose strategies" for elementary statistical open-ended items, and further explore the effectiveness 
of teachers’ cognitive stimulation on students’ statistical thinking level. Results show that: Compared 
with the "pose questions" category, students’ performance on the "pose strategies" category is slightly 
inferior; A clear and complete written expression of mathematical language is an obstacle for students 
with low statistical thinking levels to advance; Most students have difficulty in contacting data context 
and have weak statistical reasoning ability; A higher level of teacher cognitive stimulation can help 
students improve their statistical thinking level, especially for students with low thinking levels. On this 
basis, relevant suggestions are put forward in order to provide enlightenment for the improvement of 
students' statistical thinking. 

INTRODUCTION 
The conclusions of statistical items are often probable. How to evaluate statistical open- ended 

items has become the "short board" and "difficult point" in the field of mathematics assessment. Among 
them, the fundamental difference between SOLO classification theory and traditional assessment lies 
in the openness of answers and more attention to the development of students' thinking. Based on SOLO 
taxonomy, Jones et al. (2000) assessed students’ performance on statistical open-ended items, and 
determined four levels of statistical thinking for elementary students. This framework provides a 
methodological basis for this study to assess students' performance in answering statistical open-ended 
items. In the teaching of open- ended items, teachers often need more cognitive support and strategies 
(Huang et al., 2006). Specifically, teachers’ effective cognitive stimulation strategies could help 
students experience a high-level cognitive learning process (Bao & Zhou, 2010), thereby enhancing 
students’ thinking levels. Then in statistics teaching, to what extent teachers’ cognitive stimulation can 
promote the development of students’ thinking becomes another focus point in this study. 

To sum up, based on SOLO taxonomy, the study qualitatively classifies and statistically process 
the answer performance of elementary students on statistical open-ended items, and present typical 
answer examples of students with different levels of thinking. We use large- scale data mining to 
diagnose the inadequacy of students' statistical thinking development, and provide strategies for the 
improvement of assessment results by exploring the role of teachers’ cognitive stimulation. 

METHODS 
The analyses conducted in the current study were based on the data from a large-scale 

investigation  in D city in southern China entitled “Regional Education Monitoring Project (REMP)”, 
conducted in the fall 2020. We used Probability Proportionate to Size Sampling method, and first 
selected 330 schools and then randomly selected students from each school. After removing the 
participants with missing data for the relevant variables, the final sample included 30,075 students. 
Among them  there were 16,923 (56.2%) boys and 13,162 (43.8%) girls. In order to effectively obtain 
the data, the researcher conducted the group test on a class basis. The test subject who voluntarily 
received the research group training entered the classroom, explained the test purpose and read the 
instructions. Then, the students began to finish the test.  

The study relied on REMP to develop the mathematics test. The development of the test has 
gone through interviews, a small-scale test, a pre-test with 300 students, and independent review by 
external professional research group to ensure the quality of the instrument. The propositions in the 
field of “statistics” in this test adhered to the principle of “literacy-oriented” and focused on real 
situations. This study selected 3 items, including one “pose questions” item and two “pose strategies” 
items (see Figure 1). 
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Teacher's cognitive stimulation strategy was measured with the student's perspective, which 
was the teacher's cognitive stimulation strategy perceived by the students. The scale was adapted from 
the PISA 2012 Student Questionnaire, which consisted of 8 items (e.g., “The teacher asked us to explain 
how we answered the question”). Students responded on a 5-point Likert scale (1=Never to 
5=Always).The higher the score, the better the teacher's cognitive stimulation strategy perceived by the 
individual. And the Cronbach α in the current study was 0.94. 

Figure 1. Three statistical open-ended items in our study (M4AS162, M4AS163, M4BS163) 

Based on the SOLO taxonomy and the statistical thinking level model of Jones et al., a coding 
analysis of students' answers was shown in Table 1. The test recruited 10 senior undergraduates 
majoring in science from a university. The online data coding time is 2 days, and the coders formally 
coded after half a day of training. Finally, we used Excel 2019 and SPSS.22.0 software to enter the 
coding results and perform descriptive statistical analysis of the data. 
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Table 1. The level description and examples of the three statistical open-ended items. 
item Idiosyncratic Transitional quantitative analytical 

M4AS162 
(pose questions) 

Blank; irrelevant 

answer; subjective 

answer; wrong answer. 

Can pose questions, 

but the presentation 

is incomplete, or 

logically wrong. 

Can pose simple 

questions and 

express clearly. 

Can pose questions 

from a statistical 

point of view and 

express clearly. 

M4AS163 
(pose a strategy 

from multiple 

angles) 

Blank; irrelevant 

answer; subjective 

answer; wrong answer, 

including not directed 

to the cafeteria. 

The posed strategy 

is reasonable, but 

the expression is 

vague. 

Can pose a 

reasonable strategy 

from one angle, and 

express it clearly. 

Able to pose a 

reasonable strategy 

from two angles, 

and express it 

clearly. 

M4BS163 
(pose a strategy 

with a basis) 

Blank; irrelevant 

answer; subjective 

answer; wrong 

answers. 

The posed strategy 

is inaccurate and no 

reason is given. 

Pose a strategy 

based on the 

specific context. 

The statement is 

clear, but no reason. 

Be able to come up 

with strategies from 

a statistical point of 

view, and express 

them clearly. 

RESULTS 
In this part, we analyze the students' statistical thinking level on the three items, and the role of 

teachers' cognitive stimulation. 

Assessment results of statistical open-ended items 

Table 2. The level distribution of students on the three statistical open-ended items (%). 
item Idiosyncratic Transitional quantitative analytical 

M4AS162 12.6 4.8 57.6 25.0 
M4AS163 22.2 19.4 52.5 6.0 
M4BS163 17.1 37.7 44.1 1.1 

Table 2 presents the level distribution of students on the three statistical items. The context of 
M4AS162 is the problem of leftovers in the canteen. Approximately 12.6% of the students are at the 
idiosyncratic level, only 4.8% of the students are at the transitional level, more than half (57.6%) of the 
students are at the quantitative level, and about a quarter of the students are at the analytical level. 
Students at the analytical level can establish the information between the data and make a 
comprehensive summary. Also, they can be aware of the statistical purpose of the graph, and often raise 
statistical questions from the key information. The following shows the typical answer examples of 
students at the analytical level: 

"How many people have leftovers for lunch?" 

"How many people can finish eating?" 

"How many more people have leftovers than those who have just finished eating and those 
who haven't enough to eat?" 

The context of M4AS163 is the problem of leftovers in the cafeteria. There are still 22.2% of 
students at the characteristic level, some students (19.4%) at the transitional level, more than half 
(52.5%) at the quantitative level, and only 6.0% at the analytical level. Students at the analytical level 
can understand the information contained in the data in the statistical graphs, consider not only the 
overall situation of the leftovers, but also the reasons for the leftovers. Also, they can consider the 
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problems more comprehensively, and can establish the connection between the data. The following 
shows the typical answer examples of students at the analytical level: 

"The school cafeteria should ask for the opinions of students to cook the dishes that students 
like to eat, and prepare meals according to the appetite"  

“I think it should be classified according to the appetite of each student and the food they love 
together.” 

The context of M4BS163 is the COVID-19 epidemic. This item requires students to put forward 
strategies "with a basis", that is, "strategy + reasoning", which is difficult for students. In total 17.1% 
of students are at the idiosyncratic level, 37.7% are at the transitional level, 44.1% are at the quantitative 
level, and only a very small number (1.1%) are at the analytical level. Students at the analytical level 
already have statistical reasoning skills, and they can "justify themselves" based on the data background. 
The following shows the typical answer examples of students at the analytical level: 

Text reasoning: “The possibility of infection at dinner parties is very high. Please try not to 
dinner together.” 

Data reasoning: “Between January 28 and February 3, there were 35 new cases. According 
to the investigation, 33 new cases were infected after going out, so if you can go out, don’t go 
out.” 

The improvement of teachers' cognitive stimulation 

Table 3. Changes in the level of students by different teachers’ cognitive stimulation (%). 
Idiosyncratic Transitional quantitative analytical 

item After 
30% 

Before 
30% 

After 
30% 

Before 
30% 

After 
30% 

Before 
30% 

After 
30% 

Before 
30% 

M4AS162 17.9 9.5 5.4 4.5 53.4 61.1 24.3 24.9 
M4AS163 41.5 29.9 6.1 6.9 47.4 56.2 5.1 7.0 
M4BS163 23.2 12.8 36.7 39.8 39.3 46.3 0.8 1.1 

Table 3 presents the differences in the statistical thinking level distribution of the students in 
the three statistical open-ended items in the lower and top 30% group of teachers’ cognitive stimulation. 
For example, “Before 30%” in the Table 3 means that teachers’ cognitive stimulation scores are in the 
top 30%. On the whole, a good teacher's cognitive stimulation can help students at the idiosyncratic 
level overcome the subjective response orientation and develop to a transitional level and a quantitative 
level. It can also allow more students at a low level of statistical thinking to reach the quantitative level, 
but the proportion of students at the analytical level has not changed much. 

In the "pose questions" category, teachers help students overcome obstacles in mathematics 
language expression, so as to clearly ask simple questions. However, teachers’ cognitive stimulation is 
limited in helping students with high levels of thinking, and it is difficult for students to pose strategies 
from a statistical perspective. Compared with the "pose questions", teacher cognitive stimulation is 
more helpful for students to pose strategies, especially for students with idiosyncratic and quantitative 
levels. In particular, teachers can support students to express their own strategies clearly from one angle, 
but it is hard to help students put forward statistical strategies from multiple angles, and allow students 
to state their own reasons on the basis of posing clear strategies. 

DISCUSSIONS AND IMPLICATIONS 
The study is based on large-scale data in China, and uses SOLO taxonomy to operatively code 

the performance of students on statistical open-ended items, so as to diagnose students' development 
dilemma of statistical thinking, and further explore the function of teachers’ cognitive stimulation to 
students’ statistics learning. The main conclusions and implications are as follows. 
Pay attention to mathematical expression and improve the ability to use mathematical language  

The results show that a considerable part of Chinese students is still at a low level of statistical 
thinking, due to problems about “unclear and vague mathematics register”. It means that if students 
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want to achieve a higher level of statistical thinking, such as quantitative and analytical levels, they 
must overcome the “mathematics register” problem. In daily teaching, teachers should not only allow 
students to give answers, but also encourage students to use mathematical language to explain their 
thinking and own mathematical understanding (Zhao, Li, & Wilkinson, 2018). 

Mining the information contained in the data and comprehensively contacting the data context 
Through the exploration of our study, it is found that most Chinese students have difficulty in 

answering statistical open-ended items in connection with the original context of the data. Consequently, 
they need to have a statistical perspective to think about problems, and be able to respond in the context 
of data. Data is the "number in context" (Franklin et al., 2007), and it is the context that gives the data 
meaning (Langrall et al., 2011). Therefore, statistics teaching should be especially aware of the 
importance of day context. 

Develop critical thinking and improve students' statistical reasoning ability 
Also, the study finds that students' performance on the "pose strategy" items is slightly inferior, 

and only a very small number of students can reach the analytical level. Especially in the "statistical 
reasoning with a basis", more than half of the Chinese students are still at the idiosyncratic level and 
transitional level, which means that we need to focus on the students' statistical reasoning ability. On 
the one hand, statistical reasoning requires students to have the awareness of using data and use "data" 
for reasoning. On the other hand, statistic concerns about uncertain phenomena, and the conclusions 
obtained by statistical reasoning are subjective and probable, which requires students to reflect and self-
criticize. 

Pay attention to teachers’ cognitive stimulation, discover myths and expand students’ thinking 
Finally, the data tells that the degree of teacher's cognitive stimulation has a greater impact on 

students at the idiosyncratic level, and can effectively promote fourth-grade students to reach a 
quantitative level. It shows that a higher level of teacher cognitive stimulation can help students further 
improve their statistical thinking level, especially for students with low thinking level. It can be seen 
that teachers need to pay attention to their own cognitive stimulation of students. 

Therefore, teachers can attach importance to the following two points: First, let students explain 
how they answer questions. This is not only to give students a process of thinking expression, but also 
an opportunity for the formation of generative educational resources. Teachers can use this to discover 
students’ Myth. Second, encourage students to use a variety of different methods to answer, help 
students expand their thinking, and enhance mathematical cognition in different methods of 
communication and learning. 
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The difficulties in the concept acquisition in stochastics in general and in statistical inference 

are well known. The paper has two goals: To illustrate ways of elementarising – in the sense of Felix 
Klein – statistical inference and to compare two different approaches to elementarisation. Informal 
inference may be used as a label for endeavours to simplify, visualise, or simulate the model behind 
inference. That means, the statistical model remains the target of teaching. That implies that the 
theoretical character of models is visualised by simpler means. The elementarisation is viewed as a 
transient stage to statistical inference. “Informal Inference” – going back to the computer-intensive 
methods in statistics such as Bootstrap and rerandomisation – is an educational approach that 
reduces statistical inference to methods solely based on resampling given data. We illustrate both 
approaches and give a detailed discussion about the relative merits. The examples used show how to 
build conceptual understanding and enclose the meaning of concepts by meta-knowledge based on an 
elementarisation of – the full complexity of – statistical inference. 

 
BACKGROUND 

The complexity in the concepts and the difficulties in the individual concept acquisition in 
statistical inference are well known (Batanero, Chernoff, Engel, Lee, & Sánchez, 2016). That has 
induced the search for new learning forms, such as the ideas of visualisation and simulation. 
Computer-intensive methods of the discipline (Lunneborg, 2000; Efron, & Tibshirani, 1993) have 
served as incentive for didactic innovations. We compare two ways of elementarisation.  

“Informal Inference” – going back to the computer-intensive methods in statistics such as 
Bootstrap and rerandomisation – is an educational approach that reduces statistical inference to 
methods solely based on resampling given data (Cobb, 2007). This approach reduces statistical 
inference completely to the observed data developing the methods solely based on resampling this 
data. “Shuffling” the data provides tests of significance of natural null hypotheses and intervals that 
mimic confidence intervals. 

Informal inference may be used as a joint label for endeavours to simplify, visualise, simulate 
the hypothetical model behind statistical inference, or embed it into a suitable context. That means, 
the statistical model remains in the background but is still the target of teaching so that it forms the 
background for educational decisions (Borovcnik, 2019). That also implies that the theoretical 
character of such models is visualised by simpler means. This way of elementarisation should create 
learning paths to the full complexity of statistical inference.  

The exposition of “Informal Inference” shows its advantages, as do many papers of the recent 
past. Yet, after a critical evaluation of the shortcomings of this approach, we suggest using resampling 
(Bootstrap and rerandomisation) only as a transient stage rather than replacing statistical inference by 
something new. The examples in this paper show how to build conceptual understanding and disclose 
the meaning of concepts by meta-knowledge based on an elementarisation of – the full complexity of 
– statistical inference. The advent of Big Data will not decrease the role of statistical inference as it 
does not replace inference by other methods but uses complex methods of statistical inference in a 
different way (Prodromou, 2017). 

 
THE PROBLEM OF COMPLEXITY OF STATISTICAL INFERENCE 

Probability without inference is meaningless, statistical inference cannot be understood 
without a sound comprehension of probability. This view changed curricula in the mid-1980s when 
after introducing probability, attempts followed to design learning paths towards statistical inference. 
It soon became clear that statistical inference would widen the focus on probability interpretations. 
Borovcnik (1996) considered resampling and non-parametrics as an intermediate state for learning 
paths towards the full complexity of inference. First attempts in the mid-1990s failed because of 
insufficient computer capacity. This changed after the Millennium. Cobb (2007) suggested replacing 
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statistical inference completely by resampling techniques grounded on a pure frequentist concept of 
probability. We describe first the problem of elementarisation in the sense of Felix Klein in general 
and then various attempts to find tractable approaches towards inference.  

 
The complexity problem as a didactical challenge 

Elementarisation is an old idea of mathematics teaching going back to Felix Klein:  
 
“There is a widespread understanding of the term “elementary”, meaning […] something “simple” and 
not loaded with conceptual dimension – even somehow approaching “trivial”. Connected, in contrast, 
with the notion of element, “elementary” means for Klein to unravel the fundamental conception. What 
is at stake, hence, is the notion of elements. […] The elements are understood as the fundamental 
concepts of mathematics, related to the whole of mathematics – according to its restructured 
architecture.” (Klein 1908/2016, p. vi) 

This notion of elements corresponds to the first reflections of d’Alembert on the nature of 
elements undertaken in the wake of Enlightenment how to make knowledge teachable and how to 
disseminate knowledge (Diderot & d’Alembert, 1751):  

 
“[d’Alembert] conceptualized in a profound manner […] how to elementarise a science, that is how to 
connect the elements with the whole of that science. […] to identify the elements of a science, or in 
other words, have rebuilt it in a new coherent way all parts of a science that may have accumulated 
independently and not methodically.” (Klein 1908/2016, p. vi) 
 

Different ways of tackling the complexity problem in statistical inference 
a) Replace statistical inference by a different paradigm of generalisation: EDA (Exploratory 

data analysis) (Tukey, 1977). This has been perfectly received by the research community in the sense 
of a hypothesis-generating method; but it is less tractable for hypothesis testing as is required in 
statistical inference. The idea behind EDA relates to an interactive modeller who adapts the model 
step-by-step by interpreting results from intermediate analysis by the modeller’s knowledge of the 
context of the problem. The insight into the result from context knowledge justifies the results. The 
inherent problem of EDA as a form of statistical inference lies in the circumstance that subjective acts 
of the modeller would be “forced” upon others who – as a usual reaction to it – would then reject the 
modelling and the result as relevant for them. 

b) Teach different views and methods and learn from the differences in the same way as 
Barnett (1982) tried to evaluate the various schools of inference by his comparative statistics. A 
parallel approach in teaching was suggested by Vancsó (2009). The Bayesian way focuses on a 
decision between options rather than on inference and often on a discrete rather than a parametric 
model (e.g., the normal). The 1997 discussion in The American Statistician has been marked fiercely 
in favour of Bayesian methods (Witmer et al., 1997). Yet it was ended by Moore’s (1997) “too 
difficult”. Vancsó’s (2009) uses software for the required complex calculations and visual 
interpretation for (prior and posterior) distributions. Key idea of a parallel approach is to understand 
the methods better due to the different ways to deal with the inference problem. Stangl (2017) 
advocates the Bayesian paradigm and gives suitable examples for optimising one-off decisions. The 
approach extensively uses computer facilities for calculations and graphing and it requires an intuitive 
understanding of distributions from graphs (Vancsó, 2018). Key are prior and posterior distributions 
as summary of the status of information: prior to data: qualitative information; posterior to data: prior 
and data combined. The quality of these distributions reaches far beyond a simple frequentist 
interpretation of probability. 

c) Reduce the complexity of the statistical situation permanently: “Informal inference” (Cobb, 
2007). Resampling embraces two different computer-intensive methods: Noether’s (1967) non-
parametrics that has gained attention because it is easy to simulate from a large number of 
combinatorially possible cases (rerandomisation). Computer facilities have reinforced the 
implementation of Bootstrap sampling from the first data set. “Informal inference” is an educational 
approach that copies the method of resampling and computer-intensive methods from the applications 
of statistics. Key idea is to simplify inference statistics. The approach has been extended to cover the 
curriculum of statistical inference over the secondary level and introductory statistics at universities 
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(Makar & Rubin, 2009; delMas, 2017; Ben-Zvi, Makar, & Garfield, 2018). A theoretical framework 
was elaborated in Zieffler, Garfield, delMas, & Reading (2008). 

d) Informal ways to explore the full complexity of statistical inference. This approach 
originates from general teaching practice; it has been refined to a didactic position towards teaching 
statistical inference. Firstly, it comprises the use of analogue contexts or tasks that reveal the purpose 
of the methods and the character of the concepts: Concepts get a natural interpretation in the analogue 
(Batanero & Borovcnik, 2016). Medical or economic decisions are embedded in contexts, in which 
the concepts attain a natural meaning. Secondly, it uses illustrations, materialisations, and 
visualisations: The simulation shows effects of probabilistic models (regardless of the interpretation 
of probability) and the consequences of decisions. Thirdly, to use a simplified situation temporarily to 
pave the way for the full complexity (Borovcnik, 1996). 

 
RESAMPLING AND BOOTSTRAP: „INFORMAL INFERENCE“ 
Wilcoxon rank test: significance test and p value 

Task: Empirical proof of the efficacy of an antihypertensive drug by a placebo-controlled, 
randomised, double-blind clinical study. Target variable: Intra-individual difference of blood pressure 
D = sysBase – sys4Week [mm Hg]. Large values correspond to a great relief. Hypotheses are: Null 
(H0): Verum (treatment) = Placebo (control); Alternative: Verum is better (or worse) than Placebo. If 
Verum is better, large values are expected under treatment compared to Placebo.  

We introduce the Wilcoxon rank test or Mann-Whitney for independent samples to replace 
the usual t test. Let us suppose data for Placebo as 2.5, 0.9, 1.8, 3.6, and Treatment as 3.7, 5.2, 4.8, 
6.1. We can rank the joint data from 1 to 8 (we could also use the original data). Rank 1 for the lowest 
value, rank 8 for the highest. The rank sum for the treatment group is then 26 and for the placebo 10. 
If we change the labels for treatment systematically, there are ‘8 choose 4’ = 70 selections of four data 
to form the treatment group with the rest forming the control (Fig. 1). Under the null hypothesis of no 
difference between treatment and placebo, all these selections (and the related rank sum) have the 
same justification or probability. The rank sum of the original sample is judged as a random result 
from all possible selections. From this, one can calculate the p value of the observed sample as 2/70 = 
0.029 (two-sided).  

  
Fig 1. Possible rankings by rearrangement (left) – Probability distribution of rank sums under H0 (right). 

 
The significance test of the hypothesis of no difference between treatment and control leads to 

a rejection if the size of the test is 0.05 (usually set at 0.05 or 0.01). We conclude that the effect of the 
medical drug is significant at the 5% level. 

 
The p value: some early concern 

Let p denote the probability for an observed result (the exact one and ‘more extreme’ results) 
if H0 applies. If p is smaller than 5%, the null hypothesis is rejected; p is the probability for a false 
positive statement, i.e., the test yields a significant result if the drug is not effective: 

p = P(Test provides a significant result | Drug is not effective). 
We have observed something that has less probability than 5% if H0 applies (drug not 

effective). Therefore, we reject the null hypothesis. Yet, we are only interested in this figure: 
P(Drug is effective | Test significant) 

Doctors are not statisticians, but they should know the basics of scientific methods. Neyman 
and Pearson (1933) note “No test based on probability theory alone can provide valuable proof of the 
truth or falsehood of a hypothesis.” The following “argument” shows a frequent misconception 
(Borovcnik, 2019). We interchange event and condition and “get”: 

25 2616 … 18 … … 2411 12 12 … … 16

4
3
2
1

Rank sum 10

Rank Attribution of persons to Placebo and Verum
8
7
6
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p = P(Drug is not effective | Test significant) Þ 1–p = P(Drug is effective | Test significant) 
If p was small, then 1–p is large, so the effect would be confirmed by a significant result. Yet, 

how large this probability is cannot be judged without reference to an alternative hypothesis! 
 
The idea behind “Informal Inference”  

The idea behind “Informal Inference” is to extract more information from the first sample by 
repeatedly taking samples (with replacement) from this given sample mimicking samples from the 
population. If the mean of each pseudo sample is taken (or any other characteristic), the pseudo-
sampling process provides – in some way – an approximation for the sampling distribution of the 
mean (or this other characteristic). The process is called Bootstrap sampling, or Bootstrapping and the 
Bootstrap distribution is used like a distribution of data in descriptive statistics to deliver a Bootstrap 
interval that approximates a confidence interval.  

As in the blood-pressure example above, rather than bootstrapping a single data set, the 
attribution of a statistical unit to one of two groups (treatment and control group) may be renewed to 
cover all possible reattributions. With the null hypothesis of no difference between the two groups, all 
re-attributions have the same justification or probability; as if there is no difference, one may attribute 
the labels of treatment and control in an arbitrary manner. That means, the finite set of all 
reattributions has a uniform probability distribution. As with larger samples, this theoretical universe 
of reattributions is large, one may take a random sample of it. Practically, this is done by a random 
reattribution (sampling without replacement) from the first data set. The method is called resampling. 
In the blood-pressure example, one would randomly select the four data for the treatment group (the 
others form the control) and calculate the related rank sum (or the difference of means if the data is 
investigated on the original scale). This resampling is repeated very often, which provides an 
approximation to the distribution of all combinatorially possible reattributions. From this distribution, 
it is easy to derive a significance test of the null hypothesis of “no difference” between the two 
groups. 

