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Abstract

Learner Control, Expertise, and Self-Regulation:

Implications for Web-Based Statistics Tutorials

by

Amanda T. Saw

Claremont Graduate University: 2011

Many statistics students have only a rudimentary understanding of 

distributions and variability, fundamental concepts in statistical inference. 

Computer-based instruction can improve understanding, but its effectiveness may 

vary due to interactions between instructional features and learner characteristics 

such as domain expertise and self-regulated learning ability (planning, 

monitoring, and evaluating one’s own learning).  Especially in computer-based 

instruction, learning can depend upon the learner’s control over instructional 

processes.

The current study manipulated levels of learner control over exposure to 

feedback and supplementary questions in a Web-based tutorial on standard 

deviation.  The study examined how learner control and learning are related to 

domain expertise, self-regulation of learning, self-efficacy (belief that one will 

succeed on the tutorial), and task value (importance of learning about standard 

deviation).

 Although the tutorial significantly improved understanding of standard 

deviation for all learners, t(200) = 6.75, p < .001, d = .42, experts (who had 



completed one or more statistics courses) benefited more from learner control 

than did novices (who had not completed their first statistics course).  In contrast, 

novices benefited from greater control exercised by the program and suffered 

from greater learner control, as reflected by impaired learning and increases in 

reported frustration and difficulty with the tutorial.  Experts, who experienced less 

cognitive load overall, learned equally well with either level of control.

However, the prediction that program control would be more beneficial for 

low self-regulating learners than high self-regulating learners was not supported. 

Self-regulation of learning, self-efficacy, and task value (all self-reported) were 

positively and significantly associated with learning; however, when expertise 

was statistically controlled, these predictors were no longer significant.  Perceived 

cognitive load was negatively associated with learning.

Supporting Cognitive Load Theory, these results have implications for the 

design of computer-based instruction.  Learner expertise must be considered so 

that cognitive load can be managed via instructional control that enables learners 

to focus on essential material and make connections with prior knowledge.  A 

high level of learner control that allows experienced learners to exercise efficient 

learning, may be detrimental to novices, who possess limited domain expertise 

and may not effectively self-regulate their learning.
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Chapter 1: Introduction

A large body of statistical education research shows that students often 

have fundamental misconceptions about inferential statistical concepts, even after 

completing relevant statistical exercises and activities.  These conceptual 

weaknesses include difficulty specifying null and alternative hypotheses 

(Aquilonius, 2005); poor understanding of the fundamental concepts of 

randomness and sampling (Kahneman, Slovic, & Tversky, 1982); failure to 

consider the role of sample size in interpreting statistical findings, such as how 

sample size affects the sampling distribution (Well, Pollatsek, & Boyce, 1990); 

failure to differentiate between the population, sample, and sampling distributions 

(Saldanha & Thompson, 2003); and erroneous reasoning and interpretations 

regarding p-values (Lane-Getaz, 2007; Saw, Berger, Mary, & Sosa, 2009; Sosa, 

Berger, Saw, & Mary,  2009).  These related conceptual weaknesses may be due 

to an incomplete understanding of distributions and variability that form the basis 

for comprehending inferential statistics and more advanced statistical topics. 

Incomplete knowledge of fundamental concepts may prevent effective learning of 

more advanced topics.

Learning can be conceptualized as a change in long-term memory due to 

the integration of new schemata with existing knowledge (e.g., Kirschner, 

Sweller, & Clark, 2006).  Consistent with this cognitive perspective, a 

constructivist framework of learning emphasizes the role of prior knowledge in 

acquiring new information and the role of the learner as an active participant 
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seeking knowledge (Bransford, Brown, & Cocking, 1999).  A constructivist 

approach, in which the learner actively builds new knowledge upon prior 

knowledge, has been advocated by many researchers specifically in the teaching 

of statistics (e.g., Franklin & Garfield, 2006; Garfield & Ahlgren, 1988; Lovett & 

Greenhouse, 2000; Mills, 2002; Romero, Berger, Healy, & Aberson, 2000).  Using 

such a framework, active learners are expected to interact with the learning 

environment and select tasks or activities that may develop their understanding of 

concepts, emphasizing the need to self-regulate their learning processes and to 

manage cognitive load (dedicating cognitive resources to certain subtasks), 

especially when using computer-based instruction (Kostons, Van Gog, & Paas, 

2009; Kostons, Van Gog, & Paas, 2010; Scheiter & Gerjets, 2007).  

In computer-based instruction, the benefits of giving the learner control 

over which tasks to do, including pacing and sequencing, may be moderated by 

the learner characteristics, including their prior knowledge and ability to self-

regulate their learning (Gerjets et al., 2009; Lunts, 2002; Vovides, Sanchez-

Alonso, Mitropoulou, & Nickmans, 2007).  Having too much control over 

learning processes may impair learning for learners who cannot effectively self-

regulate their learning or who possess a limited amount of prior knowledge or 

expertise in a particular domain.  Motivation, such as self-efficacy (i.e., the belief 

that one will succeed on a certain task), is another important factor in learning, a 

concept intricately related to self-regulation of learning (Artino, 2008; 

Zimmerman, 2000).
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In addition to prior knowledge, learning abilities, and motivation, general 

human cognitive architecture must also be considered when designing instruction 

(Kirschner et al., 2006).  One such aspect is the limited amount of cognitive 

resources an individual has available to process and integrate information in 

working memory.  When cognitive resources are overburdened, the learner 

experiences cognitive overload, and learning is disrupted (Moreno & Mayer, 

2007).  

Active or discovery learning, which is central to some constructivist 

paradigms, may cause learners to be overwhelmed by information, leaving them 

unable to integrate information efficiently (van Merriënboer & Sweller, 2005) or 

to select subsequent learning activities that enhance their understanding (Kostons 

et al., 2009).  Mayer (2004) reviewed three decades of discovery learning research 

from the 1960s to the 1980s in the domains of problem solving, Piagetian 

conservation strategies, and computer programming.  He concluded that while 

there is merit in constructivist approaches, pure discovery learning, in particular, 

has proved to be less effective than guided discovery.

Guided instruction can make use of advance organizers, which are defined 

as “appropriately relevant and inclusive introductory materials” that are 

“presented at a higher level of abstraction, generality, and inclusiveness” than the 

target passage (Ausubel, 1968, p. 148).  An advance organizer serves “to provide 

ideational scaffolding for the stable incorporation and retention of the more 

detailed and differentiated material that follows” (Ausubel, 1968, p. 148).  An 
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overview of topics to be learned, or a set of learning goals, could also serve as an 

advance organizer designed to enhance learning.  Beneficial effects of advance 

organizers were first reported by Ausubel (1960) in a study of students’ 

understanding of an unfamiliar topic, metallurgy.  Students who were presented 

with an advance organizer performed significantly better on post-tests and 

retention tests than those presented with a historical background.