The intention of informal inference is to embed the complex situation in statistical inference 
in a simple material setting (i.e., the data) leaving out any consideration about hypotheses except the 
natural null hypothesis of pure random effects on the statistical units. Examples for Bootstrap 
intervals and for significance tests based on resampling may be found in Borovcnik (2019), delMas 
(2017), or Stohl, Angotti, and Tarr (2010). 

 
Inference about one “group” 

If one data set is to be judged, e.g., for a parameter of location, a Bootstrap interval is 
provided by repeatedly sampling from the given data (always calculating this parameter). This 
resampling method provides an empirical basis (data) for the statistical measurement of this 
parameter. If a (hypothesised) parameter value falls outside the Bootstrap interval, it is “rejected” 
(Engel, 2010). The difficult part from an educational point of view is to justify why one can draw a 
new “sample” from the existing sample rather than from the population. 

Example: We assume data for working hours for a seminar (data see Fig. 2). How accurate is 
the mean value of the sample as a measure of the population?  

 

Fig. 2. Original sample for work time for a seminar and a first Bootstrap from this data (left)  
– Histogram of 1000 Bootstrap samples (right).  
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Instead of drawing from the population from anew, we select from the first sample (with 
replacement). The first Bootstrap provides a new measure of the population mean value, which does 
not differ too much from the original sample. We repeat the Bootstrap and get 1000 (or more) 
artificial measurements. The artificial data generated by this method reflect the variability of repeated 
measurements of the unknown mean of the population. From the Bootstrap distribution for the mean, 
we can cut the lowest and highest 2.5% to obtain the 95% Bootstrap interval, which is (3.80, 15.10) in 
our simulation scenario. This can be compared to the classic confidence interval of (2.46, 15.34). We 
see a good agreement between the two methods. Yet, the interpretation is different. The Bootstrap 
reflects the accuracy of repeated measurements of the population mean, while the confidence interval 
represents the population mean in 95% of the “repeated” samples. Similarly, Bootstrap can also be 
used to estimate other parameters. An exhaustive overview on Bootstrap intervals is in Pfannkuch, 
Wild, and Parsonage (2012). 

 
Inference about two groups 

If two data sets are to be compared for a measure of location (or any other parameter), then 
there are two options: First, resample from the given data on each group separately to derive the 
Bootstrap interval for this parameter; or, second, rerandomise the attribution of single data to one of 
the groups by a new random decision. If the null hypothesis of no difference between the two groups 
applies, then the data can be pooled and from this pool, the data for group 1 (and 2) can be randomly 
selected so that again an empirical basis of the statistic of interest is generated solely by the given 
data. The initial random attribution is randomly redone on the existing data, which reflects the natural 
null effect hypothesis (Stohl, Angotti, & Tarr, 2010). 

Is a treatment effective in relation to a target variable? Treatment group receives Verum (TG), 
control group receives Placebo (CG). The re-randomisation offers an alternative to the two-sample t-
test. The procedure is similar to the significance test from before. Instead of ranking the data, we 
analyse the values of the data here. The procedure is the same, but now we work with the original data 
and simulate samples from all permutations, because otherwise it becomes difficult to determine all 
permutations even with few data. 

Under the null hypothesis of NO DIFF, it is intuitive that any reassignment of people to 
treatments should have NO impact. Therefore, we swap people randomly and the next treatment 
group consists of 8, 2, 3, 12, 7 and 1. The first re-allocation provides a new measurement of the 
difference in the mean values (as a measure of the treatment effect); the difference between treatment 
and control group in the original sample is 33.58, while the first reallocation yields a difference of –
16.92 (see Fig. 3). 

Fig.3. Left: Original sample in treatment and control groups and first rerandomisation of persons to treatment – 
Right: Histogram with 1000 re-attributions.  

 
The distribution of repeated re-randomisation is shown in Fig. 3 (right); it represents the 

artificial results based on the NO DIFF hypothesis, i.e., the null hypothesis. We can insert the result of 
the first sample into this distribution and see that the p-value is 7.0% (two-sided). The entire 
simulation scenario can be repeated to show that the result is stable. This result can be compared with 
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the classic two-sample t-test, which gives 2.16, which corresponds to a p-value of 5.6% (assuming the 
same variances in the groups) or 2.16 (!) with 5.9% (for unequal variances). Here again, the similarity 
of the classic results with the re-attribution test is striking. The method may also be applied to any 
other comparison. 

 
INFORMAL-INFERENCE EXPLORATIONS BY CONTEXT 

We develop an analogy to decision making in medicine and economy to clarify the tight 
connection of statistical inference to decision making. This analogy helps to understand the meaning 
of the single elements and the restrictions of the methods. The abstract quality indices of methods of 
statistical inference get a natural interpretation within the contexts. The framework of decisions also 
makes clear that probability points far beyond a simple frequentist interpretation and has to be 
captured by models though we make extensive use of simulation of the consequences of these 
theoretical models.  

 
Analogy to the medical situation 

Borovcnik (2019) suggests exploring the situation in medicine, where there is always a 
decision that may lead to various errors whatever the decision is. A diagnostic test may be compared 
to a statistical test. A drug experiment is analysed by a statistical test. The analogy serves two 
directions: Statistical tests get better understandable by the context of medicine. Medical decisions get 
easier to understand by the superimposed structure of the statistical model. 

Example: Diagnosing for a specific disease means to separate the groups of healthy and ill 
persons by a suitable variable for which the distributions do not overlap so much. Then, to introduce a 
cutting point (as in Fig. 4), which allows diagnosing a new person either as healthy or ill. The usual 
statistical key concepts have different names in medicine but are easy to understand and the 
interrelations between them are easily recognised as antagonistic by shifting the cutting point for the 
diagnosis. Yet, it becomes very soon clear that these key statistical figures cannot properly describe 
the risks of diagnosing a person wrongly, which heavily depends on the prevalence, the prior 
probability of persons that are examined to have that disease or not.  

 
Fig. 4. A cut point separates the groups with diverging quality as measured by sensitivity (1–a) and specificity 

(power, 1–b); diagnosis of colon cancer by FOBT. 
 
Some conclusions of the analogy to medicine are: The p value is not easy to interpret in a 

practical meaningful way. Diagnosing for diseases is a decision problem, which compares 
distributions under the scenario of healthy and ill people. There are always two diverging errors in the 
play: Diagnose for the disease when the person is healthy. Not recognise the disease despite the fact 
that the person has it. Several cut points for separating healthy and ill imply different sizes of these 
errors. There are diseases that are easy to diagnose. There is a third error: Whether the decision is a 
good one, does not only depend on cut points but also on the prevalence of the disease. Thus, we often 
do not get well interpretable coefficients for the quality of decisions. 

 
Informal explorations of statistical tests or confidence intervals in economic contexts 

An analogy to acceptance sampling and statistical process control shows that a frequentist 
interpretation of the errors of statistical tests is figurative. The null hypothesis in acceptance sampling 
is at best a worst case of good quality and the producer would normally deliver goods at much better 
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quality. No business partnership would work if 5% of all deliveries were rejected though they meet 
the quality arrangement between the two partners. Also, the worst-ever scenario that is used as 
placeholder for bad quality serves just as scenario to find a decision rule that allows an easy-going 
practice. The related type-II error has no further practical meaning. Details may be found in Batanero 
and Borovcnik (2016).  

 
COMPARISON OF “INFORMAL INFERENCE” WITH STATISTICAL INFERENCE 

Barnett (1982) has investigated the meaning and scope of various schools for statistical 
inference by a comparative statistics, in which he elaborated key concepts by which the approaches 
may be differentiated. We follow his criteria and extend the comparison towards the task of education 
of statistical inference. 

There have been several endeavours to compare the various schools of inference starting from 
Barnett (1982). Key issues are alternative hypotheses and a comparison of different models that are 
represented by hypotheses. There is no way to introduce alternative hypotheses except by 
probabilistic assumptions and by simulation (or probability calculations). Any alternative cannot be 
resampled as is has not been sampled so that resampling fails to analyse alternative hypotheses and 
type-II errors. Rerandomisation allows only for a test of a null-effect hypothesis, Bootstrap has no 
direct conceptual link to significance tests. Modelling involves comparing scenarios (described by 
probability distributions). Hypothesis tests are comparisons of models (possibly restricted by a type of 
distributions). Thus, statistical inference implies a hypothetical approach. How the judgement of 
hypotheses is done lies at the core of the single school of inference. Whether it is done by classical or 
Bayesian methods, there is no link to it from resampling. 

It is worthy to note, “There is a considerable body of research documenting students’ 
difficulties understanding the structure of modus tollens and, consequently, interpreting p-values […]” 
(Makar & Rubin, 2018, p. 268). Yet, in the same chapter no mention is made about statistical 
alternatives and the type-II error, though the authors explicitly aim at “providing students with access 
to the power of statistical inference” (p. 262). The pure significance test has been disputed right since 
beginning (see also Hubbard & Bayarri, 2003). 

Furthermore, simulation is completely misplaced for the problem of small probabilities. A 
problem, which is underestimated in statistics education (see Batanero & Borovcnik, 2016). In 
Bootstrap, a new error is introduced. If the first sample is not big enough, several regions of the 
distribution cannot be sampled well enough (to have the fine differences represented within the first 
sample, it takes too much data). If the first sample is big, then anyway the central limit theorem 
delivers better results. Furthermore, if one resamples, then the additional error is big unless one 
generates more than 10,000 re-samples. That makes it intractable for teaching. 

From a didactical perspective, Biehler (2014) criticises that “[…] formal inferential reasoning 
as such is controversial itself […] This raises questions with regard to which view of formal […] 
inference we design […] informal inference activities for.” Critique from the discipline comprises that 
Bootstrap differs from confidence intervals with no guarantee that they “converge” to them; i.e., they 
have other boundaries and coverage properties (Howell, n.d.; Lunneborg, 2000). Rerandomisation 
provides no substitute for the power of statistical tests, as there is no way to embed an alternative 
hypothesis in the method (Borovcnik, 2017). In summary, resampling as a pure approach replacing 
statistical inference (Cobb, 2007; delMas, 2017) fails to provide the solutions that are promised. 

 
CONCLUSION 

“Informal inference” goes beyond informally exploring probabilistic models by simulation; it 
aims to replace traditional statistical inference (Cobb, 2007). We give reasons why such a radical 
approach misses to develop the elements of statistical inference and that the full complexity of 
inference is required to deal with decisions under uncertainty. We see the potential of “Informal 
Inference” as a transient stage towards statistical inference. 

 
Theoretical and applied concern 

With “Informal Inference”, it is impossible to address key issues of statistical inference (type-
II error). With rerandomisation, we land at a pure significance test, which raises the problems of the 
interpretation of p values (see Hubbard & Bayarri, 2003). With Bootstrap, one provides intervals that 
mimic classical confidence intervals, which, however, have a different meaning and different 
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properties. Corrections are complex and destroy the simplicity of the approach (see Howell, n.d.). 
Furthermore, this approach fails with small probabilities, as small probabilities are not represented in 
the first sample from where the resampling starts. Overall, “Informal Inference” is NOT an informal 
approach to what the discipline of statistics calls inference. It presents a restricted approach to 
inference with no obvious links how to proceed from there to formal inference. 

 
Educational considerations about “Informal Inference” 

To ground accessible conceptions of statistical inference (Wild, Pfannkuch, Regan, & 
Parsonage, 2017) is an essential educational goal. “Informal Inference” seems very convincing but in 
the end, it leads to a restricted methodology that is a strict subset of statistical inference. “Informal 
inference” reduces all statistical activities to the data; no hypotheses are any longer involved. This 
may seem an interesting way to teach inference at first sight. Yet, there are several drawbacks. One is 
for statistical modelling, that connects data chance and context (Pfannkuch, Ben-Zvi, & Budgett, 
2018); modelling provides hypothetical descriptions of the real situation that are the result of a 
modelling process and not the result of shuffling data. The other drawback is that probability is 
reduced to a pure frequentist concept leaving all Bayesian methods out of reach; a reduction of 
concepts that may lead to biased understanding as Carranza and Kuzniak (2008) have shown. 
Spiegelhalter (2014) refers to probability as a metaphoric entity, which goes far beyond a pure 
frequentist concept of probability as the basis for statistical inference. Related to it, thinking in 
scenarios (Borovcnik, 2019) is typical for the inference situation; such a way of thinking is precluded 
by the “Informal Inference” approach. Many didactical issues arise that reduce the value of the 
approach if taken as a pure approach replacing statistical inference. How to continue the curriculum 
within such a setting? There is neither a path from resampling to decision theory nor to Bayes 
methods. Furthermore, modelling is absorbed in simulation. This may result in data as facts while 
models represent a hypothetical way of thinking. Conceptual understanding differs from easier access 
and solving of tasks.  

“Informal Inference” narrows the focus on probabilistic modelling later. Therefore, we 
propose to use resampling (Bootstrap and Re-randomisation) only as a transitional phase to statistical 
inference and focus on ways to appropriately elementarise the complexity of statistical inference. 
Statistical inference is characterised by thinking in hypotheses. The comparison of assumed scenarios 
dominates the interpretation of the elements of inference; besides a type-I error, the power is crucial 
for a proper understanding. Yet, the relevance of the statistical model in the background of inference 
is best judged with a prior probability of the null hypothesis at stake, which makes it clear that the 
Bayesian framework is essential for understanding the elements of statistical inference. The scenario 
character makes it also clear that small probabilities – as are characteristic of many reliability and risk 
considerations – cannot be judged by resampling techniques, as there are usually not sufficient data to 
cover such cases for a resampling solution. Such small probabilities have to be modelled by suitable 
probability distributions, and such models are void of a frequentist interpretation so that a wider 
conception of probability is required for a conceptual understanding of the elements of inference. We 
suggest using the potential of “natural” contexts, simulation, illustration of special cases, investigation 
of dynamic changes in conditions of the model, and visualisation of consequences of decisions. 

 
REFERENCES 
Barnett, V. (1982). Comparative statistical inference (2nd ed.). New York: Wiley. 
Batanero, C. & Borovcnik, M. (2016). Statistics and probability in high school. Rotterdam: Sense. 
Batanero, C., Chernoff, E., Engel, J. Lee, H., & Sánchez, E. (2016). Research on teaching and 

learning probability. ICME-13 Topical Surveys. Cham: Springer International. 
Ben-Zvi, D., Makar, K., & Garfield, J. (2018). International handbook of research in statistics 

education. Cham, Switzerland: Springer International. 
Biehler, R. (2014). On the delicate relation between informal statistical inference and formal 

statistical inference. In K. Makar (Ed.), Proceedings of the Ninth International Conference on 
Teaching Statistics. The Hague: ISI.  

Borovcnik, M. (1996). Trends und Perspektiven in der Stochastik-Didaktik [Trends and perspectives 
in the didactics of stochastics]. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider 
(Eds.), Trends und Perspektiven (pp. 39-60). Wien: HPT. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

34



OZCOTS 2021 Keynote Paper (Refereed) Borovcnik 

 

Borovcnik, M. (2019): Informal and “Informal” Inference – Didactic approaches to statistical 
inference. In C. Batanero, J. Godino (Hrsg.), Proceedings of the III International Virtual 
Congress on Statistics Education (CIVEEST). Granada.  

Carranza, P. & Kuzniak, A. (2008). Duality of probability and statistics teaching in French education. 
In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE Study: Teaching 
Statistics in School Mathematics. Monterrey: ICMI and IASE. 

Cobb, G.W. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology 
Innovations in Statistics Education 1(1).  

delMas, R. (2017). A 21st century approach towards statistical inference – Evaluating the effects of 
teaching randomization methods on students’ conceptual understanding. In Proceedings of the 
61st World Statistics Congress. The Hague: ISI. 

M. Diderot, & J. d’Alembert (1751–1780). Encyclopédie ou dictionnaire raisonné des sciences, des 
arts et des métiers. Paris: l’Academie Royale des Sciences.  

Efron, B., & Tibshirani, R.J. (1993). An introduction to the bootstrap. New York: Chapman. 
Engel, J. (2010). On teaching bootstrap confidence intervals. In C. Reading (Ed.), Data and context in 

statistics education: Towards an evidence-based society. Voorburg: ISI. 
Howell, D. (n.d.). Resampling statistics: Randomization & Bootstrap. Statistical page Howell. 

www.uvm.edu/~dhowell/StatPages/Resampling/Resampling.html. 
Hubbard, R. & Bayarri, M.J. (2003). Confusion over measures of evidence (p) versus errors (a) in 

classical statistical testing. The American Statistician 57(3), 171-182. 
Klein, F. (1908/2016). Elementary mathematics from a higher standpoint. Berlin: Springer. 
Lunneborg, C.E. (2000). Data analysis by resampling. Pacific Grove, CA: Duxbury Press. 
Makar, K. & Rubin, R. (2009). A framework for thinking about informal statistical inference. 

Statistics Education Research Journal, 8(1), 82–105.  
Moore, D.S. (1997). Bayes for beginners? Some reasons to hesitate. The American Statistician, 51(3), 

254-261. 
Neyman J. & Pearson E. (1933). On the problem of most efficient tests of statistical hypotheses. 

Philosophical Transactions of the Royal Society A, 231, 289-337. 
Noether, G. (1967). Elements of noparametric statistics. New York: Wiley. 
Pfannkuch, M. Ben‑Zvi, D. & Budgett, S. (2018). Innovations in statistical modeling to connect data, 

chance and context. ZDM Mathematics Education, 50, 1113–1123. 
Pfannkuch, M., Wild, C.J., & Parsonage, R. (2012). A conceptual pathway to confidence intervals. 

ZDM Mathematics Education, 44, 899–911. 
Prodromou, T. (2017). Data visualization and statistical literacy for open and Big Data. Hershey, PE: 

IGI Global. 
Spiegelhalter, D. (2014). Probabilistic thinking. In: E.J. Chernoff & B. Sriraman (Eds.), Probabilistic 

thinking: presenting plural perspectives (Back cover). New York: Springer. 
Stangl, D. (2017). Urging a paradigm change: Why and how to train introductory statistics students in 

Bayesian thinking? In Proc. of the 61st World Statistics Congress. The Hague: ISI. 
Stohl Lee, H., Angotti, R.L., & Tarr, J.E. (2010). Making comparisons between observed data and 

expected outcomes: students’ informal hypothesis testing with probability simulation tools. 
Statistics Education Research Journal, 9(1), 68–96. 

Tukey, J.W. (1977). Exploratory data analysis. Reading: Addison Wesley. 
Vancsó, Ö. (2009). Parallel discussion of classical and Bayesian ways as an introduction to statistical 

inference. Intern. Electronic Journal of Mathematics Education 4(3), 291-322. 
Vancsó, Ö. (2018, July). How visualisation using software helps understanding classical and Bayesian 

statistics. Invited paper “Teaching Probability in School – Understanding and Linking it to 
Statistics.” ICOTS 10, Kyoto. www.researchgate.net/profile/Oedoen_Vancso. 

Wild, C.J., Pfannkuch, M., Regan, M., & Parsonage, R. (2017). Accessible conceptions of statistical 
inference: Pulling ourselves up by the bootstraps. International Statistical Review, 85(1), 84–107. 

Witmer, J., Short, T.H., Lindley, D.V. Freedman, D.A., & Scheaffer, R.L. (1997). Teacher’s corner. 
Discussion of papers by Berry, Albert, and Moore, with replies from the authors. The American 
Statistician, 51(3), 262-274. 

Zieffler, A., Garfield, J., delMas, R., & Reading, C. (2008). A framework to support research on 
informal inferential reasoning. Statistics Education Research Journal, 7(2), 40–58.  

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

35



OZCOTS 2021 Contributed Paper (Refereed) Renelle et al 
 

DEFINING RANDOMNESS? 
 

Amy Renelle1, Stephanie Budgett1, and Rhys Jones2 

The University of Auckland1, The University of Surrey2 
amy.renelle@auckland.ac.nz  

 
Defining randomness is notoriously difficult – even more so, if attempting to define randomness for 
high school students. Not only is randomness a strange phenomenon but needing to consider the 
appropriateness of definitions for the intended audience makes determining a cohesive definition near 
impossible. So, what definition do New Zealand secondary school mathematics and statistics teachers 
lean towards? And, more importantly, what are the foreseeable benefits and difficulties with teaching 
randomness using this definition? Respondents to an online questionnaire were asked to select which 
one of eight definitions most accurately described how they would define randomness. Of the possible 
options provided, two were deemed inadequate in the literature. Approximately one-fifth of participants 
selected one of these inadequate definitions, indicating evidence of misconceptions being held by some 
teachers. There is therefore potential for misconceptions to be transferred to students. If so, it seems 
important that a clear definition is used in classrooms, with the potential for tasks exploring the lexical 
ambiguity of randomness to be created.   
 
BACKGROUND 

It is well established that randomness misconceptions, such as the representativeness heuristic, 
can affect our understanding in statistics (i.e., see Tversky & Kahneman, 1974). High school students 
often exhibit randomness misconceptions and it is expected that these incorrect intuitions may have 
multiple origins. Along with possible sources such as biological explanations (i.e., intuition vs. reasoned 
thinking, see Kahneman, 2011), conflicting experiences (everyday vs. statistics classroom vs. other 
subject classes, see Pfannkuch & Brown, 1996), and how we learn (constructivism learning paradigm, 
see McLeod, 2019) (which are beyond this paper), lexical ambiguity and the inherent difficulty of 
defining randomness are thought to contribute to the presence of these misconceptions. It is also 
important to note that teachers may also hold randomness misconceptions (see Renelle et al., 2020) and 
likely have comparable origins for these incorrect intuitions. 

As Batanero et al. (2016) stated, “[even] today, we find no simple definition that we can use 
unambiguously to classify a given event or process as being random or not” (pp. 34 – 35). Similar 
comments can be seen in papers by Bar-Hillel and Wagenaar (1991), Batanero (2015), and Nickerson 
(2002). Defining randomness is difficult, with numerous definitions being produced in an attempt to 
describe randomness succinctly and simply (see Table 1). Even then, it is challenging to choose a 
definition that can be applied to numerous examples that is written in such a way that is clear to students. 
In particular, Batanero et al. (2016) and Gougis et al. (2017) posited that participants who selected an 
Equiprobability Definition or a No-Pattern Definition of randomness likely held randomness 
misconceptions. As such, these definitions are deemed to be inadequate. The remaining definitions 
presented in Table 1 are appropriate definitions of randomness, with Predictability Definition 1 
preferred for this study as this is promoted by the New Zealand Ministry of Education in the current 
mathematics and statistics curriculum for secondary school students. Note that the definitions in Table 
1 have been edited for comparability as a clear definition is not always stated in the referenced papers. 

Part of the difficulty of choosing a definition for randomness is the homogeneity of the term 
(Kaplan, Fisher, & Rogness, 2009) – it holds more than one meaning. While homogeneity is not 
uncommon in the English language, Nickerson (2002) noted there is a lot of difficulty caused by the 
numerous situations that the term randomness can be applied. For example, when discussing the ways 
in which “random” is used in relation to both a random process (i.e., tossing a coin) and a random 
product (i.e., a result of a random process), it is suggested that this can cause problems with the way in 
which randomness is talked about; while something being more or less random may make sense when 
talking about a random product, it would be inappropriate when considering a random process, which 
is either random or not! Kaplan, et al. (2009) suggest that statistical words with everyday counterparts 
can endorse incorrect assumptions about statistical concepts. While the term “random” can be used as 
an adjective to accompany other concepts (i.e., random process, random product), this paper is 
concerned with defining the noun “randomness” because this is the term introduced at high school. 
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With a constructivism-led teaching approach, where the emphasis is on student-centred 
learning, focusing on building knowledge, active-learning and social interactions (McLeod, 2019), the 
way in which randomness is discussed is important for an understanding of the concept. Students may 
be used to hearing the word random in an everyday context referring to something that is surprising or 
unusual – “I saw this random duck in my garden”. This is not the same kind of randomness typically 
considered in statistics classrooms. Kaplan et al. (2009) found that bringing students’ attention to the 
multiple meanings of randomness was necessary (contrasting the colloquial use and statistical use). 
Pfannkuch and Brown (1996) described encountering “…a clash between [participants’] intuitions and 
probabilistic thinking” (p. 4) when exploring students’ perceptions of probability and randomness. 
Lexical ambiguity could be a contributing factor– whereby students recognise throwing a die is a 
random process but feel that an outcome of HTHTH is neither surprising nor unusual. Students’ 
experiences of the randomness in an everyday situation therefore might not align to the use of 
randomness within a classroom setting. 

 
Table 1. Definitions of randomness adapted from the literature reviewed. 

Definition Label Definition  Reference 

Equiprobability 
Definition 

Randomness is where each observation is equally 
likely to be selected (inadequate definition). 

Batanero et al. (2016); 
Batanero (2015) 

No-Pattern 
Definition 

Randomness is where a sequence lacks a 
discernible pattern (inadequate definition). Gougis et al. (2017) 

Subjective 
Definition 

Randomness is dependent on a person's 
knowledge. 

Batanero et al. (2016); 
Batanero (2015) 

Zero-Correlation 
Definition 

Randomness is where the correlation between 
pairs of adjacent observations is zero. 

Nickerson (2002) 

Algorithmic 
Definition 

Randomness is where no algorithm can predict 
future observations of a sequence. 

Batanero et al. (2016); 
Batanero (2015) 

Compressibility 
Definition 

Randomness is where a sequence cannot be 
compressed or compacted into a shorter form. Chaitin (1975) 

Predictability 
Definition 1 

Randomness is where the outcome cannot be 
predicted even though the probability of each 
observation is fixed (curriculum definition). 

(New Zealand 
Ministry of Education, 
2012) 

Predictability 
Definition 2 

Randomness is where it is impossible to predict 
when an observation will occur. (Bennett, 2011) 

 
Furthermore, it is important to note that, in reviewing numerous mathematics and statistics 

curricula from countries around the world, a definition of randomness is rarely given, let alone 
highlighted as a lexically ambiguous term. Furthermore, students would likely come across randomness 
outside of the statistics classroom when learning about, for example, genetic drift or mutations (biology; 
Martin & Hine, 2008), radioactivity or lasers (physics; Daintith, 2009), dispersion (geology; Allaby, 
2013), and diffusion (chemistry; Daintith, 2008). It is feasible that a lack of consistency between school 
subjects could also be a potential source of randomness misconceptions – especially as randomness 
appears to be rarely defined in these other fields. For example, although randomness is referenced in 
relation to different terms within biology, chemistry, and physics dictionaries (Daintith, 2008; 2009; 
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Martin & Hine, 2008), no definition of randomness is presented. With so many different meanings, how 
can we expect students to recognise which definition of randomness is appropriate for these contexts? 

Considering Table 1, it seems apparent why the New Zealand Ministry of Education selected 
Predictability Definition 1 as preferred for secondary school students. The definition acknowledges that 
probabilities are fixed but that the outcome is still unknown. By comparison to the Equiprobability 
Definition, the curriculum definition allows for different events to occur with different or unknown 
probabilities. For example, while flipping a fair coin has a 50:50 chance of heads and tails, the 
Equiprobability Definition is inadequate for asymmetrical devices where one face of an object may not 
have the same probability of occurring as another face. Predictability Definition 1 can also be applied 
to short-run or long-run trials. While the No-Pattern Definition may be acceptable for long-run 
sequences, whereby we would be surprised by a perfectly alternating sequence of 100 heads and tails, 
it is unsuitable for short-run trials that can often generate a patterned sequence. Hence, the 
Equiprobability and No-Pattern Definition are deemed “inappropriate” or “inadequate” for describing 
randomness (Batanero et al., 2016; Gougis et al., 2017). While the other definitions in Table 1 are 
acceptable, it would be fair to suggest that Predictability Definition 1 is more consistent with other New 
Zealand statistics curriculum content and would require introduction to fewer new ideas than for other 
definitions such as algorithms and matrix correlation. 

Predictability Definition 1 appears most suitable for a high school audience but the proposal of 
a fixed probability brings to question whether there are circumstances where randomness is present 
without fixed probabilities or perhaps with unknown probabilities that could be fixed or could be 
changing. Currently not promoted in online resources for New Zealand high school classrooms (New 
Zealand Ministry of Education, n.d.), it may be beneficial for students to experience examples of 
randomness where the probabilities are unknown. Such examples could then lead onto discussions of 
whether probabilities are constant or changing in various scenarios and connect to simulation-based 
exercises. 

Hence, the foreseeable benefits to teaching randomness using Predictability Definition 1 greatly 
outweighs the narrowness and barriers arising from using the Equiprobability or No-Pattern Definition 
of randomness. The limited view of randomness presented by the Equiprobability and No-Pattern 
Definition could potentially contribute to students’ misconceptions of randomness. Teachers using these 
inadequate definitions could limit students’ acceptance of randomness when outcomes are inconsistent 
with expectations. Not only is there a disconnect between colloquial uses of the term random but use of 
an inadequate definition may result in some random scenarios being dismissed by students if they are 
unrepresentative of expectations generated by these definitions. If teachers introduce inadequate 
definitions of randomness, it is likely that their students’ perceptions of randomness may be restricted 
and impact on their statistical understanding. As a result, we suggest that, if teachers have a preference 
for flawed definitions, it may be reasonable to expect students would also be using these definitions of 
randomness. 
 
STUDY 

Using Qualtrics, an anonymous online questionnaire was sent to a sample of New Zealand 
mathematics and statistics secondary school teachers in October 2019. The volunteer sample was 
recruited via the mailing lists of some New Zealand mathematics and statistics associations, and, after 
data cleaning, there were 150 participants included in the sample. The research question we are 
interested in investigating is: What definition of randomness is most commonly selected by participants 
and how many select an inadequate definition? 

The participants were presented with the definitions presented in Table 1 (the middle column, 
excluding the inadequate and curriculum definition labels) and were asked to: Select one of the following 
definitions that most accurately describes how you would define randomness. 
 
RESULTS 

The majority of participants (n = 80) selected the Predictability Definition 1 (Figure 1). This is 
unsurprising as it is expected to be most familiar to participants given this is the definition specified in 
the New Zealand mathematics and statistics curriculum. Concerningly, 36 participants (almost a quarter 
of participants) selected an inappropriate definition – either the Equiprobability Definition or No-
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Pattern Definitions. The remaining participants selected one of the other definitions, mostly preferring 
the algorithmic definition.  

Participants were also asked if they used the curriculum definition of randomness when 
teaching. They were not informed of the curriculum definition to allow for comparison to the definition 
they selected. Just over a third of participants (n = 53) suggested they neither agreed nor disagreed that 
they use the curriculum definition of randomness, which may suggest either unfamiliarity with the 
definition, that the participant chooses not to present a definition in their class, or that they don’t teach 
randomness. The frequency of responses to this statement can be seen in Figure 2. Interestingly, some 
participants who had strongly agreed that they use the curriculum definition in their classrooms then 
selected a different definition. Of particular concern, some of these participants selected an 
Equiprobability Definition or a No-Pattern Definition of randomness, which may mean they believe 
these are the definitions supported by the curriculum. 

 

 
Figure 1. Frequency of Responses to Select one of the following definitions that most accurately 

describes how you would define randomness. 
 

 
Figure 2. Frequency of Responses to The definition of randomness provided by the curriculum 

glossary is what I use in my classroom. 
DISCUSSION 

While the majority of participants selected the preferred definition for New Zealand secondary 
school students, many participants selected an inadequate definition. In particular, it is cause for concern 
that some of these participants felt that an inadequate definition was one promoted by the New Zealand 
curriculum. Defining randomness is difficult, and the lexically ambiguous term needs to be carefully 
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discussed with students. As found by Kaplan et al. (2009), it may be necessary to bring students’ 
attention to the multiple meanings of randomness. Furthermore, the current findings suggest some New 
Zealand secondary school mathematics and statistics teachers may also need attention brought to the 
difficulties of defining randomness. 

Due to the homogeneity of the term, a more globally applicable definition than offered by the 
Equiprobability and No-Pattern Definitions is necessary to help clarify the ambiguity of randomness. 
Because it applies to so many situations, randomness and suitable definitions for different examples 
should be explored in classrooms. Furthermore, it is important that educators are clear about how 
randomness should be defined in different situations and clarify that one definition may not be 
applicable in a different scenario. Consistency between subjects where randomness is intended to be 
discussed in the same way is necessary.  

While participation in this study was limited, it appears New Zealand secondary school teachers 
generally prefer the curriculum-promoted Predictability Definition 1. However, it is clear that 
difficulties defining randomness are present and suggest there is the potential for tasks exploring the 
lexical ambiguity of randomness to be created. Professional development for teachers across different 
fields is needed to highlight the importance of defining randomness purposefully. Tasks focusing on 
defining randomness could then be used in classrooms in an effort to contribute to a better understanding 
of randomness for students. In particular, as Kaplan et al. (2009) suggest, tasks should bring attention 
to the multiple meanings of randomness, contrasting the colloquial use and statistical use. Further 
clarification as to why the Equiprobability and No-Pattern Definitions are inadequate are also necessary 
so a task comparing the benefits and flaws of various definitions may be a suitable starting point for 
lexical ambiguity to be minimised. 

However, extending this to fields other than statistics may be challenging. Current attempts to 
reach out to biology, chemistry, and physics secondary school teachers in New Zealand has resulted in 
limited participation. This lack of engagement could indicate that randomness is not considered 
important which would suggest a potential challenge with incorporating the benefits, barriers, and 
examples of definitions relating to these fields. Despite this, it seems necessary that the use of the term 
randomness in these other fields is considered to help promote a consistent definition of randomness. 
To accomplish this, it may be valuable to reach out to experts in biology, chemistry, and physics to 
obtain a better idea of how randomness is discussed in these fields. Tasks acknowledging the ambiguity 
of randomness that could be implemented across the various fields using the term are in development, 
with further investigation into the impact of clearly defining randomness to be explored. 
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LEARNING MLE CONCEPTS BY ESTIMATING N IN BINOMIAL DISTRIBUTION 
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Maximum likelihood estimation (MLE) is one of the fundamental concepts taught early in theory of 

statistics courses. As a foundation constituent of statistical theory, it is important for these beginning 

students to appreciate the method. Additionally, although not necessarily covered in servicing courses, 

an appreciation of the MLE method will likely assist students from other facilities to understand 

statistical methods. This paper uses a practicable environmental issue to illustrate the MLE concept, 

which could then be followed by a more formal treatment using calculus for mathematically inclined 

students. Wind turbines often kill endangered bats and birds that fly into the rotating blades. 

Appropriate remedial action is predicated on knowing the number killed which is estimated using 

carcass counts beneath the wind turbine. However, many carcasses are scavenged or decay before 

search parties can count them with probability of discovering the carcass often 10% or lower. To 

introduce the method of MLE to students this example shows how to estimate the number killed using 

sample evidence of carcass counts. Other concepts demonstrated include making statistical estimates 

from a sample of one, non-uniqueness of MLE showing cases of two parameter values which maximise 

the likelihood function and that MLEs can be biased. 

INTRODUCTION 
Learning the concept of estimators and maximum likelihood estimators (MLE) may present 

difficulties for some student who may well be satisfied using the methods of moments. In a beginning 
statistics course, where students’ understanding of fundamental concepts is a necessary goal, 
appreciation of MLE is just one necessary step in attaining that objective. 

An estimator for n where counts (r) of positives but not of negatives are available is used here 
to illustrate the MLE concept. Specifically, the duality of pdf and likelihood function and the 
maximising concept are shown using an explicit set of examples. 
 
BACKGROUND OF EXAMPLE 

The Department of Planning, Industry and Environment (DPIE) negotiates with wind farms to 
firstly monitor and secondly provide a response to bat and bird strikes by wind turbines. If an animal 
flies into the blades or close enough to be affected by the air pressure gradient of rotating turbine blades 
the result is fatal. DPIE’s concern for flying threatened or endangered species killed by wind turbines 
means that wind farms have monitoring conditions imposed. As a minimum these conditions require 
the counting of carcasses beneath and surrounding the base of turbines to be able to estimate a monthly 
and annual fatality figure for each threatened species. 

In NSW the introduced fox is pervasive and with feral cats, wild canids and other carnivores  
scavenging carcasses below wind turbines often occurs. It has been suggested that the length of time a 
carcass remains identifiable is between 1 and 8 days depending on carcass size and wind farm location. 
The fall zone (and hence search area) of  animal carcasses can exceed a hectare. The search efficiency 
is variously quoted at about 0.5-0.7 for humans and 0.8-0.9 for trained dogs. For searches conducted 
only one or two times a month, the probability of detecting a carcass given a turbine kill is typically a 
small fraction often less than 0.2. The issue addressed here is to estimate the number of bat and bird 
deaths given the carcass evidence.  

 
DEVELOPMENT OF MLE 

With a total number of deaths n and a probability of carcass detection given a strike, the 
probability of each of the possible carcass counts (0 to n) is given by the binomial pdf. 

 

                                       Pr($	| ', )) = 	 ,'$-	)
!(1 − ))"#! 												0	 ≤ 	2	 ≤ 	3      

          = 0																																														elsewhere 
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where 
n is total number of strikes n ∈ Z, n ≥ 0 
r is number of carcasses found, 
p is detection probability 0 ≤ p ≤ 1, 

,'$- gives the binomial combinations  ,'$- = 	
"!

!!	×("#!)! 

 

The pdf which is a function of r given p and n, can be considered as a function of p given r and 
n and relabelled as L(p | r, n). Then by varying p across its range the value of p which delivers a 
maximum for L(p | r, n) is the MLE for p. This is covered in many texts by taking logs of L (to keep 
the algebra simple), differentiating L w.r.t p and solving the equation for p after setting the derivative 
to 0. 

In the wind turbine case, a value of p is known in advance and n is the unknown. Hence, we 
investigate the likelihood function L(n | r, p). The example of a wind turbine with typical values of 2 
searches per month, 30 days in a month, life span of a moderate sized bird carcass at 4 days and detection 
probability (using trained dogs) of carcasses at 90%. 

 
                  p = 2(searches/month) * 

                        4(days carcass survival) * 

                        0.9(carcass/bird strike/search) / 30(days/month) 

                     = 0.24(carcasses found/bird killed) 

The crux of MLE estimation is based on the probability statement (a function of r given 
parameter values n and p). This is then reused and labelled likelihood by using the same formula and 
values but as a function of the parameter of concern (n) given the observed random variable (r). These 
relationships are shown in Table 1 and Table 2 for an example that uses p at 0.24.  

Table 1 gives the probability mass function, Pr($	| ', )) = 	 ,'$-	)
!(1 − ))"#! and Table 2 

gives the likelihood function  L('	| $, )) = 	 ,'$-	)
!(1 − ))"#!. These tables are also available as a 

dynamic self-contained web page where the highlight of rows and columns is changed by mouse clicks. 
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Table 1 Probability of detecting carcasses for various number of birds killed, using p = 0.24. Columns give the number of carcasses detected (r).  Each row 
applies for one level of bird deaths (n). Alternate rows are colour highlighted to emphasise the probability functions. All rows sum to unity as each row is a 
probability density function. 
       <--------------------------- r ~ Number of carcasses detected -------------------------------------------> 
  n    0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15  
  0 1.0000 
  1 0.7600 0.2400 
  2 0.5776 0.3648 0.0576 
  3 0.4390 0.4159 0.1313 0.0138 
  4 0.3336 0.4214 0.1996 0.0420 0.0033 
  5 0.2536 0.4003 0.2529 0.0798 0.0126 0.0008 
  6 0.1927 0.3651 0.2882 0.1214 0.0287 0.0036 0.0002 
  7 0.1465 0.3237 0.3067 0.1614 0.0510 0.0097 0.0010 0.0000 
  8 0.1113 0.2812 0.3108 0.1963 0.0775 0.0196 0.0031 0.0003 0.0000 
  9 0.0846 0.2404 0.3037 0.2238 0.1060 0.0335 0.0070 0.0010 0.0001 0.0000 
 10 0.0643 0.2030 0.2885 0.2429 0.1343 0.0509 0.0134 0.0024 0.0003 0.0000 0.0000 
 11 0.0489 0.1697 0.2680 0.2539 0.1603 0.0709 0.0224 0.0050 0.0008 0.0001 0.0000 0.0000 
 12 0.0371 0.1407 0.2444 0.2573 0.1828 0.0924 0.0340 0.0092 0.0018 0.0003 0.0000 0.0000 0.0000 
 13 0.0282 0.1159 0.2195 0.2542 0.2007 0.1141 0.0480 0.0152 0.0036 0.0006 0.0001 0.0000 0.0000 0.0000 
 14 0.0214 0.0948 0.1946 0.2459 0.2135 0.1348 0.0639 0.0231 0.0064 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 
 15 0.0163 0.0772 0.1707 0.2336 0.2213 0.1537 0.0809 0.0329 0.0104 0.0025 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 
 16 0.0124 0.0626 0.1482 0.2185 0.2242 0.1699 0.0984 0.0444 0.0158 0.0044 0.0010 0.0002 0.0000 0.0000 0.0000 0.0000  
 17 0.0094 0.0505 0.1277 0.2016 0.2228 0.1830 0.1156 0.0573 0.0226 0.0071 0.0018 0.0004 0.0001 0.0000 0.0000 0.0000  
 18 0.0072 0.0407 0.1092 0.1839 0.2177 0.1925 0.1317 0.0713 0.0310 0.0109 0.0031 0.0007 0.0001 0.0000 0.0000 0.0000  
 19 0.0054 0.0326 0.0927 0.1659 0.2096 0.1986 0.1463 0.0858 0.0406 0.0157 0.0050 0.0013 0.0003 0.0000 0.0000 0.0000  
 20 0.0041 0.0261 0.0783 0.1484 0.1991 0.2012 0.1589 0.1003 0.0515 0.0217 0.0075 0.0022 0.0005 0.0001 0.0000 0.0000  
 21 0.0031 0.0208 0.0658 0.1316 0.1870 0.2007 0.1690 0.1144 0.0632 0.0288 0.0109 0.0035 0.0009 0.0002 0.0000 0.0000  
 22 0.0024 0.0166 0.0550 0.1158 0.1737 0.1974 0.1766 0.1275 0.0755 0.0371 0.0152 0.0052 0.0015 0.0004 0.0001 0.0000  
 23 0.0018 0.0132 0.0458 0.1012 0.1598 0.1917 0.1816 0.1393 0.0880 0.0463 0.0205 0.0076 0.0024 0.0006 0.0001 0.0000  
 24 0.0014 0.0105 0.0380 0.0879 0.1457 0.1841 0.1841 0.1495 0.1003 0.0563 0.0267 0.0107 0.0037 0.0011 0.0003 0.0001  
 25 0.0010 0.0083 0.0314 0.0759 0.1318 0.1749 0.1841 0.1578 0.1121 0.0669 0.0338 0.0145 0.0054 0.0017 0.0005 0.0001  
 26 0.0008 0.0065 0.0258 0.0652 0.1184 0.1645 0.1818 0.1641 0.1231 0.0777 0.0417 0.0192 0.0076 0.0026 0.0008 0.0002  
 27 0.0006 0.0052 0.0212 0.0558 0.1056 0.1535 0.1777 0.1683 0.1329 0.0886 0.0504 0.0246 0.0103 0.0038 0.0012 0.0003 	  
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Table 2 Likelihood of bird deaths, given the carcass detection, using p = 0.24. Columns give the likelihood for an observed carcass detection (r).  Each row 
gives the likelihood for the level of deaths (n) given at the left-hand side. Alternate columns are colour highlighted to emphasise the likelihood functions. For 
columns corresponding to r in [0, 6] the maximum value is shown in red. . For columns [7, 15] the maximum occurs below row for  n=27 and can’t be shown. 
       <--------------------------- r ~ Number of carcasses detected -------------------------------------------> 
  n    0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15  
  0 1.0000 
  1 0.7600 0.2400 
  2 0.5776 0.3648 0.0576 
  3 0.4390 0.4159 0.1313 0.0138 
  4 0.3336 0.4214 0.1996 0.0420 0.0033 
  5 0.2536 0.4003 0.2529 0.0798 0.0126 0.0008 
  6 0.1927 0.3651 0.2882 0.1214 0.0287 0.0036 0.0002 
  7 0.1465 0.3237 0.3067 0.1614 0.0510 0.0097 0.0010 0.0000 
  8 0.1113 0.2812 0.3108 0.1963 0.0775 0.0196 0.0031 0.0003 0.0000 
  9 0.0846 0.2404 0.3037 0.2238 0.1060 0.0335 0.0070 0.0010 0.0001 0.0000 
 10 0.0643 0.2030 0.2885 0.2429 0.1343 0.0509 0.0134 0.0024 0.0003 0.0000 0.0000 
 11 0.0489 0.1697 0.2680 0.2539 0.1603 0.0709 0.0224 0.0050 0.0008 0.0001 0.0000 0.0000 
 12 0.0371 0.1407 0.2444 0.2573 0.1828 0.0924 0.0340 0.0092 0.0018 0.0003 0.0000 0.0000 0.0000 
 13 0.0282 0.1159 0.2195 0.2542 0.2007 0.1141 0.0480 0.0152 0.0036 0.0006 0.0001 0.0000 0.0000 0.0000 
 14 0.0214 0.0948 0.1946 0.2459 0.2135 0.1348 0.0639 0.0231 0.0064 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 
 15 0.0163 0.0772 0.1707 0.2336 0.2213 0.1537 0.0809 0.0329 0.0104 0.0025 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 
 16 0.0124 0.0626 0.1482 0.2185 0.2242 0.1699 0.0984 0.0444 0.0158 0.0044 0.0010 0.0002 0.0000 0.0000 0.0000 0.0000 
 17 0.0094 0.0505 0.1277 0.2016 0.2228 0.1830 0.1156 0.0573 0.0226 0.0071 0.0018 0.0004 0.0001 0.0000 0.0000 0.0000 
 18 0.0072 0.0407 0.1092 0.1839 0.2177 0.1925 0.1317 0.0713 0.0310 0.0109 0.0031 0.0007 0.0001 0.0000 0.0000 0.0000 
 19 0.0054 0.0326 0.0927 0.1659 0.2096 0.1986 0.1463 0.0858 0.0406 0.0157 0.0050 0.0013 0.0003 0.0000 0.0000 0.0000 
 20 0.0041 0.0261 0.0783 0.1484 0.1991 0.2012 0.1589 0.1003 0.0515 0.0217 0.0075 0.0022 0.0005 0.0001 0.0000 0.0000 
 21 0.0031 0.0208 0.0658 0.1316 0.1870 0.2007 0.1690 0.1144 0.0632 0.0288 0.0109 0.0035 0.0009 0.0002 0.0000 0.0000 
 22 0.0024 0.0166 0.0550 0.1158 0.1737 0.1974 0.1766 0.1275 0.0755 0.0371 0.0152 0.0052 0.0015 0.0004 0.0001 0.0000 
 23 0.0018 0.0132 0.0458 0.1012 0.1598 0.1917 0.1816 0.1393 0.0880 0.0463 0.0205 0.0076 0.0024 0.0006 0.0001 0.0000 
 24 0.0014 0.0105 0.0380 0.0879 0.1457 0.1841 0.1841 0.1495 0.1003 0.0563 0.0267 0.0107 0.0037 0.0011 0.0003 0.0001 
 25 0.0010 0.0083 0.0314 0.0759 0.1318 0.1749 0.1841 0.1578 0.1121 0.0669 0.0338 0.0145 0.0054 0.0017 0.0005 0.0001 
 26 0.0008 0.0065 0.0258 0.0652 0.1184 0.1645 0.1818 0.1641 0.1231 0.0777 0.0417 0.0192 0.0076 0.0026 0.0008 0.0002 
 27 0.0006 0.0052 0.0212 0.0558 0.1056 0.1535 0.1777 0.1683 0.1329 0.0886 0.0504 0.0246 0.0103 0.0038 0.0012 0.0003
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OBSERVATIONS ON TABLES 
 
• The columns are truncated at 15 as for all the rows shown the associated probabilities 

in columns to the right of 15 are either zero or less than 0.00005 and hence would 
display as 0.0000.  