Initial reviews of advance organizers concluded that they are ineffective 

(Barnes & Clawson, 1975) or questioned their theoretical and practical usefulness 

(Hartley & Davies, 1976).  However, subsequent meta-analyses and reviews 

(Ausubel, 1978; Luiten, Ames, & Ackerson, 1980; Mayer, 1979a; Mayer, 1979b; 

Stone, 1983) have reported overall positive learning effects of advance organizers. 

Several of these subsequent reviews also challenged the logic of the initial 

negative reviews that discounted the utility of advance organizers without 

considering other factors.  For instance, Barnes and Clawson (1975) failed to 

separate conditions where advance organizers are effective from those where they 

are ineffective (Mayer, 1979a).  The effectiveness of advance organizers may 

depend upon the ability and knowledge of learners.  Luiten et al. (1980) 

concluded that advance organizers are particularly effective with high-ability 

learners, whereas Mayer (1979b) suggested that advance organizers were more 

helpful to low-knowledge learners.  This debate concerning the efficacy of 

advance organizers parallels the debate concerning other instructional features 

such as how much control a learner should have over their learning.
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In fact, several lines of research, including statistics education research, 

have demonstrated that while scaffolding (i.e., instructional supports) beyond 

advance organizers and guided instruction in general may enhance learning, the 

effectiveness of scaffolds may be affected by various learner characteristics. 

These characteristics include the learner’s prior knowledge (Lipson, Kokonis, & 

Francis 2003) and how well individuals self-regulate their own learning process 

(Moos & Azevedo, 2008b).  Especially in a hypermedia instructional setting, the 

learner’s ability to self-regulate their learning impacts how well they process and 

retain the material (Azevedo & Hadwin, 2005; Chen, Fan, & Macredie, 2006). 

Winters, Greene, and Costich (2008) identified 33 computer-based learning 

environment studies that explicitly cited self-regulated learning as a key construct.  

However, nearly a third of these studies did not report any objective measure of 

learning.  In addition, self-efficacy, which is the belief that one will successfully 

perform a task, can also impact the learning process (Zimmerman, 2000).  It is 

crucial to relate learning outcomes to both cognitive and motivational processes 

(Pintrich, 1999).  The current study examined the effects of prior knowledge, self-

efficacy, self-regulation of learning strategies, cognitive load, and learner control 

on a Web-based tutorial about variability (in the context of standard deviation).

1.1 Effectiveness of Technology in Teaching Statistical Variability

Although several meta-analyses have demonstrated that instructional 

technology contributes to better learning in general educational domains (Kulik & 

Kulik, 1991; Kulik & Kulik, 1986; Kulik, Kulik, & Cohen, 1980) and in statistics 
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education (Hsu, 2003; Schenker, 2007; Sosa, Berger, Saw, & Mary, 2011), the 

evidence is mixed regarding the effects of technology on comprehension and 

mastery of the specific topics of distributions and statistical variability.  In fact,  

some applications of technology can introduce new misconceptions.  For instance, 

when using software that simulated the statistical technique of repeated sampling, 

some students erroneously concluded that multiple samples are needed for 

conducting inferential statistics (Hodgson & Burke, 2000).

Other studies have revealed that students have many misconceptions of 

basic statistical concepts even after using educational technological resources 

designed to correct them.  For example, deficiencies in understanding concepts 

such as the Central Limit Theorem and the sampling distribution of the mean 

persisted even after using a computer program that simulated sampling to 

illustrate the effect of sample size on sampling variability (Well, Pollatsek, & 

Boyce, 1990).  After using another similar program, students still found it difficult 

to differentiate between the sample, population, and sampling distributions 

(Saldanha & Thompson, 2003).  However, students’ understanding of the 

sampling distribution after attending a traditional lecture on the topic was found 

by Aberson et al. (2000) to be no better than after using a Web-based tutorial.

Lipson et al. (2003) demonstrated the importance of highlighting key 

features in a computer simulation to facilitate learning.  They tracked the 

development of eight students’ statistical reasoning as the students completed a 

dynamic simulation software program to explore sampling distributions.  In the 
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simulation activity, the students assessed the veracity of a postal carrier’s claim 

that at least 96% of letters were delivered on time, which conflicted with a 

journalist’s finding that 88% of letters were delivered on time in his sample.  Only 

after repeated use of the simulation program, did the students gradually recognize 

different aspects of the simulation display and distinguish between samples and 

sampling distributions of means.  Initially they favored practical or motivational 

explanations (e.g., the journalist did something incorrectly), rather than statistical  

explanations for simulation outcomes, demonstrating the role of prior knowledge. 

Only when probed by the interviewer, did students offer statistical explanations.

Further highlighting the importance of prior knowledge in learning 

statistics, Chance, delMas, and Garfield (2004) identified four concepts that are 

prerequisites to understanding sampling distributions, based upon conceptual 

analyses of classroom observations, colleagues’ contributions, and performance 

on items assessing statistical comprehension.  These concepts are variability, 

distribution, normal distribution, and sampling (see Table 1.1).  An implication is 

that learners of the sampling distributions should understand how observations 

vary and be able to describe and compare distributions, interpret graphs, and 

distinguish between samples and population.  Chance et al. noted that as she and 

her colleagues continued to conduct statistics education research, they found that 

they needed to explore students’ understanding of even more basic concepts (e.g., 

distributions and variability) than those being empirically examined (e.g., 

sampling distributions).
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Because students find it difficult to differentiate between population and 

sampling distributions (Saldanha & Thompson, 2003), a sampling simulation 

program such as by Lane and Tang (2000) may be beneficial in helping students 

untangle these concepts.  The Lane and Tang program (found online at: 

http://onlinestatbook.com/stat_sim/) graphically displays three separate 

histograms showing the population distribution, individual scores from a

Table 1.1

Prerequisite Knowledge to Learning about Sampling Distributions (from Chance, 
delMas, & Garfield, 2004, p. 300).

Concepts Description

Variability What is a variable?  What does it mean to say observations 
vary?  Students need an understanding of the spread of a 
distribution in contrast to common misconceptions of 
smoothness or variety. 