• Both tables have identical values in corresponding positions. 
• Tables are blank outside the domain 0	 ≤ 	$	 ≤ 	% however the definition above 

specifically gives a zero value for this otherwise undefined region. 
• Using table 2 the maximum of each likelihood function (r є [0, 7]) is easily read off. 
• To assist with learning about MLE the use of table 1 and table 2 showing the duality 

between a probability statement and associated likelihood function can well prompt the 
student with that light bulb moment. 

• The tables assist with understanding of the maximising and what it means. 
• Each column maximum occurs where n is the integer value within the interval 

&!" − 1,
!
"*. 

• It is possible to have more than one value of n as the maximum. This occurs where the 
value of  !" is an exact integer and both the likelihood values for +!" − 1, and +!", are 
equal. 

• If there were to be multiple observations r1, r2, … rk then the columns associated with 
these r values are extracted and multiplied together elementwise. The resultant column 
is then scanned for its maximum and the associated value of n becomes the MLE 
estimate based on the current data vector. 

• %- is biased for n, simply seen in the case where r=0, that is no carcasses were found. In 
that case %- is zero, however other positive values of n are possible meaning the average 
value of %- must be greater than zero. 

 
FITTING THIS EXAMPLE INTO A LEARNING STRATEGY 

Obviously, an understanding of probability density functions is a prerequisite but the pdf 
calculations in the example will also engage students with those concepts. Likewise, students need to 
be familiar with various statistical distributions and specifically the binomial where again the 
calculations will require students to use this prior knowledge. 

With statistics servicing courses, the appreciation that there are other parameter estimation 
methods apart from the methods of moments will probably be sufficient. Engagement by showing the 
duality concept using the table with rows emphasised for probabilities and columns for likelihood could 
better motivate them more than straight formulas. 

For mainstream statistics students, where this concept needs to be firmly understood, making 
the tables or alternatively the web page (where the highlight of rows and columns is changed by mouse 
clicks) available to students can assist the retaining both important concepts of probability-likelihood 
duality and likelihood maximisation.  
 
CONCLUSION 

The description of an environmental problem and the use of the discrete binomial probability 
mass functions is conducive to learning and understanding the concept of maximum likelihood. 

The use of maximum likelihood estimation as describe here has proven useful to staff in DPIE 
when assessing wind farm development and operational plans to assist with actions to mitigate negative 
impact on threatened species. 

I would especially thank Dr Samantha Travers and Mallory Barnes for introducing me to the 
issue requiring better than equating the number of carcasses to kills. 
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This is another case (see Wikipedia description of German tank problem) where meaningful 
statistical analysis is possible using a sample size of one. 

Calculations were performed using the array programming language J which proved useful for 
defining the whole table shown above directly from the probability statement without loops. 

 
ADDITIONAL MATERIAL 

The web page (an html file) is available from the author at the NSW Department of Planning, 
Industry and Environment.  Ian.Shannon@environment.nsw.gov.au. 

 
REFERENCES 
Wikipedia, German Tank problem. https://en.wikipedia.org/wiki/German_tank_problem  Retrieved 26 

May 2021 
JSoftware Inc, Version 903 of J language, 

http://www.jsoftware.com/download/j903/install/j903_win64.zip  Accessed 16 Feb 2021 
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HIGHLY ENGAGING BAYESIAN DEMONSTRATIONS 

 
Damjan Vukcevic1,2 

1School of Mathematics and Statistics 
2Melbourne Integrative Genomics 

University of Melbourne 
damjan.vukcevic@unimelb.edu.au 

 
Introductory statistics teaching typically focuses on the classical/frequentist approach. Bayesian 
inference usually only gets a short mention, at best. In my experience, students often misunderstand the 
motivations and differences between the two approaches, especially the distinction between modelling 
uncertainty (Bayesian/epistemic probability) rather than variation in data (frequency/aleatory 
probability). 
 
In the second-year undergraduate introductory statistics subject that I teach, we devote a single week 
(out of 12) to Bayesian inference. To make the most of this, I developed three interactive in-class 
demonstrations that showcase the key concepts in an engaging and accessible way. These include a 
‘card trick’, a live experiment and interactive use of R. The card trick is a highlight, starting off as a 
bit of fun but quickly making the students re-think their knowledge of probability. They come to the 
realisation that they already understand and intuitively use probability in a Bayesian sense, despite 
having spent the first 9 weeks strictly using frequency probability. 
 
I will describe my demonstrations and explain the many learning points that I take advantage of via 
strategically prepared commentary. Given the ubiquity of Bayesian techniques in modern-day 
applications, I hope to leave my students with the best foundation for their developing statistical 
careers. 
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LEARNING ANALYTICS TO PREDICT FINAL GRADE PARTWAY THROUGH 
INTRODUCTORY STATISTICS 

 
MOLNAR, Adam 

Oklahoma State University, Stillwater, USA 
adam_molnar@yahoo.com 

 
As part of a study about student performance in introductory general-education statistics at a large US 
university, learning analytics models were developed to prospectively estimate final grades after week 
6 of a 16 week term. Models were constructed to predict percentage marks and the dichotomous result 
of above-average or below-average grade. Available variables for 199 students included grades from 
four homework assignments and one hour exam, standardized maths test scores and highest maths class 
completed, college and secondary school grade averages, and demographics including year in 
university, gender, race, age, university transfer, and first generation college status. Modelling methods 
included linear regression, logistic regression, LASSO regression, decision trees, and nearest 
neighbours. Reduced models such as stepwise regression and decision trees had more accurate cross-
validation estimates. First exam score, college grade point average, and score on probability homework 
were part of all best- performing models. Ways to apply model results with students and instructors are 
discussed. 
 
INTRODUCTION 

Many universities in the USA (and some elsewhere) require that instructors provide 
intermediate grades to students during a course. For example, my current university requires that 
students receive a grade representing their progress after week 6 of a 16 week term. Some institutions 
have provided midterm marks since the 1980s. Although provided grades have shown mixed evidence 
of benefit (Alley, 2002), student advising offices believe strongly in them. The Utah Valley University 
Retention group (n.d.) offers a representative statement, that “a midterm grade provides [students] with 
the opportunity to make adjustments while there is still time to achieving a passing grade.” Providing 
assignment scores to students is not enough, though; academic advisors and retention specialists should 
also have access. 

Instructors tend to assign intermediate grades based on completed work, as universities do not 
generally mandate a grading approach. More data is potentially available, however, and if the goal of 
intermediate information is to accurately help students judge progress towards a final outcome, a more 
precise prediction would be more helpful. This paper contains the result of an attempt to find a better 
grade prediction model than applying earned percentage so far, based on variables available at week 6. 
The project is a practical example of applying predictive analytics in higher education, often called 
learning analytics, “the measurement, collection, analysis and reporting of data about learners and their 
contexts, for purposes of understanding and optimising learning and the environments in which it 
occurs” (Long & Siemens, 2011, p. 33). 

Predicting final grades has been a process for about as long as there have been final grades, 
with academic papers such as Watson (1988) modeling success in mathematical sciences. Increased 
computing power and Internet-based courses have made the process easier, with authors such as Wang 
and Newlin (2000) demonstrating benefits from including online activity measures. Learning analytics 
has developed into a field with international conferences starting in 2011, and continues to grow as part 
of data science. 

Initial efforts retrospectively analyzed individual courses, but forward-looking analysis would 
be more useful. An early prospective system was Course Signals at Purdue University. Factors in the 
Course Signals model included course grades, relative participation in the online course learning 
management system (LMS), prior academic history, and demographic characteristics. Based on these 
models and faculty settings, students saw a red, yellow, or green light for each course (Arnold & Pistilli, 
2012). These systems proved popular and multiple LMS developers offer automated systems. Course 
Signals became part of Ellucian’s CRM Advise, with other competitors including Retention Coaching 
by Blackboard (2020). Corporate LMS products cost money, though, and an open source initiative has 
developed to attempt to reduce costs and providing more transparency (Jayaprakash et al., 2014). Papers 
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and books have examined benefits, including how instructors perceive these systems (Atif et al., 2020, 
Ifenthaler et al., 2019). 

Model building techniques from statistics, machine learning, and data science have been used 
in learning analytics. Popular techniques have included decision trees, naïve Bayes classifiers, support 
vector machines, neural networks, random forests, and logistic regression (Chen & Cui, 2020; Cui et 
al., 2019; Marbouti et al. 2016). Learning analytics models have used many different types of variables. 
In a review article, Cui et al. (2019) identified seven categories of potential predictors. 

• Performance in the current course. 
• LMS activity such as time spent, clicks, and discussion posts. 
• Previous academic history such as college GPA and placement test scores. 
• Student demographics such as gender, age, and race. 
• Student socio-emotional variables such as attitudes. 
• Features of the course such as modality and enrollment. 
• Instructor variables such as teaching quality and style. 

 
DATA COLLECTION 

During northern hemisphere spring (January to May) 2019 and fall (August to December) 2019 
semesters, I conducted a study to examine mathematical and other factors related to success in an 
introductory statistics course. The non-calculus-based introductory statistics course is the largest course 
in mathematics or statistics at this public university in the south-central part of the USA, with about 
1500 enrolled students each calendar year. Multiple instructors offer sections with 50 to 100 students 
per section, with about 75% of sections in-person and 25% online. Students complete common graded 
homework assignments and take exams designed to be roughly equal, although not the same exams 
because sections take exams at varying times. Course staff discuss exam grades; exam marks for 
sections can be adjusted upward to ensure fairness. 

In the spring, four instructors asked students to participate in the study. Students could receive 
a small amount of extra credit, about 0.5% of the course grade, for participating and completing a 
mathematics assessment during the first two weeks of the course. Perhaps because of the extra effort 
required, only 52% of eligible students completed the assignment. To increase fall participation rates, 
6 in-person instructors (2 returning, 4 new) decided to gather consent and administer the survey during 
class time. Even though extra credit was not awarded in the fall, the in-class administration increased 
participation rate to 88%. 213 students participated in the spring and 400 participated in the fall. 

Participating students could choose if their data would be available for external publication or 
internal use only. Furthermore, not all instructors provided all homework and exam scores necessary 
for this prospective analysis. The sample for this paper consisted of 199 students who gave external 
consent: 26 from one section taught by instructor A in the fall, 102 from four sections taught by 
instructor B across both semesters, and 71 from three sections taught by instructor C across both 
semesters. One section from instructor C was online; the remainder were in-person. 
 
VARIABLES 

Outcome variables of interest were percentage grade in the course and letter grade awarded. 
Because 12 of the 199 students withdrew from the course after week 6, these students have a letter grade 
of W and no percentage grade. Additionally, a few students stopped participating and had very low final 
percentages. To reduce potential influence, grade percentages below 40% (including withdrawn 
students) were raised to 40%. This made the range 40 to 107, with mean of 84.07 and standard deviation 
17.25. 

For ordinal letter grade, I decided to collapse letter grades into two categories, strong grades of 
A and B, and weaker grades of C, D, F, and W. This course uses a common US system where a 
percentage of 90 is needed for an A, 80 for a B, 70 for a C, and 60 for a D. A and B letter grades make 
up a small majority of overall course grades, so this categorization into good and not-so-good grades 
provides two groups of roughly equal size. Students who gave external consent tended to have higher 
grades, so the sample contains 144 AB and 55 CDFW.
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Potential predictors were taken primarily from the first, third, and fourth categories described by 
Cui et al. (2019) – course performance, academic history, and demographics. Thinking about the other 
categories, LMS activity was not available. No socio-emotional surveys were taken to keep student time 
commitment low. Section enrollment counts were similar and thus not included, but online modality 
was noted. Instructor was included as a categorical variable, but no teaching quality or style variables 
were available at the individual instructor level. 

Course performance variables were grades from the first four homework assignments and the first 
exam, all set on a 0 – 1 scale. The class has a total of 350 available points. The first four homework 
assignments are each worth 10 points, while the first exam is worth 50. Thus, at this point, slightly over 
one-quarter of course points (90/350) have been earned. Course performance variables were expected 
to be predictive, given a partial direct relationship to the outcomes. 

Academic history variables included the following: 
• Score on 19 question algebra and arithmetic exam created to test skills used in the class 

(Molnar & McDonald, 2019). 
• Mathematics score from the ACT or SAT, nationwide college entrance exams. SAT scores 

were converted to the ACT scale of 1 to 36; students who took both got the higher score. 
• If the student took the university’s math placement exam, 60% had done so. Doing so 

generally indicates that the student took a prior math course at this university, because 
students tend to avoid placement exams unless necessary. 

• Highest college-level math course successfully completed, in four categories as none (21% 
of students), college algebra (48%), precalculus (16%), calculus or higher (15%). 

• If the student had a previous attempt in this course. Only 11 students did, 5.5% of the data. 
• If student enrolled in a corequisite section with extra math support. 25 students (13%) did. 
• Total college credit hours completed. In the US college system, graduation requires about 

120 credit hours, with a full semester load around 15 hours. 
• College credit hours attempted in that term. 
• College Grade Point Average (GPA) on a 0 – 4 scale, with A worth 4, B 3, C 2, D 1, F 0. 

College GPA had minimum 1.645, first quartile 2.952, median 3.429, third quartile 3.815, 
and maximum 4.0, with a mean of 3.346. The mean GPA for the course under study is 
generally around 2.8, making the course more difficult than average. 

• High school GPA on a 0 – 4 scale. About 15% of students had a 4.0 GPA and very few 
were less than 3.0. 

 
Demographic variables included the following: 

• Tuition status to indicate residency, either in state (72%) or out of state (28%). 
• Self-reported gender. 129 of the 199 students (65%) were female. Fewer than 5 students 

selected a non-male, non-female gender; due to small size, they were combined with males. 
• Age in years. Almost all students had age between 18 and 24; only 4% of students were age 

25 or older. 
• Self-reported race, as categorized by the University office. Due to multiple small racial 

group sizes, race was dichotomized into White (67%) and Nonwhite (33%). 
• If the student was a transfer student from another university. 18% had transferred. 
• If the student self-reported first generation college student status. 18% reported first 

generation status. 
 

Overall, there were 5 course performance variables, 10 academic history variables, 6 
demographic variables, online modality, and instructor, a total of 23 potential predictors. 
 
RESULTS 

Models were constructed in R (R Core Team, 2020). Variables were added in three groups. The 
simplest models used only course performance variables, four homework scores and first exam. Next, 
the 10 academic history variables, modality, and instructor were added. These models are labeled as 
“Course  + Academic” in the tables below. Finally, the six demographic variables were added and all 
23 potential predictors were used.

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

51



OZCOTS 2021 Contributed Paper (Refereed) Molnar 
 

MODELS PREDICTING A OR B GRADE 
To model the categorical AB-vs-CDFW outcome variable, I tried logistic regression with three 

variable selection methods – all predictors, stepwise regression based on the Bayesian Information 
Criterion BIC (Schwartz, 1978), and LASSO –, classification trees, and K-nearest neighbors. 
Misclassification rates in Table 1 were measured using leave-one-out cross validation. Adding 
demographic variables never improved the misclassification rate. Furthermore, adding demographic 
variables actually increased misclassification rate in three of the five models, evidence of overfitting. 
 

Table 1. Misclassification rates for categorical models by data used. 
 

Method Course Variables Course + Academic All Variables 
Logistic regression, all predictors 14.6% 10.1% 13.1% 
Logistic regression, stepwise BIC 14.1% 9.5% 9.5% 
Logistic LASSO regression 12.6% 9.5% 10.6% 
Decision Tree 12.6% 7.5% 7.5% 
K-Nearest Neighbors 13.1% 15.6% 19.1% 

 
The best-performing model was a decision tree. Students were classified as receiving a C, D, 

F, or W if their homework 4 grade was less than 75%, or college GPA was less than 3.1 and exam score 
was less than 70%, or college GPA was less than 3.1 and exam score was less than 83% and homework 
2 grade was less than 94%. The second best model, stepwise logistic regression with BIC, included 
homework 4 grade, exam grade, and college GPA – three of the four variables in the decision tree. 
 
MODELS FOR PERCENTAGE 

To model percentage grade, I tried linear regression with three variable selection methods – all 
predictors, stepwise with BIC, and LASSO – regression trees, and K-nearest neighbors. Mean absolute 
error (MAE) was selected as the judgment criteria because of its natural, unambiguous ease of 
interpretability across models (Willmott & Matsuura, 2005). Table 2 contains leave-one-out cross-
validation MAE results for candidate models and variable sets. 
 

Table 2. Mean absolute error for numeric models by data used. 
 

Method Course Variables Course + Academic All Variables 
Linear regression, all predictors 6.82 5.53 5.74 
Linear regression, stepwise BIC 6.97 5.41 5.25 
Linear LASSO regression 6.82 5.35 5.26 
Decision Tree 6.05 5.56 5.56 
K-Nearest Neighbors 6.65 6.90 8.05 

 
As in the categorical case, more complicated models sometimes exhibited overfitting.  The best-

performing model using stepwise BIC included homework 2 grade, homework 3 grade, homework 4 
grade, exam 1 score, math placement test score, college GPA, and transfer status. The second best model 
from LASSO retained a similar set of coefficients that were not reduced to zero, only replacing 
homework 2 grade by completion of calculus. 
 
DISCUSSION 

Three variables appeared in both sets of best and second-best models – exam score, college 
GPA, and homework 4 score. Exam score is the largest component of the grade after 6 weeks; not seeing 
it would be surprising. It is also not surprising to find that overall college GPA is related to performance 
in this general education introductory course. Regarding homework 4, in the course textbook by Bluman 
(2018), Chapter 4 covers probability, a more challenging topic than the first three chapters on data 
collection, visual and table representation, and numeric summaries. As an additional measure of ability, 
homework 4 makes sense in the models. Interestingly, the other homework scores did not always 
appear.
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Overfitting occurred frequently. In classification, adding demographic variables into logistic 
regression, LASSO regression, and nearest neighbors increased the validation misclassification rate. In 
percentage prediction, nearest neighbors and linear regression had a higher mean absolute error with 
more predictors in the model. Overfitting is an important topic in data science; as Hosseini et al. (2020) 
and others have written, haphazardly trying a bunch of things without validation frequently leads to 
dangerous situations. Although I would not cover overfitting in a general introductory course, this 
dataset is appropriate for a data science course. Having more data – here demographic variables – does 
not always make prediction better. 

With graduate students training to be instructors, these models can also serve as a basis for 
discussion about factors affecting student performance and how instructors talk about grades with 
students. Speaking with students about grade prediction involves psychological and ethical 
considerations. Adults often speak about how a particular teacher encouraged or discouraged their 
school performance. Self-efficacy, an individual’s confidence in that person’s ability to successfully 
accomplish a task, has an established positive effect on statistics course performance (Finney & Schraw, 
2003). Would a student make positive adjustments after receiving a poor projection as suggested by 
Utah Valley University advisors, or reduce effort due to lower self- efficacy? Tone likely matters, and 
balancing statement of grade facts and projects with encouragement to work well can be very 
challenging. Having a well-developed model based on the generalized results of hundreds of students 
could simplify the statement of fact and allow more space for instructor support. 

There are also concerns about the models. Authors such as Slade and Prinsloo (2013) have 
pointed out concerns related to informed consent, data management, and the role of power. All 
participants gave consent for this study, but does informed consent apply in a system applied to all 
students? Using data from outside the class might also lead to ethical concerns. Demographic variables 
such as race, gender, and age did not appear in the best-performing models, but what if they did? Is it 
appropriate to consider transfer status, which did appear? Learning analytics researchers often presume 
that information benefits students and instructors. For further research, it might be possible to design 
an experiment randomized by class to evaluate the effects of projection, similar to Alley’s 2002 effort, 
and applying knowledge learned in these models to test for benefit. 
 
ACKNOWLEDGEMENTS 

I would like to thank my research assistant Siyu An who contributed much of the data cleaning 
and some initial models to this project. 
 
REFERENCES 
Alley, V. M. (2002) Midterm grade reports: Are they effective? Research and Teaching in 

Developmental Education, 19(1), 14–24. https://www.jstor.org/stable/42802148  
Arnold, K. E., & Pistilli, M. D. (2012). Course Signals at Purdue: Using learning analytics to increase 

student success. In S. Buckingham Shum, D. Gašević, & R. Ferguson (Eds.), Proceedings of the 
2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 
2012, Vancouver, BC, Canada (pp. 267–270). New York: ACM. 
https://doi.org/10.1145/2330601.2330666  

Atif, A., Richards, D., Liu, D., & Bilgin, A. A. (2020). Perceived benefits and barriers of a prototype 
early alert system to detect engagement and support ‘at-risk’ students: The teacher perspective. 
Computers & Education, 156. https://doi.org/10.1016/j.compedu.2020.103954  

Blackboard. (2020, July 22). Blackboard launches proactive and scalable student retention solution 
[Press release]. https://www.prnewswire.com/news-releases/blackboard-launches-proactive-and-
scalable-student-retention-solution-301097920.html 

Bluman, A. (2018). Elementary statistics: A step by step approach (10th ed.). McGraw-Hill Education. 
Chen, F., & Cui, Y. (2020). Utilizing student time series behaviour in learning management systems for 

early prediction of course performance. Journal of Learning Analytics, 7(2), 1– 17. 
https://doi.org/10.18608/jla.2020.72.1  

Cui, Y., Chen, F., Shiri, A., & Fan, Y. (2019). Predictive analytic models of student success in higher 
education: A review of methodology. Information and Learning Sciences, 120(3/4), 208–227. 
https://doi.org/10.1108/ILS-10-2018-0104 

 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

53



OZCOTS 2021 Contributed Paper (Refereed) Molnar 
 

Finney, S. J., & Schraw, G. (2003). Self-efficacy beliefs in college statistics courses. Contemporary 
Educational Psychology, 28(2), 161–186.  https://doi.org/10.1016/S0361-476X(02)00015-2 

Hosseini, M., Powell, M., Collins, J., Callahan-Flintoft, C., Jones, W., Bowman, H., & Wyble, B. 
(2020). I tried a bunch of things: The dangers of unexpected overfitting in classification of brain 
data. Neuroscience & Biobehavioral Reviews, 119, 456–467. https://doi.org/10.1016/ 
j.neubiorev.2020.09.036  

Ifenthatler, D., Mah, D.-K., & Yau, J. (Eds.) Utilizing learning analytics to support study success. 
Springer. 

Jayaprakash, S. M., Moody, E. W., Lauría, E. J., Regan, J. R., & Baron, J. D. (2014). Early alert of 
academically at-risk students: An open source analytics initiative. Journal of Learning Analytics, 
1(1), 6-47. https://doi.org/10.18608/jla.2014.11.3  

Long, P., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. Educause 
Review, 46(5), 30–40. 

Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students 
in a course using standards-based grading. Computers & Education, 103, 1–15. 
https://doi.org/10.1016/j.compedu.2016.09.005  

Molnar, A., & McDonald, K. (2019, May 16–18). Math diagnostics and relationship to course grades 
[Poster presentation]. US Conference on Teaching Statistics 2019, State College, USA. 
https://www.causeweb.org/cause/uscots/uscots19/posters/2-13  

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. https://www.r-project.org  

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464. 
https://doi.org/10.1214/aos/1176344136  

Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral 
Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366  

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society Series B, 58(1), 267–288. https://doi.org/10.1111/j.2517- 6161.1996.tb02080.x  

Utah Valley University Retention. (n. d.) Midterm grades.  https://www.uvu.edu/retention/ 
midtermgrades.html  

Wang, A. Y., & Newlin, M. H. (2000). Characteristics of students who enroll and succeed in psychology 
Web-based classes. Journal of Educational Psychology, 92(1), 137–143. 
https://doi.org/10.1037/0022-0663.92.1.137  

Watson, J. M. (1988). Student characteristics and prediction of success in a conventional university 
mathematics course. Journal of Experimental Education, 56(4), 203–212. 
https://doi.org/10.1080/00220973.1988.10806489  

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root 
mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–
82. https://doi.org/10.3354/cr030079  

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

54



OZCOTS 2021 Contributed Paper (Refereed) Berg & Hawila 

INTRODUCING BAYESIAN INFERENCE WITH THE TAXICAB PROBLEM 
 

BERG, Arthur and HAWILA, Nour  
Pennsylvania State University, USA  

berg@psu.edu 
 
The taxi problem goes by many names in the literature including the Schrödinger problem, the German 
tank problem, the racing car problem, the horse-racing problem, and the taxicab problem. The basic 
problem goes like this: Suppose taxicabs in a certain city are numbered 1 to N, and one such taxicab is 
randomly selected, say number 1729. Based on this information, we wish to infer the total number of 
taxicabs, N, there are in the city. In this paper, we present a non-Bayesian and Bayesian approach to 
dealing with this problem that uncovers a wealth of statistical inference although we are dealing with 
a single data value. We provide reasonable assumptions on the potential number of taxicabs that leads 
to a Bayesian inference that combines the observed data with the additional assumptions into a coherent 
estimate of N. This paper offers an introduction to Bayesian inference for students as part of an 
introductory probability and statistics course. 
 
INTRODUCTION 

Here we provide a resource for introducing Bayesian statistics to tertiary students as part of an 
introductory probability and statistics course. The simply stated taxicab problem has a rich history with 
many well-known statisticians, including M. S. Bartlett, R. Fisher, R. C. Geary, H. Jeffreys, P.-S. 
Laplace, J. Neyman, C.S. Pierce, E. J. G. Pitman, and E. Schrödinger having been associated with the 
problem in various contexts. Before we delve into discussing a Bayesian approach to the taxicab 
problem, we first present some of the rich historical context of this problem including various 
applications in which the problem arises. 

After introducing the different applications, we outline the key approaches to solving the 
problem. At each step, we explicitly state the assumptions that are being made and students should be 
challenged to critically evaluate such assumptions in different contexts of the problem. Our first step is 
to write down the likelihood corresponding to the stated problem. With the likelihood in place, we 
explore classical non-Bayesian solutions (also referred to as “frequentist solutions”) to the problem. We 
start with the maximum-likelihood estimator and show that this standard estimation method is very 
conservative and underestimates the true value. We will also draw on a stick breaking model to 
intuitively calculate the expected values used to formulate an approximately unbiased estimator. 
Technical details are avoided; rather, we focus on key concepts. The article published in Teaching 
Statistics by Johnson (Johnson, 1994), is an excellent supplemental resource for this discussion. 

What is lacking from the non-Bayesian solutions are intuitive or reasonable prior assumptions 
based on the context of the problem. For example, we can easily justify upper bounds for the number of 
taxicabs, and this additional information can be easily integrated into the analysis when a Bayesian 
approach is followed. Specifically, this information enters through the so-called prior in Bayesian 
inference. Different priors will be considered for different contexts of the taxicab problem. 

Once the likelihood and prior are specified, we employ Bayes’ theorem to update the prior 
based on observed data (the taxicab number that was randomly sampled) to produce the posterior 
distribution. The posterior distribution provides a probability for each possible value of the true 
parameter. We then discuss how we might reduce the distribution of values down to a single point 
estimate with a corresponding credible interval (the Bayesian version of the confidence interval). 

 
A PROBLEM WITH A RICH HISTORY 

In a letter written by the prolific American statistician Charles Pierce in 1911, Pierce attributes 
the problem to Pierre-Simon Laplace (Pierce, 1976): 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

55



OZCOTS 2021 Contributed Paper (Refereed) Berg & Hawila 

“One of [Laplace’s] problems professes to calculate from the fact that all balls in an urn are numbered 
1, 2, 3, etc. and the fact that a ball has been drawn and found to bear a number 𝑁, what the probable 
number of balls in the urn is. But no deductive conclusion on the subject can be drawn from those 
premisses correctly.” 

Although Pierce clearly attributes Laplace, the authors carefully explored Laplace’s extensive 
writings and various English translations with no success finding any description of this problem. Laplace 
indeed analysed numerous ball-and-urn problems, but we simply could not find a description of the 
problem at hand. A couple of decades after Pierce’s letter, British statistician H. Jeffreys writes a letter 
in 1934 to another statistician R. A. Fisher attributing the problem to the Polish statistician J. Neyman 
(Fisher, 1990): 
 
“[Neyman] once asked me the following: a man arrives at a railway junction in a town in a foreign 
country, which he has never heard of before. The first thing he sees is a tramcar numbered 100. Can he 
infer anything about the number of tramcars in the town? [Neyman] thought the question was significant 
and so did I, and we both had a feeling that there were probably about 200. I tried it on M.S. Bartlett, 
who thought it was meaningless but had the same feeling about 200.” 
 
Then in a 1944 paper, Irish statistician R. Geary attributes the problem to Nobel laureate E. Schrödinger 
(Geary, 1944): 
 
“At a recent meeting of the Dublin University Mathematical Society, E. Schrödinger suggested the 
following ingenious problem as an illustration of Pitman’s concept of closeness. In a town, cars are 
known to be numbered consecutively from 1. The numbers on 𝑟 of the cars are noted: the problem is to 
find the closest estimate of the number of cars in the town.” 
 

Other variants of this problem have also appeared more recently in the literature: 
 
(Tenenbein, 1971): “A spectator at a race track is observing a car race in which the cars are numbered 
consecutively from one to some unknown number 𝑁. He wishes to estimate the number of cars on the 
race track after observing that 𝑀 cars numbered 𝑋!, 𝑋", … , 𝑋# have passed. Each car is equally likely 
to hold a given position in the race at any given time.” 
 
(Rosenberg & Deely, 1976): “Suppose we are at a horse race where we know there are no scratchings 
(i.e., the number of horses on the track is equal to the highest number on any horse). We take a moving 
picture of a particular section of the track and stop the film after 𝑀 horses have passed by. Assuming 
that it is possible to read the numbers of the horses in the movie, we wish to estimate the number of 
horses taking part in the race.” 
 

Arguably the most significant application of this problem was during the Second World War, in 
which the serial numbers of captured German tanks were found to be marked sequentially from 1 to 𝑁!
(Ruggles & Brodie, 1947). Applying the same statistical inference that we discuss in this paper led to 
an estimate of 246 German tanks being produced each month during the war, which is substantially 
lower than the conventional Allied intelligence estimates indicating a monthly production of 1,400 
tanks. After the war, German records validated the statistical analyses by confirming the actual monthly 
production number to be 245. 

This shows that this simple problem can have many different and diverse applications. In the 
subsequent discussion, we will stick with the formulation introduced in the abstract: taxicab number 
1729 is randomly selected among taxicabs numbered 1 to 𝑁, and we wish to estimate the value of 𝑁. 
The specific number 1729 is chosen due to its historical significance as the Ramanujan-Hardy taxicab 
number (Silverman, 1993). The first task in the inference – Bayesian and non-Bayesian alike – is to 
write down the likelihood corresponding to the data generating mechanism. 
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THE LIKELIHOOD 
The likelihood simply encodes the probability of observing the data, which we will call 𝑀, 

given the true parameter 𝑁. Having observed just one taxicab, the likelihood is simply 

 !
!
If instead of just one taxicab, we observe k taxicab numbers M1, …, Mk!independently sampled from the 
N total taxicabs (with replacement), then independence of the data allows us to write the likelihood as 
follows 

!
In particular, we see that this likelihood only depends on the maximum observed taxicab number, which 
we write as max{M1, …, Mk}, thus making max{M1, …, Mk} a sufficient statistic. 

Note that this likelihood assumes every value between 1 and 𝑁 is possible and equally likely and 
that multiple samples are drawn independently with replacement. If the sampling was taken without 
replacement, say we observe three taxicabs at the same time, then we could modify the likelihood 
accordingly; see e.g. Berg (2021). 
 
NON-BAYESIAN (FREQUENTIST) SOLUTIONS 

The maximum-likelihood estimator is the value of 𝑀, or more generally max{M1, …, Mk}, that 
maximizes the likelihood probability. Clearly, 1/𝑁k is a decreasing function in 𝑁, and, since the smallest 
possible value for 𝑁 is max{M1, …, Mk}, the maximum-likelihood estimator is  
max{M1, …, Mk}. However, this estimator is rather unsatisfying as it only reports the lower bound of the 
possible values. An alternative approach is to estimate 𝑁 with an unbiased estimator. 

In order to construct an unbiased estimator, we first calculate the expected value of max{M1, 
…, Mk}!and use that expected value to solve for 𝑁. Here, we only present a heuristic calculation of the 
expected value; a more rigorous calculation can be found in Johnson (1994). Let’s suppose that instead 
of sampling 𝑘!values from the discrete set {1, …, N}, we randomly sample 𝑘!values from the continuous 
interval [0, N]. In this case, the expected value of  
max{M1, …, Mk} can be intuitively calculated using a stick breaking analogy. If you randomly break a 
stick of length 𝑁!at 𝑘!randomly chosen positions, then the resulting k+1 pieces will have length !

"#$
 on 

average (see Figure 1). Using this stick-breaking representation, we can intuitively see the expected 
value of max{M1, …, Mk} is 

Note that the above expression applies when the samples are taken on the continuous interval [0, N].!A 
small correction is applied when sampling from the discrete set {1, …, N}!and depending on whether 
sampling is done with or without replacement. 

 
Figure 1. Using the stick breaking analogy to heuristically approximate the expected value of M(k).

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

57



OZCOTS 2021 Contributed Paper (Refereed) Berg & Hawila 

 
Now we construct our approximately unbiased estimate of 𝑁 by replacing the expectation in the above 
expression with max{M1, …, Mk} and solving for 𝑁. This leads to the following approximate unbiased 
estimator of 𝑁: 

𝑁& = max	{𝑀!, … ,𝑀"} 0
𝑘 + 1
𝑘 3 

 
So, for having observed just one taxicab numbered 𝑀, this unbiased estimator simply doubles 𝑀, which 
is a much less conservative estimator than the maximum-likelihood estimator. However, there is more 
information encoded in the problem than just the value of max{M1, …, Mk}. We explore this further in the 
next section. 
 
THE PRIOR 

The problem formulation we are focusing on is estimating the number of taxicabs in a certain 
city. Although we are not told the size of the city, we can describe some broad bounds that would cover 
most cities. For example, New York City has about 13,600 licenced taxis, London has about 70,600 
licenced taxis, and Mexico City, the city with the most taxicabs, has approximately 140,000 taxicabs. 
Therefore, we could with reasonable certainty conclude the number of taxis in the unspecified city could 
range from 50 to 140,000. This is certainly a very wide range, but it is still information that could be 
utilized to augment the statistical inference. In this example, with such a wide range, the additional 
information would not provide much improvement, but if we knew more about the city, such as its 
population, more precise bounds could be constructed leading to more precise estimates" 

This prior in Bayesian inference encodes the probabilities of each possible value before 
observing the data. So, if the feasible range for 𝑁!is in the interval [50, 140000], then we need to specify 
a probability for each possibility. Lacking any insight as to the potential number of taxis, a natural prior 
would be the uniform distribution on [50, 140000] in which each value is equally likely. A somewhat 
more sophisticated approach would be to utilize published reports, such as Schaller (2005), that contain 
data on the number of taxis in a large sampling of cities to approximate a more realistic prior distribution.!

Mathematically, we will denote the prior distribution as 𝜋(𝑛)!as the probability distribution 
for the possible values 𝑛!of N. So, if we take the prior to be a uniform distribution on [50, 140000], 
then!𝜋(𝑛) = 1 (140,000 − 50 + 1) = 	1 139951⁄⁄ "!In this case the prior mean is quite high – close to 

70,000 – so instead we modify the prior probabilities to decrease proportionally with 𝑛"!Specifically, 
we take 𝜋(𝑛) = 𝑐 𝑛⁄ , where the constant 𝑐 is chosen so that the prior sums to one (in this case,  
 𝑐 ≈ 0.126).  The prior mean for this “decaying prior” is 17,616, which is still quite high – close to 
the!number of taxis in New York City – but far better than 70,000. It is often the case that different 
priors are considered to understand how the results vary with the priors.!

We finally note that for different applications, such as estimating the number of German tanks 
or estimating the number horses at a horse race or estimating the number of cars at a racetrack, a different 
prior would be called for depending on the context of the given application. We would certainly use 
much smaller numbers when modelling the number of horses or the number of race cars, yet the non- 
Bayesian estimators presented above do not change according to these substantial differences across 
the applications.!
 
THE POSTERIOR AND BAYESIAN INFERENCE 

Once the prior distribution has been pinned down, the posterior distribution is calculated using 
Bayes’ theorem: 

 
This seems like a monstrous formula, but it’s not so bad; it’s basically just the product of the prior 𝜋(𝑁) 
with the likelihood Pr	(max	{𝑀!, … ,𝑀"}|𝑁) but then normalized (dividing by its sum) so that it adds up 
to one. The approach to calculate  Pr	(max	{𝑀!, … ,𝑀"}|𝑁)!can be found in Berg (2021). Here, we will 
assume just one taxicab was observed (k = 1), so we will use the likelihood 𝑃𝑟(𝑀|𝑁)! above. After 
multiplying 𝜋(𝑁) by 𝑃𝑟(𝑀|𝑁)! and then normalizing the vector so that it sums to one, we obtain the 
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posterior probability of 𝑁!given 𝑀. This is an entire distribution of values for 𝑁, but if we wanted to 
report a single estimate, we would report a central tendency like the mean or the median of the posterior 
distribution. Additionally, we can summarize the posterior distribution with a (1 − 𝛼)% credible 
interval by identifying values of N with posterior probabilities that sum to 1 − 𝛼 for a user-specified 
value of 𝛼. 
 
SHINY APPLICATION 

Implementing the computations required for the Bayesian analysis may be a barrier to some, so 
we developed an interactive Shiny application (Chang et al., 2021) to assist with these computations. 
The Shiny app, accessible at https://glow.shinyapps.io/taxicab/, implements the Bayesian and non-
Bayesian estimators of the taxicab problem. The source code is accessible at 
https://github.com/NourHawila/taxicab. After the user provides the data (e.g., observed taxicab 
numbers),  smallest  and  largest  feasible  values  of N (parameters 𝑁#$% and 𝑁#&'),  and  level 𝛼,  the 
application calculates and graphs the posterior distribution for 𝑁!and displays the maximum-likelihood 
estimate, approximate unbiased estimate, prior mean, posterior mean, posterior median, and the lower 
and upper bounds of a (1 − 𝛼)% credible interval. 

We now return to the originally stated taxicab problem having observed the taxicab number 
1729. The estimates of the total number of taxicabs based on the maximum-likelihood estimator and 
the approximate unbiased estimator are 1729 and 3458, respectively. In Table 1 we present the Bayesian 
for different prior parameters. We see that the Bayesian inference is indeed sensitive to the prior 
parameters. The more accurate the prior distribution can be specified, the more accurate the Bayesian 
inference becomes. We also see that the posterior median is consistently smaller than the posterior mean 
as the posterior distribution is right-skewed. 
 
Table 1. Bayesian analysis of the taxicab problem having observed taxicab number 1729 with four 
different priors 

Parameters Bayesian results 
Nmin Nmax Prior Prior Mean Posterior 

Mean 
Posterior 
Median 

95% Credible Interval 
Upper Bound 

50 140,000 Uniform 70,025 31,518 15,561 112,388 
50 140,000 Decaying 17,610 15,610 3,417 28,015 
50 10,000 Uniform 5,025 4,762 4,159 9,160 
50 10,000 Decaying 1,875 4,208 2,949 8,071 

 

Figure 2. Posterior probabilities of the taxicab problem having observed taxicab number 1729 are 
illustrated along with five different estimates for N 

 
DISCUSSION 

We recognize that Bayesian methods are not as utilized for inference in practice as often as 
other Frequentist methods and that Bayesian approaches require a proper understanding of conditional 
probability which could be a difficult task to some students (Moore, 1997). However, Bayesian methods 
are becoming more popular due to the advances in software power and emphasis on computational 
thinking in Education. In this paper, we make us of the simplistic structure of the taxicab problem and 
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its historical roots to provide an excellent gateway problem for students to be introduced to Bayesian 
methods. 

We highlighted several different applications related to this problem, presented non-Bayesian 
solutions, and detailed a Bayesian approach to solving the problem. The Bayesian solution allows for 
more information of the problem to be utilized but is also computationally more complex. To facilitate 
the computation of the Bayesian solution, an accompanying interactive application is described and 
provided online. 

When used in the classroom, additional Bayesian examples and applications that could follow 
the taxicab problem include Eadie, Huppenkothen, Springford and McCormick (2019), which applies 
Bayesian statistics to modelling the colours of M&M’s candies, Bárcena, Garín, Martín, Tusell et al. 
(2019), which applies Bayesian statistics in finding the sunken nuclear submarine USS Scorpion that 
sank in 1968, and Kuindersma & Blais (2007), which uses Bayesian statistics in analysing the 
probability a flipped cylinder (representing a thick coin) comes to rest on its edge. 
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A STUDY OF WIL IN STATISTICS AND ANALYTICS: WHAT HAS BEEN ACHIEVED 

AND WHAT CAN BE IMPROVED? 
 

Yan Wang, Denwick Munjeri and Mali Abdollahian 
RMIT University 

yan.wang@rmit.edu.au 
 

Within the traditional science area, especially for the Mathematics discipline, the number of project-
based and placement-based activities are less compared to other disciplines. The work integrated 
learning (WIL) course has exposed and placed our students directly to industry through internships and 
projects offered by industry organisations. This research will study the WIL course of two programs 
within the mathematics discipline, Master of Analytics and Masters of Statistics and Operations 
Research at RMIT University. A study was carried out to demonstrate the impact of our good practice 
of WIL in Statistics and Analytics, which can be shared with mathematics programs at other 
universities. Meanwhile the study also shows the barriers to WIL in statistics that may be further 
improved to value the WIL activities in the mathematics discipline. 
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BIOSTATISTICS COURSES: DESIGN AND IMPLEMENTATION 
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Learners enrolled in master level introductory Biostatistics courses have backgrounds in a variety of 
life sciences. They include medical doctors, health service researchers, Doctor of Philosophy 
candidates, and students in Masters of Public Health or epidemiology programs within medical 
faculties. Their objectives are usually to learn the fundamentals of Biostatistics so they can apply basic 
quantitative methods to their research projects and also to communicate with biostatisticians in their 
team. Traditional assessments in biostatistics courses often fail to provide an opportunity for them to 
evaluate these professional skills. At the University of Queensland, using a flipped-classroom structure 
suitable for distance mode learning we implemented a job-ready assessment with four components. 
These were: (i) exposure to the real world by sourcing a unique dataset from workplaces, projects, or 
open databases, (ii) simultaneous learning and application throughout the course, with loosely defined 
instructions that mimic real-life challenges in requiring careful selection of appropriate theoretical 
concepts to use for various research questions, (iii) exchanging feedback with classmates in order to 
train their cognitive ability to assess the work of others and constructively accept or reject feedback, 
and (iv) production of a four-minute video presentations for a lay audience to simulate the professional 
workplace. 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

62



OZCOTS 2021 Contributed Paper (Abstract) Ferns et al 
 

 
BUILDING EMPLOYABILITY CAPABILITIES IN DATA SCIENCE STUDENTS: AN 

INTERDISCIPLINARY, INDUSTRY-FOCUSSED APPROACH 
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In the contemporary workplace, competent data scientists capable of interdisciplinary collaboration 
are in high demand. In addition, employers are seeking innovative, agile, and motivated employees who 
are analytical, communicative, collaborative, resilient and creative. To nurture these attributes, a 
student data scientist needs to experience a plethora of learning opportunities that involve 
collaboration in interdisciplinary contexts and engagement with industry partners.  
 
Curtin University and Lab Tests Online Australasia (LTOAU) collaborated to provide an 
interdisciplinary, industry-focussed learning experience for data science students. Students analysed 
text complexity of online consumer education content, website Google analytics and developed an 
online survey. LTOAU has used the insights from this work to inform redesign of processes and content. 
Students reported improved self-awareness, and teamwork, decision-making and leadership skills from 
this interdisciplinary learning experience. Tackling a real-world problem as part of an interdisciplinary 
team empowered them to understand and respond to client requirements, embrace diversity, learn from 
others, and establish trust and equity within a focussed team.  
 
To navigate the dynamic and unpredictable landscape of the future workplace, graduates require 
transferrable skills across global contexts. This presentation will highlight how interdisciplinary, 
industry focussed learning experiences can provide these skills to data science students, thereby 
enhancing their employability. 
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Statistical teaching often focuses on models and techniques, with much less time devoted to emphasising 
the primacy of the real-world questions that these are meant to answer. One consequence is what we 
call the ‘true model myth’: the belief that statistics is about finding the ‘best’ model or technique to 
apply to the data. 
 
To help students avoid this, we propose explicitly teaching the idea of a ‘statistical investigation’, which 
would be rather like a scientific investigation. This starts with well-posed questions, to be investigated 
via potentially several different analyses (analogous to scientific experiments), with the results drawn 
together to form the final conclusions. 
 
The examples we provide should reinforce this. When we teach new techniques, we often keep things 
simple and show only a single analysis. We can remind students of the larger story by replacing or 
supplementing these with examples where multiple techniques are used. We present several such 
examples and exercises that would fit naturally within existing curricula. 
Although this change might seem to complicate teaching, we expect that it will actually lead to greater 
student satisfaction since students will develop skills for “scaffolding” problems in the context of real-
world questions. 
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ONLINE Q&A IN STATISTICS – USING THE STACKEXCHANGE NETWORK 
 

 O’NEILL, Ben 
Research School of Population Health, Australian National University 

ben.oneill@anu.edu.au 
 

We discuss the facilities on the StackExchange network, with particular attention to the CrossValidated 
website for statistical questions and answers. We set out information on the characteristics of this 
network and the available expertise among top-ranked users. We identify potential benefits for students 
and associated benefits for their teachers. We also examine some potential pitfalls that teachers should 
guard against when dealing with students using the StackExchange network in their coursework. 
 

Students undertaking statistics courses in secondary and tertiary education are generally reliant 
on their course lecturer. They may have access to further assistance from course tutors, and other staff 
in their department, but this is still a substantial limitation. Among the “social media generation” it is 
perhaps natural that students have sought out further assistance from online social question and answer 
(SQA) sites devoted to technical and scholarly topics that they study in their courses. In particular, many 
university students can be seen using the popular StackExchange network of SQA sites to assist them 
with their courses. This online platform opens up a world of technical expertise at no cost to the student, 
and it provides a handy resource for students beyond the expertise of their course lecturers. 
 
CROSSVALIDATED AND THE STACKEXCHANGE NETWORK 

StackExchange is a network of social question and answer (SQA) websites allowing users to 
post questions, answers, and comments, on a range of topics. Pertinent to statistics are CrossValidated 
(https://stats.stackexchange.com) for probability, statistics, data analysis and visualisation, and machine 
learning; StackOverflow (https://stackoverflow.com/) for statistical programming; and Mathematics 
(https://math.stackexchange.com/) for mathematics. At the time of writing, CrossValidated has 7,937 
tracked users, and Mathematics has 32,780 tracked users.i The network is presently the most popular 
reference site on the internet, attracting a large number of daily visits.ii 

Sites on the StackExchange network use individual questions to create a repository of answers 
that are of enduring value to a broad audience (Anderson et al 2012). Sites use a “gamification” method 
that adds game-design elements to the platform (Deterding et al 2011; Robson et al 2015). Gamification 
acts to incentivise contributions of questions and answers, and allows self-moderation of the site by 
users. Users can “upvote” or “downvote” questions and answers, and they receive “reputation” points 
when one of their questions or answers is upvoted, and lose a small amount of points when one of their 
questions or answers is downvoted. The questioner can “accept” a single answer, sending this answer 
to the top of the page. Users can also gain “badges” for achieving certain requirements on the site. As 
users gain “reputation” on a site, they are granted privileges, and can undertake moderating tasks. There 
are also elected moderators, who hold the power to close or delete questions or answers. In Figure 1 we 
show part of the user profile of a highly-ranked user on CrossValidated, who has previously served as 
one of its moderators. 
 