Distributions Students should be able to read and interpret graphical 
displays of quantitative data and describe the overall pattern of 
variation.  This includes being able to describe distributions of 
data; characterizing their shape, center, and spread; and being 
able to compare different distributions on these characteristics. 
Students should be able to see between the data and describe 
the overall shape of the distribution, and be familiar with 
common shapes of distributions, such as normal, skewed, 
uniform, and bimodal. 

Normal 
distribution

This includes properties of the normal distribution and how a 
normal distribution may look different due to changes in 
variability and center.  Students should also be familiar with 
the idea of area under a density curve and how the area 
represents the likelihood of outcomes

Sampling This includes random samples and how they are representative 
of the population.  Students should be comfortable 
distinguishing between a sample statistic and a population 
parameter.  Students should have begun considering or be able 
to consider how sample statistics vary from sample to sample 
but follow a predictable pattern. 
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sample, and the resulting distribution of sample means from repeated sampling. 

Lane and Tang tested the instructional effectiveness of the simulation program in 

a 30-minute demonstration led by an experimenter, which contrasted sampling 

distributions of the mean obtained from sampling two different sample sizes. 

Compared to students who read a text description of this sampling process, 

students who viewed the simulation did significantly better on problem solving 

items regarding sampling.  Prompting students beforehand with “specific” 

questions about the sampling simulation outcomes—rather than general questions

— demonstrated a trend for improved learning (although this difference was not 

statistically significant, p = .061), which suggests the utility of guided instruction 

and advance organizers.  Although motivation was not explicitly measured, Lane 

and Tang observed that the students viewing the simulation appeared more 

engaged during the training.

Learning about standard deviations encompasses examining both 

variability and distributions.  DelMas and Liu (2003; 2005; 2007) examined 

students’ conceptual understanding of standard deviation using an interactive 

game-like computer program, in which students manipulated bars of observations 

(i.e., observations of the same value) in a histogram to understand how these 

changes impact standard deviation.  In five games progressing from histograms 

with two bars to five bars of equal or unequal frequency, the students individually 

had to manipulate the configuration of bars to produce two different 

configurations of the largest standard deviation possible and three different 
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configurations of the smallest standard deviation possible (see Figure 1.1 for 

possible solutions to a four-bar histogram, illustrating largest and smallest 

standard deviations).  For each game, the student therefore produced five different 

configurations (for a total of 25 configurations), and verbally justified each of 

their answers to an interviewer.  The program illustrated a mean-centered 

conception of standard deviation by highlighting the sample mean and how much 

each observation deviated from the mean.  It also demonstrated how the shape of 

the distribution (e.g., bell-shaped vs. U-shaped) and its range impacted standard 

deviation. 

By the end of this one-hour training, all 12 students seemed to understand 

that a mirror image of the configuration of bars produced the same standard 

deviation and that the relative position of bars to the sample mean, not the

Figure 1.1.  Item illustrating possible solutions for largest and smallest standard 

deviation for a four-bar histogram (from delMas & Liu, 2003).
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absolute position on the histogram scale, determined the standard deviation 

(delMas & Liu, 2007).  However, the justifications the students provided for why 

the standard deviation was larger or smaller were not always completely 

comprehensive (e.g., the standard deviation is smaller when the bars are 

contiguous or when the sample mean is in the middle of configuration of bars) or 

plainly wrong (e.g., a bigger sample means a larger standard deviation). 

Sometimes students neglected to mention the role of the mean in defining 

standard deviation, and relied on explanations such as bars are “spread out” or 

“equally spread out” to justify higher variability.  On the 10-item post-test (on 

which the student identified which histogram of two had the greater standard 

deviation, see Figure 1.2), nine students got nine items right and three students got 

seven items right, for an average of 8.5 out of 10 correct.  This exploratory study 

was a post-test-only design, thus precluding a pre-test comparison.

Performance on the post-test items reveals that the students did not always 

integrate information about shape and spread to make judgments about standard 

deviation (delMas & Liu, 2005).  Test items 5, 7, and 9 (see Figure 1.2) tested 

students’ knowledge of how gaps in the distribution affected standard deviation. 

While all 12 students answered items 7 and 9 correctly, two students overlooked 

the gaps in item 5 and responded that the distributions had equal standard 

deviations, indicating an over-reliance on the shape of the distribution rather than 

spread.  Test items 8 and 10 challenged the notion that symmetric, bell-shaped
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Figure 1.2.  Test items assessing understanding of standard deviation (from 

delMas & Liu, 2005).  Sample means were shown while standard deviations were 

not shown.
12



distributions have smaller standard deviations than non-bell-shaped distributions. 

Test item 8 was the most difficult item; only one student answered it correctly. 

Nine students correctly answered item 10, primarily through calculations. 

Students received verbal feedback from an interviewer on each of their responses 

as they completed the post-test.  The one student who correctly answered item 8 

and thus did not receive guidance on looking beyond the shape of the distribution, 

as did the other nine students, was the only one who answered item 10 incorrectly. 

This highlights both the importance of feedback to correct possible 

misconceptions as well as the possibility that a student may not have valid 

conceptual knowledge despite doing well on an assessment item.

1.2 Scaffolding and Learner Control

The studies on statistics education reviewed here suggest the need for 

guided and structured activities for effective learning through the use of 

“scaffolding.”  Scaffolding is support given to learning in the initial phases by a 

more knowledgeable other who operates within the learner’s “zone of proximal 

development” to build upon knowledge (Vygotsky, 1978), but once mastery is 

achieved, this support is “faded” out (Lajoie, 2005).  In this way, scaffolding can 

be thought of as bridging prior knowledge and new knowledge.  In computer-

based instruction, scaffolding comes in a variety of forms, including corrective 

feedback and prompts to learners, when appropriate, to produce explanations to 

facilitate their understanding of a concept.  Scaffolding can also provide structure 

and emphasis to relevant information in a complex learning situation and thus 
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reduce cognitive load by focusing the learner’s cognitive resources on the most 

relevant aspects of a task (Kirschner et al., 2006).  Prior knowledge becomes even 

more important when the learning environment is self-regulated, such as in a 

Web-based tutorial (Lajoie, 2005; Shapiro & Niederhauser, 2004).  

Effective use of scaffolds is dependent upon accurate and frequent 

assessment of the learner’s understanding as the learning process progresses. 

Assessing new knowledge on an ongoing basis is known as dynamic assessment. 