Figure 1. User profile for Professor Rob Hyndman (presently ranked #14 of 7,937 tracked users) 
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The voting and “gamification” on the StackExchange network have some salutary effects that 
assist self-moderation. Voting on questions and answers allows popular questions to gain visibility, and 
it usually ensures that good answers “rise to the top”. Although most users on CrossValidated are 
statistical novices, virtually all high-reputation users are professional statisticians working in either 
academia or industry. Thus, while there is no necessary connection between popularity of an answer — 
as expressed by net upvotes— and correctness, in practice the most popular answers to a question are 
generally of higher quality, and wrong answers are usually downvoted to net-negative scores, or deleted. 
(The net score of answers is less useful when compared across questions, since it is affected heavily by 
the level of interest in the topic.) In Figure 2 we show an example of what a question and accepted 
answer look like; the numbers on the left side of the question and answer (between the up/down vote 
buttons) show net upvotes, and the tick on the answer shows that it was accepted by the questioner. 
Both the CrossValidated and Mathematics sites allow users to use LaTeX formatting to insert equations, 
and R Markdown syntax to add references to computer code. 
 

 

 
Figure 2. A question with an accepted answer; other answers and comments are omitted 

 
An important aspect of the StackExchange network is that it constrains user communication activities 
solely to posting questions, answers, and comments. The site’s motto is “Ask questions, get answers, 
no distractions”, and the descriptive information further elaborates that “[t]his site is all about getting 
answers. It’s not a discussion forum. There’s no chit-chat.”iii Users are alerted to answers to their 
questions, comments on their answers, and “directed” responses to their comments (if a respondent 
includes the username of the user they are responding to), but there are no broader contact mechanisms, 
and extended discussion in comment threads is discouraged. Accounts on the website are not bogged 
down with an “inbox” full of messages requiring attention. (Notwithstanding this limitation, most high- 
ranking users give enough information on their profile that you can locate and message them outside 
the site.) This gives the network a deliberate “less is more” quality that focuses on its core task, and 
ensures that administration of an account is relatively undemanding — a user can be absent from the 
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site without accruing messages requiring their attention when they return. The simple registration 
process means that many registered users on the network create accounts in order to post only a single 
question, and once they get an answer they do not engage in further activity. Consequently, users are 
classified as “tracked users” and are tracked in the reputation rankings only if they have at least 200 
reputation points (which is equal to twenty total upvotes on their questions and answers). 
 
Q&A VOLUME AND PARTICIPATION OF EXPERTS ON CROSSVALIDATED 

In Figure 3 we show the weekly frequency of questions and answers on CrossValidated since 
2010. In the early part of this period there were more answers than questions (i.e., an average of more 
than one answer per question) but there has been rapid acceleration of questions up to about 2017-2018. 
Since that time the moderators have made efforts to be more diligent in closing duplicate questions and 
low-quality questions, and this has led to a slight drop-off in recent years. Even with this moderation 
effort, there remains a persistent gap between questions and answers. 
 

Figure 3. Questions and answers on CrossValidated (with smoothing) 
Data taken from https://stats.stackexchange.com/site-analytics [Queried 3 March 2020] 

 

Various studies have examined expert users on SQA sites on the StackExchange network (see 
e.g., Zhang et al 2007, Pal et al 2012, McLeod 2014). These users are generally identified by a range of 
metrics, including the user reputation, ratio of upvotes to downvotes received, and ratio of answers to 
questions. Expert users are those who answer substantially more questions than they ask, receive 
substantially more upvotes than downvotes, and have a high reputation score. Studies on expert users 
find that a small number of expert users generate a large amount of answer content on the sites. User 
reputation is highly positively skewed, with a large number of accounts having low reputation, and a 
small number of expert users with high reputation. While these characteristics are often taken as 
definitional aspects of expertise in literature on SQA sites, it is possible to view the profiles of top users 
to try to determine their professional background, to obtain an outside measure of their expertise. User 
details on the network are limited to what users choose to disclose in their profiles. Some users are 
identifiable by name, and list their profession, while others use aliases and do not disclose professional 
information. At the time of writing, out of the top 30 ranked contributors on CrossValidated, there were 
25 with professional positions that were identifiable. Most of these users work in professional fields 
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involving research in statistics, data science, or machine learning, and a few work in applied scientific 
or economic roles that involve heavy use of statistical analysis. There were 14 users with professional 
academic positions, 2 statistical consultants, 2 statisticians in industry, 6 data scientists/machine 
learning specialists in industry, and one professional in finance and administration. The vast majority 
of identifiable top users hold doctoral qualifications in statistics or other STEM fields involving heavy 
application of statistics.iv  

Although the top echelon of contributors on CrossValidated consists mostly of academic faculty 
and professional statisticians, data scientists, and machine-learning specialists, the converse is not true 
the vast majority of academic and professional statisticians, data scientists and machine-learning 
specialists are not present on CrossValidated. In the time that CrossValidated has been operational there 
has been a substantial increase in the rate of incoming questions on the platform, and its existing expert 
users have difficulty keeping up with the volume.vi 

There have been calls within the platform to try to recruit additional experts to the site through 
outreach to universities and conferences. (Please consider this my outreach to this audience!) Though 
there may be some minor professional benefits to participation, the existing expert users on the site are 
“benevolent users” who contribute time without expectation of professional benefit. For users employed 
as academic faculty in universities, contributions on CrossValidated could potentially be counted as 
“service to the profession”, but the answers posted do not count as academic publications. For 
professional statistical consultants, visibility as a high-reputation user on the network can potentially 
assist with professional networking. Some academics may see participation in the StackExchange 
network as a natural extension of their teaching activities, allowing them to reach a much larger 
audience than in lectures at their university. The site can also showcase a user’s ability to explain 
statistical concepts in a clear and simple manner. 
 
STUDENT QUESTIONS ON CROSSVALIDATED 

Online learning environments offer teachers and students a platform that fosters collaboration 
and interaction with a body of peers (Alagic and Alagic 2013). The SQA facilities on CrossValidated 
and other sites on StackExchange offer some potential benefits for students and teachers in statistical 
courses. Use of the site has potential benefits for students: (1) a broad source of statistical expertise 
from experts other than their course lecturer; (2) practice framing statistical questions and problems 
clearly for an outside audience; (3) answers to their specific statistical questions; (4) a broader repository 
of statistical questions and answers on related problems; (5) practice using LaTeX and R Markdown 
formatting (respectively) for equations and computer code; and (6) broader technological competence 
using online SQA facilities. Use of the facility lets students supplement the expertise of their course 
lecturer with answers from other experts, allowing greater resources while outside the class. Powell et 
al (2017) present a model for teachers to support student use of online collaborative environments, and 
decentralise their own role. In addition, CrossValidated allows the lecturer to gain supplementary 
assistance from other experts. Notably, questions about statistical education fall within the ambit of the 
CrossValidated site, allowing lecturers to pose questions on how best to explain statistical concepts to 
students. Some of the most popular questions and answers on the site relate to explanations of the 
“intuition” behind statistical rules or methods. 

Questions by novice users are often unclear or poorly framed, and it is common for this to elicit 
comments on the question seeking clarification. Novice users sometimes proceed from false premises, 
or ask narrow technical questions that do not adequately address statistical goals. (An example of this 
is questions about how to transform data to achieve normality of variables; this is rarely useful in 
practice since it is almost always preferable to model the original data with a model that does not assume 
normality.) In such cases, expert users frequently encourage these novice users to set out the overall 
goal of their analysis, to allow a holistic assessment of appropriate methods. This is consistent with the 
general experience of statistical inquiry, which involves solving complex and ambiguous inferential 
problems (Wild et al 2018; Makar 2018). There are many different types of statistical questions and 
these have different criteria for what makes a good question (Arnold and Franklin 2021). In many cases 
the goal of the problem requires refinement before a question is answerable. Research on the statistical 
reasoning of young children has exposed similar challenges concretising ambiguous inference problems 
(Makar 2014; Makar 2016). 

On CrossValidated, users are encouraged to edit their questions with new information until the 
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question is clear enough to attract an answer; in cases where this does not occur, the question may be 
closed for lack of clarity. This process encourages students to refine their questions, and may bring to 
light false premises in the question, or aspects of the question where they are unable to explain clearly 
what they want to know. This is particularly challenging in the case of questions relating to syntax or 
error messages occurring in statistical programming. (Questions on statistical programming are split 
between CrossValidated and StackOverflow, depending on their statistical content; technical questions 
about syntax/programming go to StackOverflow.) In cases where users seek assistance to deal with a 
coding deficiency or error, they are asked to provide a “minimal reproducible example” of the problem 
(i.e., a set of commands that can be run by other users on the same program to replicate the error, 
stripped of extraneous aspects). This can be quite difficult for some students, but it encourages them to 
learn to describe their statistical programming problems clearly, without extraneous information. 

One additional aspect of the free-flowing nature of an SQA platform that is challenging to some 
students is that one sometimes encounters cases where answers suggest different methods, or disagree 
on some statistical issue, or show a range of alternative methods to arrive at a solution to the same 
problem. Upvoting and downvoting gives a sense of which answers are popular among users, but the 
student may still need to make decisions on which answers seem most plausible. Burghardt et al (2017) 
suggests that users often use simple cognitive heuristics to decide which answers to upvote or accept, 
and they may also be “biased” towards upvoting answers that are already popular. (Though arguably, 
they are just being good Bayesians, making use of implicit information on the likelihood that other users 
are also good judges of answers.) In any case, this aspect of the student experience may be seen as a 
“difficulty”, or it may be viewed as a constructive aspect of the use of an SQA site, since it ensures that 
the student is exposed to differences of opinion on technical matters, and there is no single “authority 
figure” to definitively settle the issue. (Though arguably there are some high-reputation users who have 
such tremendous levels of expertise in their topic that one hesitates to disagree with them!) 
 
POTENTIAL DANGERS AND PITFALLS FOR PEDAGOGICAL INSTRUCTION 

One potential pitfall of students using StackExchange is the possibility that seeking expert help 
on questions may become a substitute for personal effort and engagement with the statistical problem 
under consideration, such that students do not learn the material. In particular, the use of StackExchange 
to get answers to “textbook problems” that are assigned as homework or assessment is a possible pitfall 
that could diminish pedagogical success, or cause problems in formal assessment of student knowledge. 
Expert contributors on the network (many of whom are academics) are attuned to this issue, and there 
have been questions and answers on the “meta” site setting out ideas for how to deal with questions that 
“smell like homework”.vi The consensus is that these “textbook problems” are useful aids for statistical 
learning, so these questions should not be closed or ignored. Nevertheless, contributors are reluctant to 
give contemporaneous answers to problems that look like they might be assessment or homework, so 
these problems are tagged with the “self-study” tag, and there are special rules for dealing with them.vii 
Users posting “self-study” questions must show what they have done so far to solve the problem, and 
which part they are stuck on. Contemporaneous answers to these questions are “hints” rather than full 
solutions. Since many contributors are academics themselves, these hints are generally calibrated fairly 
well to assist the student, without answering the question for them. 

Notwithstanding these precautions, there are cases where expert contributors cannot identify 
whether a problem is an assigned assessment item for a student, or just a practice problem of interest 
for learning. The kinds of toy probability problems that regularly appear as homework items are also 
useful questions for general statistical learning, so it is not unusual for these questions to accrue full 
solutions over time. In some cases, contributors will give “hints” for recent self-study questions, but 
they may give worked solutions for old self-study questions (a delay of six months answering such a 
question ensures that the questioner cannot use the answer in an assessment item in a course occurring 
in that semester). This means that, over time, the site accrues a repository of solutions to textbook 
problems, particularly in probability theory, and an enterprising student may be able to find the solution 
to their homework problem with a rigorous search. 

Opinions differ on whether this is problematic, and indeed, questions on this issue have arisen 
on the associated “meta” sites connected to CrossValidated and Mathematics. The present author is of 
the view that having a repository of worked solutions to these kinds of toy problems is not harmful to 
student learning, since students still have an incentive to learn the relevant material in order to pass in- 
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person examinations. (During in-person examinations the student must obviously perform without the 
aid of the CrossValidated website, and even for remote online examinations, the asynchronous nature 
of the network and the elapsed time required to get an answer to a question will usually be too long to 
assist the student in this context.) Answers to “self-study” problems on CrossValidated can substitute 
work on an assignment problem, but they cannot substitute the knowledge required to replicate good 
performance on an examination. Thus, the present author recommends that the StackExchange network 
be used as a tool to assist learning, but (unless they want to rely on an honour system) course lecturers 
should retain one or more in-person examination items in the assessment for their courses. This ensures 
that students are unable to “outsource” their assessment to experts on the StackExchange network. 
 
IMPLEMENTING USE OF THE NETWORK IN STATISTICS CLASSES 

The StackExchange network is over a decade old, and other online SQA facilities capable of 
assisting with statistical questions are of similar age (though message-boards and forums are older). 
The present generation of university students are the “canaries down the coalmine” with respect to 
pedagogy augmented by SQA platforms. For good or ill, their education will be affected by access to 
online platforms to ask questions to a broad body of experts. 

Rather than leaving students to their own devices, it is possible for educators to incorporate use 
of the CrossValidated website or the broader StackExchange network as a formal aspect of their classes. 
Depending on the goals of the course, this could entail lessons designed to aid students in use of the 
platform, and even assessment requirements involving use of the site. The expectations of students 
should have regard to their own level of understanding of probability and statistics; novice users may 
be expected to post a reasonable question, but it will be difficult for them to provide answers that receive 
upvotes. In some contexts, students will already have done some statistical programming and can be 
expected to augment their questions/answers with coding, but in other cases this preliminary knowledge 
will be lacking and so this aspect of the site may be too difficult. 

Teachers who wish to incorporate use of the CrossValidated website into their teaching should 
first spend some time creating their own account, practicing some questions and answers, and becoming 
generally comfortable in their own use of the site. Once this is accomplished, teachers should be able 
to give formal instruction covering the following material: (1) assisting students to create their own user 
account and understand the basic mechanics of the site; (2) assisting students with posting questions 
and answers about probability or statistics problems; (3) providing instruction and practice sessions on 
the use of LaTeX syntax to write mathematics; and (4) providing instruction and practice constructing 
a “minimum reproducible example” of a coding problem for data analysis or statistical programming. 
Some ideas for simple (non-onerous) activities for students include: 

(1) Become a user: Create a user profile and fill it in with user details and an avatar. You may 
use a pseudonym for your user-name if you wish, and you do not need to give information 
that would identify you if you do not wish to do so. 

(2) Post a well-received question: Post a question about a topic within the scope of the site (e.g., 
probability, statistics, machine learning, etc.) and receive at least one upvote on the question. 
If you receive comments on your question seeking clarification, edit your question until it is 
clear. 

(3) Accept an answer: Upvote and accept an answer to a question you have asked. 

(4) Post an answer: Post an answer to a question; edit your answer to improve it if it receives 
critical feedback or downvotes from other users. (Do not be too upset by this; it is not unusual 
for new users to have their answers downvoted or critiqued.) 

(5) Use LaTeX for mathematics: Post a question or answer that uses LaTeX syntax to set out 
the required mathematical details. (There are a number of instruction pages for LaTeX syntax 
that are available online or in textbooks on the topic.) 

(6) Use computer code: Post a question or answer using coding font to set out coding details 
for a question or answer. (This requirement is only appropriate if the students already have 
some existing experience in statistical programming in a scripted statistical language.) 

(7) Cite an outside source: Post at least one question or answer where you cite an academic paper, 
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lecture notes, or online material, with an appropriate citation and/or hyperlink to the source. 
(8) Become a fan of another user: Browse one or more of the existing user profiles and review 

and upvote at least ten questions/answers from a favourite user. 

(9) Become a generous CV.SE citizen: Cast at least fifty total upvotes, and more upvotes than 
you have received. Cast at least one upvote for a question/answer from another student in the 
course. 

(10) Become a ranked user (more challenging): Gain at least 200 reputation on the site. 
 

The above activities are requirements that students in university should not find too onerous, 
and even at upper high-school level, some of these activities would be within the capabilities of students. 
Teachers could reasonably set some or all of these activities as assessable work during a course, and 
might also ask students to reflect on their use of the site as part of their assessment. Teachers should 
note that some activities require “site privileges” that are not available to new users until they earn some 
“reputation”. For example, in order to upvote a question or answer a user must first earn 10 reputation 
(one upvote on their own questions/answers). Similarly, users cannot downvote a question or answer 
until they earn 125 reputation (a bit over twelve upvotes on their own questions/answers). Other actions, 
—such as editing the questions/answers of other users or conducting moderation tasks— require a high 
level of reputation that would be difficult for students to acquire during a single course. 

One advantage of explicit instruction in using CrossValidated is that it gives educators a chance 
to guide students on the ethical and pedagogical aspects of using the site. Students can be alerted to the 
possible pitfalls to their education if they misuse the site (e.g., using it as a substitute for learning) and 
teachers can have class discussions on what the students hope to get out of the site. Asking students to 
give an end-of-course “reflection” on their use of the site could also help to inculcate good practice. In 
particular, the students could be asked to discuss how helpful/unhelpful it was to have access to experts 
in the field as an additional resource. Did they find the answers to their questions helpful? Were they 
too technical? Were students tempted to “cheat” by outsourcing their homework to others? Did they 
learn anything about probability or statistics from reading the questions and answers on the site? 

If the site proves useful to students, teachers may also consider contacting a high-ranked user 
on the site to ask them to give a talk to the students about their work in the profession and what they 
had to learn to give good answers on the site. Several high-ranked users are identifiable professionals 
in the field who would be amenable to contact from other statistics teachers. (The present author is one 
of them.) In any case, the site opens up opportunities for assistance from professional statisticians and 
other expert users, and it provides a good source of expertise and potential networking. 
 
CONCLUDING REMARKS 

The StackExchange network is a resource available to students that allows them to seek expert 
assistance on questions in a range of topic areas, including specialist assistance in statistics, data science, 
and mathematics. In particular, the CrossValidated site provides a platform to ask and answer questions 
on probability, statistics, data science, machine learning, and other topics related to statistics and data 
analysis. This SQA site has potential teaching benefits, insofar as it provides a broad source of expert 
help, and it encourages students to develop capability in framing questions. Teachers should consider 
the availability of this platform in designing their teaching practices and assessments. 
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Assessment randomisation is a strategy in assessment design wherein every student in a cohort is 
assigned tasks that are different from all other students in that cohort. This paper describes how 
assessment randomisation has benefits that go beyond that of remote assessment facilitation. In 
particular, randomisation can be used to effectively increase student engagement and collaboration, to 
encourage learning, to make assessment equitable, and to reduce academic workload. Here, I discuss 
these benefits, along with implementation aspects in the context of subjects in Statistics and related 
disciplines, using the R Software package exams. 
 
Keywords: Equity, Online Learning, Randomised Questions, Remote Assessment, Workload 

 
1 INTRODUCTION 

Covid-19 has been cataclysmic for the education industry. In most colleges and universities 
around the world, academic staff had to put their content online, and begin to virtually engage and teach 
their students, in the matter of a few weeks in early 2020. This has led many to change their lecture style 
and formats, and to develop creative ways in which to encourage student engagement. A particularly 
challenging aspect of shifting to online learning was remote assessment. Notably, many summative 
assessments that were usually carried out under strict invigilation were now being completed by students 
in the comfort of their own homes, with access to the internet and to channels of communication with 
fellow students. This shift naturally leads to concerns related to academic integrity and to the viability 
of the prevailing assessment model.  

Assessment randomisation addresses these concerns. With assessment randomisation, 
every student receives assessment tasks that are different from those given to every other student in a 
cohort. This is an effective way to help ensure that submitted work is a student’s own when being 
remotely assessed. The uptake of randomisation worldwide is reflected in the increased adoption of 
software that can generate randomised tasks, such as the R Software (R Core Team 2020) package 
exams. Beyond ensuring academic integrity, randomisation can lead to benefits other than academic 
integrity facilitation in the ecosystem of assessment strategies, even when the primary aim of the 
assessment is formative. 

In this paper, I focus on the role randomisation plays in the assessment of Statistics subjects. 
After briefly describing principles of assessment that may be put into practice through randomisation, I 
discuss the relevance to academic workload. I then proceed to describe practical aspects of assessment 
randomisation and outline some drawbacks of randomisation. This paper is also accompanied by a series 
of 14 short video clips that contain detailed instruction on how one can implement randomisation using 
R and the package exams (https://andrewzm.thinkific.com/courses/assessment-randomisation). 
 

2 PRINCIPLES OF ASSESSMENT AND THE ROLE OF RANDOMISATION 
Assessment generally serves one, or both, of two purposes: to foster learning, and/or to measure 

outcomes of students learning to certify or accredit expertise in a subject area (Boud and Falchikov 
2007). Assessment can be used for other purposes, such as to gather feedback on teaching efficacy and 
to adjust the teaching process accordingly (Trumbull and Lash 2013), but we do not consider these here. 
In this section, I describe the following assessment principles that can be put into practice through 
randomisation: 

Principle 1: Reduce opportunities for academic misconduct. 
Principle 2: Design for learning. 
Principle 3: Ensure equity and inclusivity. 
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2.1 PRINCIPLE 1: REDUCE OPPORTUNITIES FOR ACADEMIC MISCONDUCT 
In order to certify or accredit, assessments that are even partly summative in nature need to be 

such that they “reduce opportunities to engage in academic misconduct” (Hughes and McCabe 2006). 
This is particularly challenging in today’s world, where answers to assignment questions are often freely 
shared on social media sites by students. Several “educational websites,” such as Chegg.com, also offer 
services that provide answers to student questions, which are then publicly searchable online. For time-
restricted high-stakes summative assessments, such as final examinations, invigilation is the de facto 
standard by which opportunities for academic misconduct are reduced. Remote invigilation is not as 
straightforward as in-person invigilation. For example, while online proctoring software solutions, such 
as Examity and ProctorU, have been used effectively to mitigate the risk to integrity in examinations, 
they are generally seen as intrusive (e.g., Stewart 2020), and come at a considerable cost to the accrediting 
institution. 

Randomisation plays a straightforward role here: It provides a way to generate assessment tasks 
that are specific to each individual. If every student has a different assessment task, then educational 
websites and cheating will have a diminishing effect. Sharing of answers through social media networks 
or by other means will also be less effective; even if two task descriptions are largely similar, students 
will need to work through their own tasks and, at a bare minimum, adjust components of their responses 
accordingly. Behaviour among students is also likely to change: While many well-meaning students 
will gladly share their answers with fellow students, it is less likely that they will complete a specific 
assessment task for their friends. This last point is particularly pertinent in time-constrained, un-
invigilated, high-stake assessments, where one generally will have no time to spare to carry out other 
people’s work. 
 
2.2 PRINCIPLE 2: DESIGN FOR LEARNING 

There is widespread consensus that assessment and instruction are not separate entities, and that 
assessment is a “tool for learning” (Dochy et al. 2007). Assessments, whether primarily formative or 
otherwise, need to be intellectually stimulating and promote a deep approach to learning (Marton and 
Saljo 1997). Design elements such as scaffolding (the provision of hints and pointers to aid problem 
solving; see Shepard 2005), including real-world appeal (Dochy et al. 2007, Kang et al. 2014), are often 
used to put this principle into practice. 

One may aid learning via assessment by designing tasks that promote interaction and 
collaboration among students. Such a strategy is likely to facilitate learning, since interaction between 
students is often associated with increased motivation and positive attitudes to learning (McKeachie 
2007). However, when assessment tasks need to be completed by each student individually, this design 
strategy can be at odds with Principle 1: many subject coordinators in Statistics subjects will be all too 
familiar with the phrase “I was stuck, and just asked for some help” when investigating cases related to 
academic misconduct, where submitted assignments from two or more individuals are identical 
(mistakes and all!), and leave no doubt that one student blatantly copied from the other. 

Randomisation has an interesting role to play here: It provides a way for students to interact, 
and engage with each other, while reducing the opportunity for academic misconduct. Specifically, if 
all assessments are different, but relatively similar, then a student who is confused by an assessment 
component will need to comprehend, and seek to understand, how the other student tackled that 
assessment component; copying verbatim would not be an option. Thus, randomisation can aid 
assessors accomplish what is typically deemed very difficult: designing assessments that allow students 
to collaborate and help each other without providing an environment conducive for gross academic 
misconduct. This, in turn, leads to increased opportunity for learning. 
 