Dynamic assessment provides information needed for the instructional program to 

give appropriate feedback, explanations, and prompts, as well as structure the 

sequencing of learning activities.  Lajoie (2005) described this process as follows:

Dynamic assessment implies that human or computer tutors can 
evaluate transitions in knowledge representations and performance 
while learners are in the process of solving problems, rather than 
after they have completed a problem.  Immediate feedback in the 
form of scaffolding can then be provided to learners during 
problem solving, when and where they need assistance.  The 
purpose of assessment in these situations is to improve learning in 
the context of problem solving, while the task is carried out. (p. 
545)

Using such an approach, a computer-based tutorial would provide guided 

instruction and feedback tailored to a learner’s knowledge and misconceptions.

However, the usefulness of dynamic assessment depends upon the 

learner’s ability to use the information presented by the feedback, which can be 

moderated by learner’s characteristics including their prior knowledge, accurate 

assessment of what constitutes good performance, and the ability to process self-

assessment information in addition to the content to be learned (Kostons et al., 
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2010).  The ability to use feedback to select appropriate subsequent learning tasks 

to enhance learning is one aspect of the learner’s ability to self-regulate their  

learning processes (Kostons et al., 2009).

One way to support computer-based learning is to limit how much control 

the learner has over learning processes in favor of program (or computer) control. 

For instance, learners using program-control instruction may be required to 

complete integrative, review questions before proceeding.  In contrast, learners 

using learner-control instruction could choose whether to use or to skip these 

tasks.  Learner control has at least three dimensions: controlling the order 

(sequencing) of information, selecting content to access, and pacing how fast the 

material is presented (Lunts, 2002; Milheim & Martin, 1991; Scheiter & Gerjets, 

2007).  Giving the learner more control can lead to more positive attitudes 

regarding the instructional program (Burke, Etnier, & Sullivan, 1998; Hannafin & 

Sullivan, 1995).  Yet the effectiveness of learner control also depends upon the 

learner’s self-regulation abilities (Vovides et al., 2007).  In the absence of 

guidance from a computer program, the learner must depend upon self-evaluation 

to monitor their own performance and to make decisions regarding learning 

activities and feedback.  At the same time, computer-based instruction can 

enhance self-regulation of learning by providing the cognitive tools to support 

self-monitoring (Lajoie, 2008).

Besides distinguishing between interactivity and learner control, Scheiter 

and Gerjets (2007) also made a distinction between multimedia and hypermedia 
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learning.  Hypermedia learning involves the use of hyptertext that links to other 

informational screens, and may include multimedia presentations.  Unlike 

multimedia learning, which tends to be system-controlled and linear, hypermedia 

learning is more interactive and requires more user response/input.  Although both 

deal with how users may manipulate how content information is represented, 

interactivity is not as multi-dimensional as learner control; interactivity usually 

refers to instances of manipulating single instances of representations.  In 

contrast, learner control, which characterizes most hypermedia environments, 

reflects a broader perspective on how the learner interacts with the learning 

environment, including how information is represented and sequenced and which 

activities are selected and pursued.  Thus, effective hypermedia learning may 

require more self-regulated learning processes from the user.  Scheiter and Gerjets 

(2007) cited several reasons why hypermedia may be effective:

1. Like the mind, hypermedia/hypertext reflects nodes and the 

interconnected structure of information.

2. Hypermedia promotes motivation and interest (self-efficacy).

3. Interactivity is adaptive and subject to learner control to fit learner’s 

needs, including prior knowledge.

4. Hypermedia instruction forces learners to constantly evaluate their 

learning goals and processes.

5. Hypermedia instruction facilitates deeper processing of information 

and self-regulation of learning.
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On the other hand, there are potential problems with hypermedia learning, 

including disorientation with where one is in the learning process (Chen et al., 

2006) and cognitive overload (Gerjets et al., 2009).  In its infancy, compared to 

non-hypertext instruction, hypertext instruction has been shown to have a medium 

effect in promoting learning (Chen & Rada, 1996).  In addition, early hypermedia 

instruction has been shown to be most effective for learning that is drill-and-

practice instruction, and learner control may be most beneficial for high-ability 

learners (Dillon & Gabbard, 1998).  However, a limitation of the early studies that 

evaluated hypermedia learning is that they usually had small sample sizes and 

confounded variables in their experimental manipulations (Scheiter & Gerjets, 

2007).

Learner control can be further broken down into full vs. lean versions of 

computer-based learning programs, as it was in Hannafin and Sullivan’s (1995) 

study of geometry students using a computer-based mathematics program.  In the 

full version, learners were given the complete set of instructional content that was 

given to the program-control group, but with the option of bypassing or 

“skipping” sections of instruction.  In the lean version, learners could optionally 

choose to do these same sections, reframed as being “supplemental.”  Using a 2 

(version: full vs. lean) x 2 (instructional control: program vs. learner) design, 

Hannafin and Sullivan compared these two versions of learner-control instruction 

to comparable versions of program-control instruction.  The program-control full 

version contained basic information along with examples, practice problems, and 
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review; program-control lean version contained the same basic information but no 

examples, practice problems, or review.  The learner-control versions contained 

the same basic information as the program-control version, but students could 

either skip (full version) or supplement instruction with (lean version) the optional 

examples, practice problems, and review.  

Students using the learner-control versions reported liking the program 

more than those using the program-control versions (Hannafin & Sullivan, 1995). 

Furthermore, students using the full versions reported liking the option to skip 

instructional sections more than those using the lean versions reported liking the 

option to do supplemental sections.  More importantly, students using the learner-

control versions scored significantly higher on a 30-item post-test (M = 14.97) 

than those in the program-control condition (M = 13.69).  The interaction between 

instructional control and version was not significant.

1.3 Prior Knowledge and Cognitive Load

A novice may not know what features of a presentation to attend to when 

using a computer program, therefore hampering the learning process (Lipson et 

al., 2003).  Thus, it may be especially helpful to orient users to relevant features 

before the main learning activity.  In particular, pre-instructional activities can 

improve the effectiveness of computer-instruction.  For instance, not so different 

from advance organizers, pretraining is prior instruction that introduces the 

components in the system that is the focus of instruction.  Pretraining is based on 

the assumption that activation of relevant prior knowledge before instruction 
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helps to focus cognitive resources and to integrate new knowledge (Mayer & 

Moreno, 2003; Moreno & Mayer, 2007).  In a variant of pretraining, delMas, 

Garfield and Chance (1999) demonstrated that having students make predictions 

and then test their predictions using simulation software can benefit learning. 

Furthermore, this method was most effective when students were required to 

confront their misconceptions.  Pre-instructional activities may also involve the 

use of advance organizers that are short text passages that help connect prior 

knowledge with incoming knowledge (McManus, 2000).

Aside from activating prior knowledge schemata to facilitate the 

integration of new information, these pre-instructional activities may also enhance 

learning by helping learners focus on relevant information, reducing cognitive 

resources allocated to less relevant information.  According to Cognitive Load 

Theory, cognitive load can be classified into three different types: germane, 

intrinsic, and extraneous (Sweller, van Merriënboer, & Paas, 1998).  Germane 

cognitive load is necessary to the construction of schemata and their storage into 

long-term memory, which is essential to learning (van Merriënboer & Sweller, 

2005).  Intrinsic load is determined by the interaction between complexity of the 

learning task and learner’s prior knowledge.  Traditionally, it is assumed that 

intrinsic load cannot be changed for a given learning task.  In contrast to both 

germane and intrinsic load, extraneous load is not related to the learning process 

and actually interferes with schemata acquisition.  Optimal instructional design 

maximizes germane load (by encouraging elaboration of information to facilitate 
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schemata integration) while minimizing extraneous load (Gerjets, Scheiter, & 

Catrambone, 2006; Zumbach, 2006).

Prior knowledge in the form of expertise can influence the effectiveness of 

instructional scaffolding.  In numerous examples of the expertise reversal effect, 

scaffolding has been shown to impair the performance of expert learners who 

have high prior knowledge of a domain (Kalyuga, 2007; Kalyuga et al., 2003). 

Cognitive Load Theory has been used to explain the expertise reversal effect (e.g., 

Kalyuga & Sweller, 2004; Kalyuga & Sweller, 2005; van Merriënboer & Sweller, 

2005).  This explanation is based upon the assumptions that short-term working 

memory is limited, whereas long-term memory is virtually unlimited, and that 

effective use of long-term memory can help overcome the processing limitations 

of working memory.  Domain experts usually have an advantage over novices in 

acquiring new information because experts can more easily organize knowledge 

into chunks of long-term memory schemata that place less demand on working 

memory when integrating new information with prior knowledge.  In contrast, 

novices lack these structures and need to exert more effort in constructing 

schemata, thus experiencing more cognitive load during learning.  Hence novices 

may benefit more from scaffolding that helps build schemata, such as textual 

explanations in diagrams.  However, such scaffolding may not help, or may even 

be detrimental to expert learners because such information is redundant with, or 

possibly organized differently from, what they already know.  Processing the new 

scaffolding to be compatible with existing cognitive structures may actually 
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increase cognitive load and interfere with learning.  Thus, what may be beneficial 

to initial learning may be detrimental to later learning, just as what deters initial  

learning may result in better long-term learning (Schmidt & Bjork, 1992).  This 

distinction between experts and novices highlights the importance of dynamic 

assessment and the need to provide differential instruction for low-knowledge and 

high-knowledge learners.

Further supporting the notion that scaffolds can be detrimental to learning 

under certain circumstances is a study in which 60 undergraduate and graduate 

students learned new Japanese words in a 15-minute lexicon hypertext lesson 

(Tripp & Roby, 1990).  The students’ learning was scaffolded using either an 

advance organizer that described the structure of the lexicon, or with a visual 

metaphor that indicated spatial relations, or both the advance organizer and visual 

metaphor, or neither.  Both scaffolds by themselves provided post-test benefits 

over having no scaffolds at all; however, when both scaffolds were used, students 

did worse than when presented with only one scaffold.  This suggests that having 

too much scaffolding material may interfere with learning by contributing to 

cognitive overload.

Although measuring cognitive load has proved to be challenging, such 

measurement is crucial to understanding and optimizing the learning process. 

Paas, van Merriënboer, and Adam (1994) found that self-reported, subjective 

measures of mental effort were adequate as indicators of cognitive load, whereas 

cardiovascular measures were less reliable and sensitive.  Thus, they concluded 

21



that self-reported mental effort can be used as an index of cognitive load.  One 

example of a cognitive load measure is the NASA Task Load Index (NASA-

TLX), which is a self-reported multi-dimensional measure of workload (Hart & 

Staveland, 1988).  It consists of six subscales: three subscales focus on the 

individual (Mental, Physical, and Temporal Demands) and the other three focus 

on the interaction between the individual and the task (Frustration, Effort, and 

Performance) (see Table 1.2).  Although each of the subscales was originally 

designed to be weighted to compute an overall workload value, a common 

modification has been either to compute an overall score or to use each subscale 

individually (Hart, 2006).

Potential problems with the NASA-TXL scale are that each item is 

multidimensional, and it may be too extensive to administer in some settings, 

including learning tasks that are more cognitive rather than physical in nature. 

The scale was originally developed for aviation use and has been used mostly in 

studies evaluating interface and human factors design (Hart, 2006).  Although it 

has been used in various studies, including flight simulation and other 

visual/motor tasks (Cao et al., 2009), it may not be optimal to be used in 

cognitively-oriented learning studies that involve less physical demands.  More 

specifically, the items are not linked to cognitive load as described by Cognitive 

Load Theory, namely intrinsic, germane, and extraneous load.  
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Table 1.2

Subscales of NASA-TLX Rating Scale (Hart, 2006)

Title Endpoints Description

Mental 
Demand

Low/High How much mental and perceptual activity was 
required (e.g., thinking, deciding, calculating, 
remembering, looking, searching, etc.)?  Was the 
task easy or demanding, simple or complex, 
exacting or forgiving?

Physical 
Demand

Low/High How much physical activity was required (e.g., 
pushing, pulling, turning, controlling, activating, 
etc.)?  Was the task easy or demanding, slow or 
brisk, slack or strenuous, restful or laborious?

Temporal 
Demand

Low/High How much time pressure did you feel due to the 
rate or pace at which the tasks or task elements 
occurred?  Was the pace slow and leisurely or 
rapid and frantic?

Performance Good/Bad How successful do you think you were in 
accomplishing the goals of the task set by the 
experimenter (or yourself)?  How satisfied were 
you with your performance in accomplishing 
these goals?

Effort Low/High How hard did you have to work (mentally and 
physically) to accomplish your level of 
performance?

Frustration 
Level

Low/High How insecure, discouraged, irritated, stressed, 
and annoyed or secure, gratified, content, relaxed, 
and complacent did you feel during the task?