2.3 PRINCIPLE 3: ENSURE EQUITY AND INCLUSIVITY 
Equity and fairness are fundamental to any assessment task, at the very least for quality assurance in 
measuring learning outcomes. Specific design strategies employed to ensure this principle is put into 
practice include the use of a language and math notation that are closely aligned to the course content, 
the use of contextual settings in questions that do not penalise any minority group, and anonymous 
marking (Boud 2007). Randomisation at first might seem to derail this principle since, ‘by chance,’ 
questions given to one student might be more challenging than those given to other students. However, 
it is relatively straightforward to generate randomised tasks with similar difficulty, and that require a 
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similar amount of intellectual engagement in order to complete satisfactorily. For example, in an 
assessment, one could randomise the problem context and the numbers used (see Section 4 for specific 
examples), but not the specific topics and learning outcomes that are being assessed through the task. 

Notably, equity and inclusivity can not only be ensured when using randomisation, but also 
promoted. For example, students in some groups might be less socially connected to other students in 
the class cohort than those in other groups, and have less opportunity for direct help on solving a specific 
assessment task. If all students have different assessment tasks then, as discussed in Principle 1, the 
opportunity for students to benefit from having access to solutions is greatly reduced. This helps put all 
assessed students on equal footing. 

In this section I have argued that randomised assessment can help enforce some important 
principles of assessment. However, its feasibility in terms of staff workload needs to also be considered; 
this is the subject of the next section. 
 
3 ACADEMIC STAFF WORKLOAD 

There is no doubt that designing and providing feedback on assessments is time consuming and 
resource intensive. Indeed, it would ultimately be counterproductive to the academic and their employer 
if the effort required to implement assessment randomisation is so high that it results in a loss of 
motivation and hence a reduction in job satisfaction (Houston et al. 2006). Tertiary institutions are well 
aware that assessment may unduly affect staff workload; for example the University of Wollongong 
Assessment and Feedback Policy (University of Wollongong 2020) states that “tasks need to be 
intellectually challenging and enable students’ learning without placing undue burdens on either staff 
or student workloads,” while the University of Technology Sydney Coursework Assessment Policy 
(University of Technology Sydney 2020) states that “[s]ubject assessment patterns must involve 
reasonable workloads for both students and staff.” 

While designing randomised assessment tasks is more time consuming, it is not necessarily 
more so than the ‘traditional’ assessment model, where tasks are re-designed on a regular basis in order 
to adhere to Principle 1. Indeed, randomisation offers a way to reduce academic staff workload in the 
long run through the shift in focus from individual assessment design to group-based assessment design. 
Specifically, when designing a randomised assessment task, the aim is not to design just one task that 
assesses the learning outcomes of the student, but to design a group of quasi equivalent tasks that do 
so. For example, if the aim of the assessment is to assess, or train, the capability of the student in 
performing hypothesis testing relating to the mean of the population, one would now design a 
(potentially infinitely-large) class of problems that targets this learning outcome, and not just one 
problem. More effort may be needed into finding a class of problems which target the outcome; 
however, once this is established, it can be used year-on-year with little or no adjustment, and with little 
risk to academic integrity. 

Another way in which assessment randomisation offers a reduction in workload is through 
immediate, and automatic, student feedback. Specifically, several online learning environments such as 
Moodle, Blackboard, and OpenOLAT, as well as some platforms from textbook publishers, offer the 
functionality to automatically check students’ answers, and automatically grade submissions. This, 
however, is only likely to be useful when the math or statistical problems posed are rather ‘mechanical’ 
in nature, and are given to the student for training and for the student to gain confidence, before being 
presented with tasks that are more intellectually challenging. In the latter case, dedicated and time-
consuming student feedback is often still required. 
 
4 RANDOMISATION IN PRACTICE 

Assessment randomisation can help enforce some important principles of assessment and also 
make the assessment process more efficient. But how does one randomise in practice? Focusing on the 
conventional question-and-answer format of assessment, there are typically two ways in which 
randomisation can be used: 

1. Random numeric or textual entries 
2. Random task selection 

First, random numeric or textual entries is the most straightforward way in which to randomise 
questions. Here, the question is the same for every student in the cohort, but selected numbers or words 
within the question are different for every student. For example, if the question is on hypothesis testing, 
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the null hypothesis, or the data on which to base the test on, could be different for each student. Each 
student could also be asked to prove a result (e.g., prove that the 95% confidence interval for some 
parameter is [0.1, 0.2]) that is different from that of other students. Text could also be randomised; for 
example, a student may be asked to write down the definition of an x-process, where x takes values in 
{“Gaussian”, “Poisson”, “Markov”, “auto-regressive”, …}. 

Second, in random task selection, tasks that assess similar learning outcomes with similar 
difficulty are put into groups. Then, each student is allocated a task from within this group. This task 
could be a simple multiple-choice question, a project, an essay, or one that requires a high degree of 
specialised scaffolding. For example, in queuing theory, one group of questions could be assessing the 
student’s capacity to derive the expected properties of queues, such as the expected queue length. Each 
question in this group would be placed in a different real-world setting, but assess the same learning 
outcome. 

When only a few numeric or textual entries in a question are randomised, the risk for academic 
misconduct (Principle 1) is higher, but student interaction is promoted (Principle 2), and equity 
(Principle 3) is ensured. The workload on the staff member implementing the randomised assessment 
task is also relatively low. On the other hand, an assessment where entire questions, or tasks, are 
different, is more immune to misconduct (Principle 1), but discourages student interaction (Principle 
2), and more effort is needed to ensure that the assessment is equitable across the entire student cohort 
(Principle 3). The workload associated with generating task groups is also higher. 

A compromise between the two ways of randomising can reap the benefit of both worlds. For 
example, when assessing the student on analysing systems that can be modelled using Markov chains, 
when generating a random question, a contextual setting may be selected from a few and, within that 
setting, state transition probabilities may be randomly generated. All students would then be assessed 
on similar learning outcomes, for example, on the ability of finding the stationary probabilities associated 
with each state. 

 
5 THE R PACKAGE EXAMS 

Several online learning management systems, such as Moodle, provide the option to randomly 
generate numbers or text, and to randomly select questions from question groups. However, these 
systems tend to be relatively limited in the functionality they provide. For example, when scaffolding 
assessments, one may want to ask the student to prove an intermediate result, in which case the result 
needs to be computed, numerically or otherwise, for each randomised task. This can be difficult, or 
impossible, to do in an online learning management system. 

The desired flexibility can be achieved if randomisation is carried out within a fully- fledged 
programming environment. For statisticians and mathematicians, the programming software R is a 
natural choice. R natively supports many operations carried out in Statistics, for example, operations 
related to hypothesis testing. R could be used to generate random data from randomised models, 
generate sophisticated, presentable plots, and much more. The R package exams provides the link 
between R and randomised assessment tasks, by allowing the user to specify the random components 
of assessment tasks, scaffolding through the provision of intermediate results and task-specific guides 
and pointers, and the corresponding solutions to those tasks. The package allows the user to generate 
randomised questions in a variety of ways, for example by generating multiple Portable Document 
Format (PDF) files (one per student), or by generating an eXtensible Markup Language (XML) file for 
importing into Moodle. A detailed discussion on the usage of the exams package is beyond the scope of 
this work; instead, I provide a series of short videos, available at https://andrewzm. 
thinkific.com/courses/assessment-randomisation, that give a gentle introduction to using this package. 
More resources and exercise templates are available on the package website http://www.r-exams.org/.  

 
6 DRAWBACKS OF RANDOMISATION 

There are a few drawbacks to randomisation that are worth noting. First, designing a random 
assessment task is a considerable time investment, and will only pay dividends if given to more than 
one student cohort. Hence, randomisation is infeasible for one-off courses, or for courses where the 
learning outcomes are prone to regular change. 

Second, assessment task validation is more difficult. While, traditionally, the academic or tutor 
would work through every assessment task to gauge its difficulty and validity, this approach is no longer 
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feasible when assessment tasks are random. This is where the use of a software package like R can be 
particularly useful as one can test for conditions, and adjust task questions accordingly. For example, R 
could be used to flag a situation when randomly generated numbers would lead to a division by zero 
when problem solving, and not use those numbers in a randomly generated assessment task. Still, 
identifying and implementing test conditions can be time consuming. 

Finally, although solutions can usually be generated for each assessment task, locating 
problems in a student’s logic, or math working, and providing corresponding feedback will be more 
time consuming since questions, and numbers, will be different for every student. Appropriate 
scaffolding, for example by breaking down a large assessment task into small components, can be used 
to help the feedback process. 

 
7 CONCLUSION 

Learning and teaching in the higher education sector worldwide was thrown into disarray with 
the sudden onset of the Covid-19 global pandemic. It is only because technology is deeply entrenched 
in our lives and educational systems that most universities and institutions managed to still deliver 
effective learning experiences to their students. Technology-rich learning will only become more central 
to teaching in time, and assessment randomisation will likely play an increasingly important role. In 
this paper I have argued that the advantages of randomised assessment go beyond the facilitation of 
remote assessment, and that it may have a positive impact on student learning experience and on staff 
workload. 

The focus of this paper was on randomisation in the context of subject learning outcome 
assessment. However, randomisation can be used elsewhere in the course. For example, another positive 
aspect to randomisation relates to the way in which it facilitates learning by practice. This approach to 
learning is important in several technical subjects, such as Mathematics and Statistics, where the 
instructor provides the students with several different contextual scenarios to which to apply knowledge 
learnt on a new topic. Randomisation has obvious benefits here, since the instructor may design a system 
that can provide the student with virtually endless opportunities to learn by practice in a given subject. 
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Authentic problem solving, experiential learning and work integrated learning (WIL) in statistics 
education are effective ways to prepare students for life after their studies at university. Project 
assessments provide opportunities for these experiences. Although project-based assessments usually 
have a heavy workload, both for students and the academics, they provide opportunities for students to 
obtain and/or improve soft skills, including their employability skills. In this paper, we discuss different 
ways of setting up project work for students in an undergraduate WIL unit and a postgraduate project 
unit. The similarities and differences between them and the benefits to students are discussed along with 
our own reflections, which include how the assessment workload can be reduced by using carefully 
designed rubrics. Students’ reflections on their learning and experiences of project work support the 
value of project work. 
 
INTRODUCTION 

Group projects are identified as a pedagogical tool which contributes to developing 
employability skills because they provide students with opportunities to engage in active and 
collaborative learning experiences (Alexander, Cutrupi, Smout 2019). Authentic problem solving 
(American Statistical Association, 2016; Bilgin, Newbery, Petocz, 2015), experiential learning (Taback, 
2018; Kolb, 1984) and work integrated learning (WIL) (Bilgin, Bulger, Petocz, 2018; Smucker, Bailer, 
2015) in statistics education, which can be achieved by using project assessments, are effective ways to 
prepare students for life after their studies at university. In statistics, students nearly always encounter 
textbook data which is often unrealistic compared to data from real life problems. Group projects with 
authentic data which is inherently messy, possibly full of missing observations, ill-defined variables, 
confusion due to meta data (such as misunderstanding the variables due to cultural differences between 
different countries or workplaces or disciplines) provide opportunities for students to practice what they 
learnt on real data sets. They also give students an avenue to practice their communication skills both 
oral through discussions within their groups or with the project owners (if WIL) or presentations, and 
written through writing project reports. An additional benefit of group projects is to improve teamwork 
skills. Undoubtedly, feedback throughout the group project work and after it is completed is critical for 
student development, whether it is provided by their peers or by the lecturer(s). 

Higher education has moved from being about “the pursuit of impartial truth through research 
and teaching” towards, making graduates job-ready through incorporating employability skills into the 
curriculum (Sin, Tavares, Amaral, 2019). The adoption of the Bologna process by European countries 
has enabled them to ensure comparability in the standards and quality of higher- education qualifications 
across Europe and has also highlighted the importance of embedding employability skills into discipline 
specific teaching as one of the priorities (Sin, Tavares, Amaral, 2019). The AdvanceHE (formerly the 
Higher Education Academy UK) included embedding employability as one of its strategic areas of 
priority for change (2015). Researchers in other countries contributing to the discussion state that “The 
Employability Agenda is a core driving force for tertiary education and will remain so for as long as 
higher and vocational education are seen to be avenues for shaping the transition of post-secondary and 
mature learners to work and further learning.” (Higgs, Letts, Crisp, 2019). 

This paper presents different ways of setting up group project work in two units to improve 
employability skills. The similarities and differences between them and the benefits to students are 
discussed along with our own reflections. Students’ reflections on their learning and experiences of 
group project work support the value of project work. 
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THE AUTHENTIC GROUP PROJECTS: DATA SELECTION AND GROUP FORMATION 
There are many aspects for designing a project, such as whether it will be individual or 

groupwork, whether data will be provided by an academic or to be sourced by the student. For senior 
(i.e. third year or master’s) units, it is not uncommon to have an individual project supervised by an 
academic on an one-on-one basis, similar to a mini thesis, with a defined research question and already 
collected data or ready to go data collection instruments. Although it is not new to have group projects 
for statistics units (MacGillivray 2005), with the increased emphasis on employability skills, teamwork 
has become a necessity in the statistics curriculum. 

Two units’ groupwork designs will be discussed in this paper. With the increased emphasis on 
teamwork, the design of the master’s unit changed from having individual projects to group projects. 
The third-year unit was designed as WIL experience, where it is important to have group projects instead 
of individual projects, since it is harder to find external projects for each individual student and it is much 
harder to find an external supervisor due to shortage of statistically trained people in industry (American 
Statistical Association, 2015). Working in groups, enables students to learn from each other, discuss the 
problems at hand and seek help from their academic supervisor when needed. There were 3 groups for 
thirteen master’s students and 10 groups for 34 third-year students. Given the COVID-19 restrictions, 
in both units, groups met with the lecturer(s) weekly on zoom to present their progress and discuss any 
issues related to their projects such as identifying the suitable statistical technique(s) for their analysis, 
how to document their analysis, how to write the project report and technical questions related to 
statistical analysis. Before the final submission of the project reports, students were able to seek 
feedback to their written project (formative assessment) which gave them an opportunity to improve 
the final project report. 

The master’s projects were based on one big data set (WVS-W7, 2017-2021) which students 
could choose different countries for their analysis and come up with their own research questions. The 
third-year projects had external partner (i.e. industry or non-profit organisation) problems (some had 
data which required analysis, some had problems required students to design a study or survey 
instruments). Either way, the projects were based on authentic, messy and complex problems which 
were quite different from their previous learning experiences based on text-book data sets. The 
importance of exploratory data analysis (Tukey, 1977) became evident to students as well as the 
importance of data visualisation prior to formal statistical inference. They became aware that there is 
no one correct approach to solving complex problems. Students gained valuable experience working 
with real, authentic problems. 

Finding publicly available real data or real problems from industry required a substantial 
amount of time prior to the beginning of semester by the lecturer(s). However, the effort and time 
invested in finding real data or problems led to increased student engagement. The World Values Survey 
Database -Wave 7 (WVS-W7, 2017-2021) was chosen for the master’s projects because the fieldwork 
was recently completed which included responses from 77 countries with around 300 questions on a 
wide range of topics. The students selected the country for their group and each student posed two 
research questions which meant that each student could choose topics that most interested him or her 
and still work in a group. Choosing the country of interest and posing research questions themselves kept 
students motivated and resulted in each student taking ownership of his or her learning. The projects for 
WIL students included topics such as “Driving through floodwater: State Emergency Services 
experiences”, “Evaluation of a mobile App for healthy lifestyle behaviour change” and “Statistical 
approaches for evaluating quality of care in aged care facilities”. The projects for WIL unit were sourced 
from interested industry partners and/or non-profit organisations prior to semester starts. The suitability 
of the projects was carefully assessed by the academic (i.e. it can be completed in one semester, students 
are expected to have necessary technical skills for the given project and organisations comply with 
ethical practice). 

Students chose their group members (master’s) or were allocated to groups based on their 
preferences for the projects (third-year) at the beginning of the semester. There are advantages and 
disadvantages for both ways (Mellor, 2012). For example, when students decide who they want to work 
with, they usually choose their friends which might prevent them practicing some of the teamwork skills 
(i.e. forming, storming, norming, performing) (Tuckman, 1965), on the other hand, they quickly move to 
dealing with the task instead of initial team dynamics. When students choose which project to work on, 
they have intrinsic motivation (Bilgin et al. 2015) to complete the task. 
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COMPONENTS OF RUBRICS FOR GROUP PROJECTS AND FAIR MARKING 
The rubrics are helpful for informing students about the expectations of the project, 

standardising the marking and allowing lecturers to mark different projects consistently and holistically. 
They are widely used in social sciences but not that prevalent in statistics. Researchers have shown that 
the use of rubrics could improve student learning (Reddy, & Andrade (2010). Usually assessments in 
statistics require students to solve a given problem where the possible answers can be used as marking 
guide and therefore there is no need for a rubric. When group projects on authentic problems are 
assessed and where each group works on different research questions, it is difficult or impossible to 
write a marking guide. The creation and use of a rubric becomes a necessity to ensure fair marking. 

For units discussed in this paper, we developed rubrics which were shared with the students along 
with the group work project requirements. Due to the assessment policy in our institution, group work 
assessments are required to have individual parts to identify individual student contributions to the 
group work. The rubrics included project format (i.e. suggested sections), length of the project (i.e. either 
word count or page length) and various other additional information such as language requirements and 
individual part requirements. The suggested sections of the reports were different but similar in both 
units. The sections included an abstract or executive summary; an introduction where the need for the 
project was described and aims of the project clarified; the description of the data set; statistical methods 
and justification for choosing the methods; results; discussion and conclusion where most important 
findings are summarised, implications of the findings and the limitations of the current results are 
discussed along with identifying any future research questions. An abstract for one of the master’s 
projects is given in Table 1 for the project titled “An exploration of the 2017 -2021 World Values Survey 
Wave 7: New Zealand”. As can be seen from abstract (Table 1), the project was not trivial and led to 
new and original work. The cohesiveness of the abstract demonstrates that the students did collaborate 
effectively. 
 

Table 1: A master’s project abstract1 

 
 

The individual parts for each student were included as appendices in the group projects. They 
were limited to two pages for each student where they provided their individual research questions 
and/or the methodology used including why it was chosen, their results and conclusion. This allowed 
the independent component of group work to be assessed as well as identifying free loaders, if any. 

In addition to the group project rubric, in the third-year unit students were required to fill in a 
form for themselves (Figure 1) and a similar form for their group members to enable identification of 
each individual student’s contribution to the group process and dynamics. Self and peer evaluations of 
the contributions were used to make adjustments to the group mark if there were any inconsistencies 
between them. This meant that as well as having an individual mark for the individual part, students 
might have different marks for the group part of the project. 
 

1 Due to confidentiality, we are not able to show an example project abstract for the third-year industry- 
based projects. However, a summary report shared by partner organisation can be found in a post made 
on 23 October 2020 at https://www.facebook.com/WolliCreekBirdos 

This report interrogates data gathered by the 2019 New Zealand World Values Survey. It 
explores the determinants of individual happiness to discover the factors that exert the greatest 
effect on happiness. It then examines the roles that individual beliefs, values, and demographic 
factors play in determining left-right political orientation. Ordinal logistic regression with stepwise 
variable selection is used to develop a parsimonious explanatory model for self-rated happiness. 
This report finds that the most important determinants of happiness are degree of individual 
freedom of choice; financial satisfaction; security; degree of belief in God; sex; and number of 
children. To model political orientation, a conditional inference tree is used as a variable-selection 
procedure over the entire dataset. This modeling determines that the factors exerting the largest 
effects on political orientation are economic beliefs about wealth redistribution; satisfaction with 
the political system; willingness to protest; trust in labour unions; and beliefs about whether 
homosexuals are as good parents as other couples. These beliefs and values are observed to be more 
important predictors than any demographic traits. 
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Figure 1. Self-Evaluation of Contributions to the Group Process and Dynamics 
 

Carefully designed rubrics help to inform students about the expectations and enables them to 
have better learning outcomes. They use it to assess their group’s project report before submission (self-
assessment) and improve their report if they identify gaps or mistakes. Limiting the report either by 
words or page limit, forces students to synthesise their analysis and choose their words carefully for the 
report which helps them to improve their written communication skills. To be able to achieve these, 
they need to have discussions within their group, which contributes towards improvements in their oral 
communication skills. The benefits to academics are that they assess carefully written projects and since 
each project is dealing with different research questions, it is not boring to read and assess them. The 
rubrics help academics to be consistent and save marking time. 
 
DISCUSSION AND PEDAGOGICAL IMPLICATIONS 

There is no doubt that groupwork and real problems in industry are encountered daily therefore 
it is important to give students a taste of working in groups while solving real problems. Working with 
real data sets to answer real research questions is interesting, raises curiosity of the students and 
enjoyable but also challenging, especially for undergraduate students (Bilgin et al 2015). Working with 
a group of peers alleviate the burden on students and empower them to deal with the challenges 
collectively. Therefore, groupwork is potentially beneficial to increasing intrinsic motivation, defined 
as the doing of an activity for no reason other than the rewards in the activity itself (Ryan & Deci 2000). 

In this paper we have described the design of two group work projects, one for a third-year work 
integrated statistical consulting unit and another one for a Master of Applied Statistics project unit. Our 
reflections and student feedback for the evaluation of the units indicates that students benefit from 
working in a team on authentic problems either provided by a client or posed by students based on real 
(i.e. messy with a lot of variables and observations) data. A third-year student commented on the benefits 
of group work “I personally learnt that I cannot get it my way all the time and realised that I must 
appreciate other points of view. The group projects also helped me to improve my communication skills 
both with group members and the client.” One master’s student wrote that “I was looking forward to 
doing an individual project before the semester started but found out at the beginning of the semester 
that it will be a group project. Though I didn't like the idea, I now appreciate the fact that I've learnt 
something from others while working with them.” 
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The learning potential of working in groups is often underutilised (Johnson et al 2007). While 
working in groups, collaborative learning could provide opportunities for students deep learning 
through high quality social interactions (Visschers-Pleijers et al 2006). Effective collaboration can be 
achieved by student autonomy and self-regulatory behaviour while working on a complex task with 
other students which leads to something new and original (Scager et al 2016). Students learn more by 
discussing and sharing their knowledge with their peers. 

Within the group, students improve/practice their oral communication skills with discussions 
amongst themselves to clarify research questions and with further discussions to identify appropriate 
analyses of the data. Third year students also had to do a group oral presentation of their results after 
completion of the project. Throughout the semester, the team dynamics could add extra workload for 
students as noted by a student “Main challenge was that working as a team effectively took more work” 
but teamwork also enables them to improve their negotiation, problem solving and time-management 
skills. Evaluation of the third-year unit showed that 100% of the students who responded to the survey 
either agreed (50%) or strongly agreed (50%) that they developed ability to work as a team member. 
Students also commented that “Being in a group kept it engaging as it put more pressure on me to work 
hard as my efforts not only effected myself but my group and clients as well.” On a 6-point Likert scale, 
the average for I can apply my knowledge in a way that helps to solve 'real-life' problems increased from 
4.3 (std = 1.2) before the group project work to 5.5 (std = 0.5) after the group project work. 

Pedagogically, well-designed group project work cannot be achieved by bringing together 
individual work such as solving a number of questions in an adhoc manner. It requires continuous 
engagement, discussions and collaborations among students to complete the work. Such assessments 
usually have a heavy workload, both for students and the academics. However, they provide 
opportunities for students to develop most needed skills in their professions and for academics to mentor 
their students throughout the learning journey. 

While group projects remove the angst of students finding a supervisor and an individual 
project, some students felt deprived of missing out on the one on one experience of working on an 
individual project and being mentored by an academic. Frustration at some group members not pulling 
their weight was communicated privately to the lecturer(s) by some students. In the third- year unit, use 
of peer and self-evaluation of contributions gave students the confidence that free- loaders will be 
identified and the group project mark will reflect their (less than desired) contributions. Although, co-
ordination of peers in the group to prepare a coherent report was challenging for the students, it helped 
(at least some of) them to develop their leadership skills. 

Our experience is that group projects have a place in the final year of a degree, be it 
undergraduate or postgraduate coursework, by providing lecturers with an assessment tool to assess 
whether students have consolidated their learning and opportunities for students to practice their 
statistical skills in a safe environment before moving to the real world of industry. Our students were 
fully engaged in weekly (zoom) discussions, this was noticed and commented on favourably by a peer 
reviewer of one of the lecturers. Students learnt how to collaborate and produce a substantial piece of 
written work that was coherent just like many will have to do in a workplace. Additionally, the 
experiences gained through the group project work could be used as a case study by the students in their 
job application(s) to show how they were able to work both collaboratively and independently in a group 
as an effective team member. 