A few researchers have attempted to separate the cognitive load types by 

using different self-reported measures.  For instance, Gerjets et al. (2009) 

examined learner control and hypermedia instruction on probability theory using 
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five measures on a 9-point Likert scale (originally in German) to assess cognitive 

load.  They measured intrinsic cognitive load with one item: “How easy or 

difficult do you consider probability theory at this moment?”  Germane cognitive 

load, critical to integrating new knowledge with existing schemata, was also 

measured by one item: “Indicate on the scale the amount of effort you exerted to 

follow the last example.”  Extraneous cognitive load, which is detrimental to 

learning, was assessed via three items: (1) “How easy or difficult is it for you to 

work with the learning environment?,” (2) “How easy or difficult is it for you to 

distinguish important and unimportant information in the learning environment?,” 

and (3) “How easy or difficult is it for you to collect all the information that you 

need in the learning environment?”  Experiment 1 used six instructional 

conditions varying in information complexity.  However, none of these cognitive 

load measures significantly varied across instructional conditions, undermining 

their validity.  Thus, the cognitive load measures were eliminated in Experiment 2 

which compared a high learner-control program version to the six versions from 

Experiment 1 aggregated.  Experiment 2 results indicated slightly better learning 

with the high learner-control version, but failed to find any interaction between 

learner control and prior knowledge.

In contrast, DeLeeuw and Mayer (2008) found better evidence for distinct 

items measuring intrinsic, extraneous, and germane load in two separate 

experiments using a 6-minute animated multimedia lesson on the electric motor.  

Extraneous load was measured by response times to a secondary task, which 
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varied in redundancy (concurrent animation, narration, and on-screen text took 

longer to process than non-redundant animation and narration only).  Intrinsic 

load, measured by effort ratings (“Please rate your level of mental effort on this 

part of the lesson” on a 9-point Likert scale) at eight different times during the 

task, was most sensitive to manipulations of sentence complexity used in the 

multimedia lesson.  Germane load was assessed with another 9-point self-rating 

on the difficulty of the lesson, and was positively correlated with performance on 

transfer post-test items, reflecting better transfer with higher germane processing. 

These three measures of load were not highly correlated with one another (r’s 

were .12 to .33), further supporting the notion that these load types are distinct. 

However, DeLeeuw and Mayer cautioned that participants in both experiments 

were of low prior knowledge and that higher prior knowledge participants may 

exhibit a different pattern of results; that is, show different relationships between 

these cognitive load measures.  It is noteworthy that the “difficulty” ratings in 

Gerjets et al. (2009) were used to reflect intrinsic load, whereas “effort” ratings 

were used to measure germane load.

1.4 Self-Regulation of Learning and Expertise

In addition to cognitive load and prior knowledge, a learner’s 

metacognitive and self-regulated learning abilities must also be considered when 

designing computer-based instruction.  In fact, several studies have shown that the 

effect of prior knowledge on learning may be mediated by self-regulated learning 

strategies, such that low-knowledge learners, who tend not to self-regulate their 
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learning effectively, may require more support or scaffolding (Azevedo, 2005; 

Chen et al., 2006; Moos & Azevedo, 2008b; Shin, Schallert, & Savenye, 1994; 

Winne, 1996).  Self-regulated learning is a cyclical process in which the learner 

must plan, manage, and control their learning by setting goals and enacting 

strategies to achieve those goals (Moos & Azevedo, 2008b; Puustinen & 

Pulkkinen, 2001; Zimmerman, 2002).  The perspective of self-regulated learning 

has replaced the information processing perspective in learning research, by 

supplementing cognitive factors with motivational, affective, and social factors 

(Pintrich, 2004).

Self-regulating learners can be distinguished by both their use and 

awareness of self-regulation strategies, that is, deliberate and systematic actions 

aiming to gain knowledge (Zimmerman, 1990).  They are proactive and take 

responsibility for their own learning and continuously self-monitor their learning 

processes and self-evaluate their performance.  Self-regulation of learning is a 

multi-faceted construct that involves implementing cognitive and behavioral 

strategies that enhance acquisition of knowledge and skills (Boekaerts, 1999). 

Pintrich (2004) noted that even the five cognitive strategy subscales (rehearsal, 

elaboration, organization, metacognition, and critical thinking) on the Motivated 

Strategies for Learning Questionnaire (MSLQ) do not capture all cognitive 

aspects of self-regulated learning.  Self-regulated learning involves at least three 

different components: (1) cognitive learning strategies, (2) self-regulatory 

strategies to control cognition, and (3) resource management strategies (Pintrich, 
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1999).  Monitoring learning processes and outcomes can be a complicated 

metacognitive activity (Zimmerman, 1990; Winne, 1995).  Thus, self-regulating 

one’s learning can be a cognitively intensive and demanding task.

The learner’s ability to self-regulate their learning process plays a crucial 

role in determining what is learned, especially in non-linear hypermedia or 

multimedia learning (Azevedo & Hadwin, 2005; Vovides et al., 2007; Winters et 

al., 2008).  Difficulties in learning with hypermedia instruction may be due to 

inappropriate or inadequate self-regulated learning strategies (Azevedo, 2005). 

Novice learners are especially susceptible to disorientation (i.e., getting lost 

where they are within the instruction and not knowing where to find relevant 

information) when using hypermedia learning tools (Amadieu, Tricot, & Mariné, 

2009; Chen et al., 2006; Zumbach, 2006).  In contrast, learners with high prior 

domain knowledge demonstrate more planning and monitoring behaviors during 

learning (Moos & Azevedo, 2008b).  Regardless of the learner’s prior knowledge, 

disorientation may also occur when the presentation format (e.g., linear vs. non-

linear) is not aligned with narration format (e.g., non-ordered encyclopedic 

presentation of information vs. linear narrative story), creating extraneous 

cognitive load (Zumbach & Mohraz, 2008).  Conversely, conceptual scaffolds, 

which are learning aids that support the development of domain knowledge, may 

help increase self-regulated learning strategy usage, such as planning, and thus 

benefit learning (Moos & Azevedo, 2008a).  In addition, scaffolds such as 

navigational aids may reduce disorientation and increase interactivity and positive 
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attitudes (Burke et al., 1998) and may help learners self-regulate their learning by 

reducing cognitive load.

As an example of scaffolding, goal-setting in the form of providing a list 

of conceptual topics to be learned may be helpful especially for low-knowledge 

learners or low self-regulating learners.  In the domain of problem solving, 

providing conceptually-oriented subgoals, rather than computational subgoals, has 

been shown to result in better transfer to novel statistical problems (Atkinson, 

Catrambone, & Merill, 2003).  Perhaps this benefit is derived from a set of goals 

acting as an advance organizer that help learners focus on more relevant ideas 

presented in the learning environment.  Segmenting instruction by subgoals and 

ordering topics by increasing difficulty can reduce cognitive load but also increase 

self-management demands (Kalyuga, 2007).

Self-evaluation opportunities can be especially important in enhancing 

self-regulation of learning in computer-based instructional settings (Kostons et al., 

2009; Vovides et al., 2007).  Novices may have trouble with self-evaluating their 

own progress for several reasons.  One reason might be that they are already 

experiencing cognitive overload from doing the learning task and not be able to 

devote resources to monitor their own performance (Butler & Winne, 1995). 

Even if they are self-monitoring their progress, they may lack the knowledge or 

criteria to judge their performance accurately (Kostons et al., 2010).  In contrast, 

domain experts may have more resources available to monitor their own 
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performance accurately and they may possess superior metacognitive abilities to 

make accurate judgments of learning in their domain (Winne, 1996).

Feedback, an essential component of self-evaluation, is most powerful 

when it addresses misconceptions rather than deficits in knowledge and when the 

task complexity is low (Hattie & Timperley, 2007).  Feedback is crucial to self-

regulation of learning as monitoring is dependent upon internal—and external if 

available—feedback while engaging in a task, possibly resulting in adjustment of 

learning goals, strategies, and subsequent activities (Butler & Winne, 1995).  Self-

regulators are attuned to “self-oriented feedback,” including their motivational 

and cognitive states (Zimmerman, 1990).  There is a distinction between 

scaffolding and external regulation (e.g., program control); the former is more a 

collaborative effort with an active learner in the building of knowledge, and the 

latter places control with the program, which ultimately leaves learners not 

responsible for their own learning (Boekaerts, 1997).  

Whether external feedback is ignored, rejected, or incorporated, depends 

upon the learner’s prior knowledge and cognitive resources (Butler & Winne, 

1995).  For instance, a task cue, such as an advance organizer, that is overlooked 

by the learner has no value and cannot benefit learning.  Computer-based 

instruction itself can provide prompts and cues to encourage learners to think 

about their learning, reinforcing self-regulation of learning (Vovides et al., 2007). 

However, the utility of outcome feedback may be limited; cognitive feedback that 

guides the learner towards cues for learning may be more useful (Butler & 
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Winner, 1995).  Further complicating self-evaluation, learners are susceptible to 

“illusions of competence,” that is, overestimating how much they have learned, 

based upon cues that are present during learning but absent during testing (Bjork, 

1994; Koriat & Bjork, 2005; Koriat & Bjork, 2006).

Even if learners reliably self-evaluate their performance, it is questionable 

if they can use this self-evaluation to make decisions about their subsequent 

learning processes and tasks.  In an explorative study examining self-assessment 

and task-selection process, learners worked on a learner-control computerized 

tutorial on heredity and selected a series of eight learning tasks (Kostons et al., 

2010).  These learning tasks varied by five levels of complexity, and for each 

complexity level there were three different problem types: worked examples, 

completion problems, and conventional problems.  After completing each task 

(and before moving on to the next task), learners self-assessed their performance 

on seven criteria: solution, approach, time on task, enjoyment, difficulty, mental 

effort, and overall evaluation.  These self-assessment criteria could potentially be 

used to help the learner decide which learning task to do next.  Although effective 

learners (those who had higher learner gains) tended to be more accurate in self-

assessing their performance, based upon analyzing their think-aloud protocol, 

they did not differ on task selection criteria.  Moreover, none of the groups 

demonstrated perfect accuracy in their self-assessments.  Kostons et al. (2010) 

speculated that the lack of group differences on task selection could be due to 

both groups being novices and not having adequate criteria to make such 
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judgments.  Similar to DeLeeuw and Mayer (2008), Kostons et al. imply that 

expert learners may have exhibited a different pattern of behavior.

Having a low-knowledge base of the domain may contribute to greater 

intrinsic cognitive load for novices that interferes with their processing that 

enhances learning (germane load).  In contrast, having more domain knowledge 

would allow the learner to incorporate more information in fewer schemata units, 

reducing intrinsic cognitive load and freeing up cognitive resources to do more 

germane processing critical to knowledge acquisition and to self-regulate their 

learning.  In another study examining self-regulated learning on a computer-based 

tutorial on heredity, learners’ actions on the computer screen and eye movements 

were recorded and replayed for learners as a cue to remind them of their learning 

paths (Kostons et al., 2009).  Eye movements were thought to be reflective of 

attention and underlying cognitive processes.  As reflected by think-aloud 

verbalizations, this cue was more helpful to novices than to experts in 

remembering, but not monitoring and self-assessing, their learning processes. 

Only the experts benefitted from the cue in terms of monitoring and self-

evaluating their learning.  Presumably the experts experienced lower cognitive 

load, freeing cognitive resources that allowed them to be able to engage in 

supplemental processing.

Self-regulation of learning also has motivational components (Boekaerts, 

1997; Lynch & Dempo, 2004; Pintrich, 2004; Zimmerman, 1990).  In fact, self-

efficacy can help promote self-regulation of learning behaviors (Pintrich, 1999), 
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including persistence on difficult tasks (Pintrich & DeGroot, 1990) and setting 

learning goals (Winne, 1996).

1.5 Self-Efficacy in Learning

Computer-based statistics tools that offer learners control over how 

material is presented can increase engagement with the content (Larreamendy-

Joerns, Leinhardt, & Correador, 2005).  Self-efficacy and motivation are two 

related concepts that also have an important role in hypermedia or online learning. 

Self-efficacy is a self-judgment of one’s performance capabilities on a given task; 

hence, it is context-specific and future-oriented (Bandura, 1977; 1997).  Self-

efficacy is conceptually different from perceived control over outcomes (such as 

grades), expectancies and values concerning outcomes, attributions (perceived 

causes of outcomes), and the learner’s self-concept (Schunk, 1991).  For instance, 

one may believe that one will succeed on a task, but not necessarily value the 

outcome or believe that one has control over the outcome.  In addition to being 

conceptually distinct, self-efficacy has been shown to have discriminant validity 

in predicting various learning outcomes (Zimmerman, 2000).  

Self-efficacy fosters motivation in at least two ways: persistence on a task 

and goal-setting (Bandura, 1993).  Self-efficacy has been shown to have both a 

direct effect and an indirect effect on skill acquisition by increasing persistence 

(Pintrich & DeGroot, 1990; Schunk, 1981).  Self-efficacy may also influence 

learning indirectly by encouraging learners to set high personal goals, which is an 

aspect of self-regulated learning.  Although prior grades are good predictors of 
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future achievement, self-efficacy and goal setting have been shown to add 

predictive power (Zimmerman, Bandura, & Martinez-Pons, 1992; Zimmerman & 

Bandura, 1994).