Carefully designed rubrics enabled the lecturers to communicate expectations from the 
beginning which was noticed by the students “… the assessment criteria and grading standards very 
clear…” The rubrics were instrumental marking the projects consistently and saved marking time. 
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Student retention plays a significant role in higher education. The primary focus of the current 
discourse on attrition is on efforts made at the institutional level. Given that the main driver of attrition 
is a lack of student engagement and support, we argue that shifting the focus to individual units of study 
will improve completion rates more sustainably. In this paper, we introduce a case study of using 
personalised emails to improve completion rate in a core statistical unit that is part of a graduate 
programme.  We sent personalised emails to students who were at risk of failing in order to nudge them 
towards putting more effort and achieving better academic performance. These emails are customised 
based on in-semester workshop attendance and assessment performance results. We then analysed 
student performance and engagement in learning before and after the interventions. We have also 
captured emotional sentiments from student replies. Preliminary findings suggest that prompting 
students to alter their learning behaviour early in the semester is a more effective preventive strategy 
for improving completion rates. 
 
Key words: student retention; attrition; personalised emails; nudge; learning behaviour; completion 
rates 
 
1 INTRODUCTION 

Attrition is an increasingly important problem faced by Universities around the world. It refers 
to “the proportion of students in a particular year who neither graduate nor continue studying at the 
same institution in the following year” (Grebennikov & Shah, 2012). Data shows that one in ten students 
drop out of their course within the first year of enrolment (OECD, 2019). In Australia, four-year 
completion rates for commencing domestic bachelor students between 2005 and 2019 is a mere 44.5% 
on average (Department of Education & Employment, 2019). Various factors drive attrition. A critical 
factor frequently identified is the lack of engagement (Tinto, 2003).  As a result, Universities are paying 
greater attention to addressing the need to enhance the successful completion of degree programs 
(Damgaard & Nielsen, 2018). In fact, the rate of successful completion is often used as an indicator of 
students’ success and higher rates of satisfactory learning outcomes, thereby indicating a “healthy 
higher education system” (TEQSA, 2020).  

The need to improve completion rates requires the early identification of those at risk of non-
completion (TEQSA, 2020). This raises the need to prompt students to make decisions that promote 
better learning behaviours. One of the strategies that allow for better decision-making is nudging. 
Nudging is a scientific concept originating from behavioural science and economics. It was popularised 
by Thaler and Sunstein in 2008 in their book titled “Nudge: Improving decisions about health, wealth, 
and happiness” (Thaler & Sunstein, 2008). Nudging in education is a relatively new concept. It is based 
on the notion that indirect reinforcements can prompt students to make better decisions on their learning 
more than direct instruction. The techniques used in nudging can vary substantially. It is more widely 
applied at the school level. In cases where it involves young students, it is usually aimed at their parents 
in the form of text message reminders about literacy activities at home (York, et al., 2019) or weekly 
messages on students’ performance (Kraft & Rogers, 2015). Nudging has also been widely used at the 
institutional level to encourage applications for federal student aid (Page, et al., 2020) or to motivate 
first year-students at risk (Corrigan, et al., 2015). However, there is also evidence that, if not carefully 
implemented, nudging can have adverse effects on those at risk (Carroll, et al., 2009); (Damgaard & 
Gravert, 2018); (Handel, 2013); (Rogers & Feller, 2016). Therefore, we argue that more research is 
essential to optimise the benefits of nudging in individual classrooms. 

Given the short duration of individual semesters in a degree program, there is a need for an in-
depth analysis of the effects of nudging in individual units of study. Adopting optimal intervention 
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strategies in order to encourage positive learning behaviours can be better realised if we have a clear 
understanding of how nudging can be implemented in individual classrooms where students encounter 
different content being presented based on varying use of pedagogy, technology and space. The 
challenge of promoting positive learning behaviour is exacerbated by the complexity of varying levels 
of literacy and numeracy amongst students (Tishkovskaya & Lancaster, 2012). Ultimately, students feel 
disengaged and this adversely affects their learning outcomes.  

There is a need to use customised nudges aimed at specific groups of students at risk within a 
single unit as universal nudges can have very heterogeneous effects (Allcott, 2011).. This paper 
contributes to the existing literature by providing an exploratory analysis of learning behaviour changes 
as a result of nudging within a single unit. We implemented nudging via a personalised communication 
system that allows educators to provide targeted and personalised feedback to at-risk students.   In the 
next section of this paper, we describe the data collection and methodology used. In section 3 we discuss 
the results and the final section refers to our conclusion.    

 
2 DATA COLLECTION AND METHODOLOGY 

The sample consists of students enrolled in a core introductory Statistics unit offered to non-
specialist graduate students. Most of the students enrolled in this unit have never studied statistics or 
will not be studying any further statistical units. The data collection process started with a review of the 
outline of the assessment design for the unit. There are two major assessments as well as weekly online 
quizzes and workshop participation. The assessment design and timeline of nudges implemented in this 
unit is depicted in Figure 1 below. 

 

 
Figure 1: Assessment design and timeline for nudging 

 
Based on the overall performance, we identified 14% of students were at-risk of failing the unit. 

All of these students were sent a personalised email with recommendations as a form of nudging to 
motivate them to improve their learning behaviour. We used the Student Relationship Engagement 
System (SRES) to send those emails (Liu, et al., 2017). The emails aimed to provide an opportunity for 
at-risk students to reach out to educators to seek help, thereby promoting dialogue between educators 
and students. They act as a nudge for students to improve their learning behaviour through 
recommendations made by educators via targeted feedback and support strategies. By providing 
strategies that navigate students’ decision-making, the lecturer acts as a “choice architect”. According 
to nudge theory, a “choice architect” influences decision-making by “organising context in which 
people make decisions” (Thaler, et al., 2013, p. 428). Depending on when the nudges were 
implemented, we divided at-risk students into two homogenous groups.  
• First Nudge Group: This group consists of students who received the personalised email after 

failing the first major assessment for the semester. They passed the second major assessment. 
• Second Nudge Group: This group consists of students received the personalised email after failing 

the second major assessment. They passed the first major assignment.  
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Based on the groupings above, we further divided students into those who failed and passed the 
final exam for the analysis. It should be noted that only students who read their emails were included 
in our analysis. In general, we found that almost 90% of students who received the emails read them. 
As can be seen from Figure 2, all those who passed the final exam have a greater tendency of reading 
the personalised emails. On the other hand, for those who failed the final exam, there is a higher 
proportion of students who did not read their emails.  

 

  
Figure 2: Proportion of students who read personalised emails sent 

 
When collecting data on learning behaviours, we employed a mixed-method design whereby we 
collected qualitative and quantitative data on academic performance and engagement in weekly in-
semester assessment tasks such as workshop participation and quiz performance, average number of 
logins into an online learning system referred to as MyLab as well as sentiments based on email 
responses received from students. Changes in these indicators are used as warning signals that suggest 
a change in learning behaviours. Data was collected from a sample of 28 students from the First Nudge 
Group and 43 students from the Second Nudge Group. The results of the analysis are discussed in the 
following section.  
 
3 DATA ANALYSIS AND RESULTS  

In general, students who received the first nudge performed better in the exam, as evidenced in 
Figure 3. The results show that students from the first nudge group achieved a higher average final 
exam mark. The results show that while 78% of those who received the first nudge passed, only 42% 
of those who received the second nudge passed the final exam.  In order to investigate if a similar 
difference of performance and participation was present within the in-semester assessments and 
activities, we looked at various indicators of learning behaviours as discussed in the following sub-
sections.  

 
3.1 Weekly Workshops and Quizzes  

The first aspect of behaviour we looked at is weekly workshop participation and quiz 
performance. After receiving a nudge, those who failed either of the two major assessments but 
ultimately passed the final exam on average participated in more workshops after the nudge. Although 
there is also an improvement in participation for those who failed the final exam, this improvement is 
very small. As for weekly quiz performance after the nudge, it was found that there was an improvement 
in the performance of those nudged earlier in the semester, regardless of whether they passed or failed 
the final exam. Nudging late in the semester is either not beneficial or results in a weaker performance.  
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Grouping  Final Exam Performance  
Change in Average Mark  

Workshops Quizzes 

First Nudge  
Passed  4.9% 10.7% 
Failed 1.4% 10.4% 

Second Nudge 
Passed  4.9% 1.0% 
Failed 1.2% -0.2% 

Figure 3: Change in Average Workshop Participation and Quiz Marks  
 

3.2 Moodle Logins for MyLab  
The second aspect of behaviour we looked at is participation in an LMS platform referred to as 

MyLab. Participation in this platform is not compulsory, and the activities do not contribute to the 
overall mark. We compared the average number of logins for the two groups based on their performance 
in the final exam. The results obtained indicate that all students who were nudged spent less time on 
MyLab after the nudge. The highest decline is for those who failed the first major assessment and the 
final exam. For this group, the average number of MyLab logins decreases by 22 percentage points. All 
other groups also reduced their logins to MyLab by four to five percentage points.   

 

 
 

Figure 4: Average Number of MyLab Logins 
 
3.3 Sentiment Analysis from Email Replies 

The third aspect of behaviour we analysed is based on information collected from email responses 
received from students who were nudged. We used a TM package in R to search for negative and 
positive emotions. Overall, we found that there were more positive emotions for both groups that were 
nudged. We also found that those who were nudged earlier in the semester displayed more emotions as 
compared to those who were nudged later in the semester. 

 

In: A. A. Bilgin and S. Budgett (Eds.). Proceedings of the Tenth Australian Conference on Teaching Statistics, July 2021 [Virtual] 
 

88



OZCOTS 2021 Contributed Paper (Refereed) Kaur & Tursunalieva 
 

 
     Figure 5: Sentiments of First Nudge and Second Nudge Group   

 
4 CONCLUSION 

As retention becomes increasingly important to Universities and higher education 
policymakers, it is important to understand the role that nudging plays in assisting at-risk students. Our 
research provides feedback on the effects of nudging for those at-risk within a single unit. The results 
provide a preliminary understanding of the differences in learning behaviour across different groups of 
those at-risk, depending on when the nudge is implemented. This is motivated by the fact that optimal 
nudging practices within a single unit can be adapted across multiple units within a study program.    

There are several important points that we can draw from the findings. Firstly, the results 
provide evidence of the effectiveness of early intervention. Research shows that all students at risk, 
regardless of their propensity to succeed or otherwise, will show some indication of improved effort 
(Miguéis, et al., 2018). This is supported in our findings whereby after receiving a nudge, at-risk 
students re-prioritised their learning towards activities that count in their overall marks.  They spent less 
time on MyLab and chose to attend more workshops, thereby indicating re-prioritisation of time spent 
on learning activities.   

Our findings also indicate that nudging is effective if students are given enough time to steer 
their learning behaviour to prepare better for subsequent assessments.  Those who were nudged earlier 
in the semester improved their performance on subsequent weekly assessments more than those who 
were nudged later, regardless of their performance in the final exam. This is evident in the post-nudge 
improvements in weekly quiz performance. This is not surprising from the educational standpoint given 
that early nudging allows those at risk more time to improve, especially since desired learning behaviour 
is often difficult to achieve quickly (Ruggeri, 2018).  

Our results are consistent with most research findings that indicate offering targeted help for a 
specific group of students leads to positive student outcomes (Goh, et al., 2012). Based on the data, 
almost twice as many students who were nudged earlier in the semester passed the final exam. This is 
further supported by the higher proportion of positive emotions displayed by all at-risk students when 
nudged. It shows the desire to succeed in the unit. It would however be unrealistic to expect that all 
those nudged would complete the unit. Daamdard and Nielsen, 2018, argue that there are various 
behavioural barriers that need to be considered such as self-control, cognitive ability and default biases. 
We found that approximately 20% of students who were nudged earlier in the semester, still failed the 
final exam. Although nudging promotes better learning behaviour, as evidenced by their improved quiz 
performance, those who are nudged earlier may also need follow-up support mechanisms to help them 
through a major end-of-semester assessment. This calls for further investigation into the need for a 
follow-up nudge for those who fail a major assessment within the first 6 weeks of the semester, as is 
the case with our Early Nudge Group.  

Within a large group of students across various units, it would be possible to assess the effects 
of nudging on learning behaviour across various disciplines. The results will provide the framework for 
behaviour modification strategies that enable improved learning behaviour in the longer term. This will 
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ultimately improve learning outcomes across all units, thus ensuring higher completion rates. This task 
is planned for future semesters. 
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Many statistics educators are making use of readily available technologies to incorporate interactive 
questioning within more traditional lectures. These recent technologies allow efficient participation for 
large numbers of students in real-time and simultaneously by allowing anonymous or crowd-sourced 
answers, minimising the embarrassment for asking “stupid” questions or giving “wrong” answers. 
Past research has focused on the different modes of questioning (open-ended, multiple choice, 
continuum, visual and short answer); I propose an alternative classification based on the intended 
purpose of the question (knowledge, discussion, participation, self-evaluation and feedback). Through 
better understanding of the purpose of a question, it is possible to improve the phrasing to foster more 
engagement and productive interaction within lecture environments. This work draws primarily on 
experience from a second-year introductory statistics course (Analysis of Biological Data) which is 
taught using a flipped classroom model, with one-hour interactive lectures each week. These question 
development methods have also been applied successfully in more traditional lecture environments for 
large (200+) undergraduate and postgraduate statistics classes. 
 
INTRODUCTION 

Traditional lectures focused on a teacher presenting content to students are gradually being 
replaced by more interactive lectures centred on active learning by students. This shift is aligned with 
strong evidence that active learning is highly effective in undergraduate STEM fields (Freeman et al., 
2014). Additionally, advances in technology have made anonymous responses and instantaneous 
feedback within a lecture environment more convenient and more flexible, facilitating its use. 

Interactive lectures fall broadly into two categories in the current literature: ‘fully interactive’ 
sessions supported by content delivery outside of the classroom (either pre-reading or pre-recorded 
videos), as with the ‘flipped classroom’ model; and by incorporating regular interactivity into more 
standard lectures involving content. Mazur (1997) has been a strong proponent of the former, almost 
exclusively using multiple choice questions and think-pair-share peer learning activities throughout the 
lecture. Abd Rahman & Masuwai (2014) propose the CDEARA (Connect, Deliver, Engage, Apply, 
Reflect, Assess) model which provides a structure for incorporating regular interactivity within a 
standard content-delivery lecture. Both Mazur and Abd Rahman & Masuwai are primarily concerned 
with teaching physics; their structures and methods are readily applied to statistics education. 

Regardless of the model being implemented, the effectiveness of an interactive lecture has been 
strongly linked to the questions that are asked (Larson & Lovelace, 2013). Much previous discussion 
has focused on the format of questions – multiple choice, short answer, continuum, visual, open-ended 
– used in interactive lectures. All of these question formats can be used successfully in different ways. 
For example, multiple choice questions can readily assess impressions, predictions and preconceptions; 
these can then be used for short peer discussions as to why they chose the particular options they selected 
(see e.g. Mazur, 1997). Continuum questions, where students mark a point on a continuous scale (for 
example ‘which is more important to report?’ with a scale from p-values to confidence intervals) can 
lead to fruitful discussions as to why some students value/prefer one aspect over another. Since all 
question formats can form part of an effective interactive lecture, an alternative framework for designing 
questions is proposed: one based on the intended purpose of the question. 

This paper draws primarily on the experiences of the author in a second-year statistics subject 
for students with a biology (no mathematics required) background, Analysis of Biological Data. This 
subject is taught using a ‘flipped classroom’ model, with fully interactive lectures supported by pre-
recorded videos and short quizzes that students complete prior to the interactive lecture. Similar 
question development has been used in other large (200+) statistics classes for undergraduate and 
postgraduate subjects, also taught by the author, but using a CDEARA model.
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QUESTIONS FOR AN INTENDED PURPOSE 
Subtle differences in the ways in which questions are asked can have large impacts as to the 

responses (or non-responses) of students. Most educators are familiar with this, via re-phrasing a 
question if there is no response after a substantial wait-time. Interactive lectures are often more 
dependent on pre-prepared questions, partly due to the difficulty in implementing them within the 
technology during the class itself, and accordingly designing effective questions is more important. For 
a student-centred learning approach, it is proposed that questions need to consider what types of thought, 
behaviour and learning the questions are designed to encourage and reinforce. 

A classification into five main categories is suggested: knowledge, discussion, participation, 
self-evaluation and feedback. These can be defined as follows: 

 
Knowledge questions are designed to identify students understanding of various concepts, 
topics, and threshold concepts. They can also prompt students to consider the relationships 
between concepts in their phrasing. Some examples include: what does the standard error 
measure? What is the platonic world (word cloud response)? Compare and contrast Type I 
error and Power. 
Discussion questions typically do not have a single correct answer and are designed to prompt 
discussion (and deepen understanding) of relevant concepts. For example, what is more 
important? (Continuum response) p-values confidence intervals. 
Participation questions are best used to promote interest or engagement among students. 
These questions are designed to encourage students, particularly those who have not prepared 
for the class, to engage. These can include collecting data (pulse rate, confidence level on a 
Likert scale, lecture location) which is then dynamically incorporated into the lecture, or 
visual questions which do not rely on knowledge (that will then be linked to a concept). Also, 
short multiple-choice quizzes – especially in an anonymous/semi-anonymous competitive 
format – encourage all students to participate. 
Self-evaluation questions encourage students to reflect on their learning and identify areas to 
improve. This can include ratings scales where students rank their ability to understand and 
use notation, or an open-ended question where students nominate which concept they have 
the most difficulty with. 
Feedback questions can provide information to teachers as to student perceptions of the 
classes and also can be linked to common errors on assessment leading to peer discussion on 
common misunderstandings (that is, feedback from teachers to students). Some examples 
could be: what still confuses you about linear models (open-ended)? How could this response 
<example of common error from assessment> be improved? 
 

These question purposes can be considered in conjunction with the revised taxonomy for 
teaching, learning and assessment (Anderson & Krathwohl, 2001), to ask questions which require 
students to remember, understand, apply, analyse, evaluate, and create. To varying extents, these can 
be applied to all five of the question purposes above. 
 
IMPLEMENTING PURPOSEFUL QUESTIONS  

Designing good questions is inevitably an iterative process. Importantly, the ways in which the 
questions are integrated into the lecture can also have a large impact on how effective they are. Barriers 
to participation can undermine otherwise excellent questions, and imperfect questions can still be 
effectively used to promote student discussion and peer learning. 

The use of QR codes, as an efficient way to direct students to the software, enables quick access 
to the questions. In an online environment, posting a link in chat or using features built into the video 
streaming software is also effective. This minimises both the effort required from students, and the start-
up time involved in running an interactive component in an otherwise traditional lecture. Accordingly, 
teaching time can be spent in more productive discussion arising from the activity than in the setup 
itself. 

Participation questions are ideally suited to initial engagement with a new topic or motivating 
an example through collecting some relevant data within the class. In biological statistics subjects, 
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asking students to measure their pulse and answer if their pulse is above/below 75 beats per minute, or 
in an online environment “Are you wearing anything on your feet?” can both give data for discussing 
proportions. Short multiple-choice quizzes in a competitive environment often reward those who answer 
quickly (e.g. Kahoot!, PollEverywhere competitions). These also operate either anonymously or semi-
anonymously (students can select a name; or where only top performers are listed) and students can 
participate with low stakes for selecting incorrect responses, particularly in large cohorts. 

Knowledge questions can effectively be used in many ways. For difficult concepts, a single 
multiple-choice question (with a correct response) can be used to prompt paired/small group discussion 
between peers, if there is a variety of responses. Deliberately ambiguous questions, or questions about 
very fine distinctions can also be used similarly to promote peer learning in a lecture environment 
(especially when used as a think-pair-share exercise). For example, giving a very sparse description of 
a study design, and asking “Is this a random sample?” or an open-ended response question “What is the 
platonic world?”. Also, simpler understanding questions (potentially as part of a poll) can be used to 
gauge students’ knowledge of a topic. Discussion questions are ideally suited to stimulating a small-
group (e.g. breakout rooms, in an online environment) exploration of a particular concept, or the 
relationship and connections between different parts of the course. An interpretation of analysis/results 
given by a biologist could be followed by the question “Is the biologist right? Why/why not?”. These 
can then be drawn together as a whole class discussion, or revisited in assessment tasks. 

Self-evaluation and feedback questions can both be used to check students understanding, 
confidence and engagement with the course; albeit with a different focus. Some self-evaluation and 
feedback questions used effectively previously are “How well do you think you understand/can use 
notation?” or “What still confuses you/do you find difficult about linear models?”. These can also 
provide students with some agency in their learning, if they are invited to supply their own questions as 
part of their feedback (e.g. “What questions do you have about linear models?”). They can also be used 
to glean much-needed information on what is and is not effective for their learning, helping with iterating 
questions (and which topics in particular need more focus) for future cohorts within the same course. 
 
CHALLENGES WITH INTERACTIVE LECTURES 

There are some pervasive challenges with implementing interactive lectures. Commonly cited 
difficulties are perceived student attitudes, academic workload, and the need to cover content (see e.g. 
Borda et al., 2020). There is some research which shows that students frequently perceive interactive 
(peer and or flipped) learning as less effective, in spite of the evidence this is a false perception (see e.g. 
Burke & Fedorek, 2017). Resistance from academics in relation to increased workload is usually 
focused on implementing a flipped classroom model, which can be extremely labour-intensive to 
implement initially. More widespread use of the CDEARA framework can increase interactivity within 
lectures without the workload implications. Finally, the amount of content covered is almost necessarily 
reduced (Borda et al., 2020), however this is counteracted by the fact that students typically retain much 
more knowledge from active learning (Freeman et al., 2014). 

Truly open-ended questions (or if students are invited to ask their own) can also provide 
challenges, in that it is difficult to prepare for such lectures: while some responses can be predicted, 
frequently there will be some which would be best explained in conjunction with some prepared images, 
for example. This can be partially overcome by using the activity in order to contribute to future 
resources or lectures, rather than answering or responding to the responses within the class where the 
student response occurs. 

Perhaps the largest challenge is in learning to develop useful questions, and effective ways in 
which to use them. Team-teaching combined with a community sharing effective strategies is the best 
way to accelerate this process. 

 
EFFECTIVENESS 

The author has used this framework to develop interactive questions and activities for lectures 
in a variety of large statistics subjects, taught using both a flipped learning and CDEARA model, over 
several years. The effectiveness of the questions has anecdotally been observed, through student 
participation rates during interactive lectures, strong positive feedback on student surveys (“interactive 
lecture questions, it boosted my understanding of how to use the statistics”, [response to Tell us one 
thing that is good] “the active interaction and activities in lectures”, “Very enjoyable when having the 
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lesson”), and responses to feedback questions. Currently, research is being conducted to determine 
specifically the most engaging and beneficial aspects of Analysis of Biological Data, the primary subject 
discussed. This concrete data on engagement, as measured by both behaviour and self-reporting on 
cognitive engagement, will help to elicit whether these positive anecdotes are grounded in genuine 
results. 
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Teaching Statistics for international students pursuing a bachelor’s degree in Business and MBA from 
New Zealand through a private institute in Auckland is a challenging experience for a statistician with 
40 years’ experience in teaching applied statistics in business degrees. 
 
Teaching statistics to adult students with no background in statistics and mathematics in a limited time 
is difficult. This is especially the case when students have to apply and interpret statistical outputs to 
make real life decisions. 
 
This oral presentation will discuss the teaching and learning challenges regarding the above. It will 
further elaborate the strategies that have been used to assist the learners understand the statistical 
concepts and interpretation of statistical outputs within the 15 hours teaching. 
The presentation will cover the author’s experience from 1998 to present. This period will be divided 
into two stages; developing statistical courses, teaching the courses to undergraduate and postgraduate 
students. 
 
Solving statistical problems using Excel and other software is easy for MBA students but the challenge 
for them is to interpret the output and make decision accordingly. 
 
In conclusion, most international students doing MBA degrees become very anxious using statistical 
application in real life. 
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