Pintrich and DeGroot (1990) sought to construct and validate an 

instrument to measure components of both motivation and self-regulation of 

learning.  A sample of 173 seventh-grade students in science and English classes 

responded to a self-report questionnaire (the Motivated Strategies for Learning 

Questionnaire, or MSLQ) that included 56 items on student motivation, cognitive 

strategy use, metacognitive strategy use, and management of effort.  Each of these 

items was on 7-point Likert scale (1 = not at all true of me to 7 = very true of me). 

MSLQ scores were collected in between first and second semester course grades. 

In addition to semester grades, academic performance was also measured by 

classwork, exams/quizzes, and reports/essays.  Factor analysis revealed three 

distinct components of motivation: Self-Efficacy (9 items; α = .89); Intrinsic 

Value (9 items; α = .87); and Test Anxiety (4 items; α = .75).  In addition, two 

cognitive scales were constructed: (1) Cognitive Strategy Use (13 items; α =.83) 

which included rehearsal, elaboration, and organizational strategies; and (2) Self-

Regulation (9 items; α =.74) which reflected metacognitive and effort 

management.

Pintrich and DeGroot (1990) found that prior academic achievement 

predicted metacognitive self-regulation, but not cognitive strategy use.  Students 

high in self-efficacy reported significantly greater use of cognitive strategies and 
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self-regulation strategies than did students low in self-efficacy.  Regression 

analyses revealed that self-efficacy was not significantly related to performance 

on seatwork, exams, or essays when controlling for the cognitive and self-

regulation variables.  Pintrich and DeGroot thus argued that cognitive and self-

regulatory strategies have a more direct impact on academic performance and that 

self-efficacy may play a more supportive role by encouraging use of 

metacognitive strategies.

Much of the research done on the constructs of self-regulated learning and 

self-efficacy within online settings has been correlational, attempting to relate 

these constructs to others like motivation and academic achievement (Artino & 

Stephens, 2009b).  However, these motivational constructs have been limited to 

variables such as self-efficacy and task value, and not other motivational factors 

such as course satisfaction, intention to continue with online courses, and 

frustration or boredom with online instruction.  In addition, these self-regulation 

of learning and motivational variables have not often been subject to experimental 

manipulations or related to learning outcomes.  Most of these studies have used 

self-reported measures of self-regulated learning and learning strategy usage (e.g., 

MSLQ subscales), not behavioral measures.

Self-efficacy for self-regulated learning has been positively correlated to 

academic self-efficacy as well as to self-reported cognitive and self-regulated 

strategy use among online learners (Joo et al., 2000).  Self-efficacy for self-

regulated learning deals with the belief in one’s ability on tasks such as 
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completing assignments on time, concentrating in class, and being able to find a 

distraction-free environment for studying.  Although self-efficacy for self-

regulated learning was not directly related to learning outcomes, it was indirectly 

related through more specific self-efficacy measures: academic self-efficacy and 

Internet self-efficacy.  Contrary to hypotheses, both cognitive and self-regulated 

strategy use, as self-reported on the MSLQ subscales, were also not positively 

correlated with learning outcomes.  Joo et al. (2000) conjectured that the lack of 

significant correlations between the strategy use variables and learning outcomes 

may be due to the self-reported items referring to general course behaviors, and 

not reflective of nor accurate in describing what learners may be doing online.

Artino (2008) explored self-efficacy and other motivational variables, 

including intrinsic task value, among those taking a military self-paced online 

training course.  Controlling for other variables, such as gender and prior online 

learning experience, both self-efficacy and task value reliably predicted course 

satisfaction.  However, limitations of Artino’s study include not relating these 

affective variables to learning outcomes, only course satisfaction, and that these 

measures were solely self-reported and not linked to behavioral measures. 

Additionally, the sample was limited to those in the military and thus was not as 

heterogenous as the online learning community at large.

Expertise differences could also impact self-efficacy and cognitive 

strategy use on online learning.  In a sample of undergraduate and graduate 

students taking WebCT-managed online courses, there was a significant difference 

35



in critical thinking (on the self-reported MSLQ subscale) favoring graduate 

students but no significant group differences on task value, self-efficacy, or 

elaboration as a cognitive strategy (Artino & Stephens, 2009a).  However, 

undergraduates reported more procrastination behaviors (e.g., delaying studying). 

They also reported having more experiences with online courses and greater 

motivation to do online courses in the future.  These differences between learners 

of varying expertise levels could have implications for actual online learning 

processes and outcomes and should also be examined in experimental settings.

To examine specifically online instruction, survey instruments related to 

self-efficacy and self-regulation of learning in online courses have been 

developed.  These include the Online Learning Value and Self-Efficacy Scale 

(OLVSES) by Artino and McCoach (2008) and the Online Self-Regulated 

Learning Questionnaire (OSLQ) by Barnard et al. (2009).  Although both of these 

instruments have been validated using factor analysis and large samples, they deal 

primarily with online courses and not with individual stand-alone computer-based 

tutorials.  The OSLQ consisting of 24 self-reported items, for instance, has been 

validated based upon responses from separate samples, those taking online 

courses and those taking hybrid courses (Barnard et al., 2009).  It has six 

subscales measuring different aspects of self-regulated learning; all subscales 

have high Cronbach’s reliability (at least .67): (1) environment structuring, (2) 

goal setting, (3) time management, (4) help seeking, (5) task strategies, and (6) 

self-evaluation.  Even though it is psychometrically sound, the OSLQ should also 
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be linked to actual learner behavior and learning outcomes in online instructional 

settings to support its validity as a measure of self-regulated learning and 

applicability to online learning, as well as to help establish a causal link between 

self-reported behavior and actual learning.

The OLVSES (Artino & McCoach, 2008), reflecting the notion that self-

efficacy is domain-specific, was designed to measure self-efficacy for self-paced, 

online learning.  Based upon factor analyzing responses from hundreds of U.S. 

Naval Academy students and military personnel, a 11-item scale was created to 

measure two factors: (1) task value (e.g., interest in course content) and (2) self-

efficacy (e.g., confidence in learning).  Among the naval academy undergraduates, 

both task value and self-efficacy were positively and significantly correlated (p’s 

< .001) with two cognitive subscales from the MSLQ: the elaboration subscale 

(e.g., summarizing), r = .59 and r = .27, respectively, and the metacognitive self-

regulation subscale (e.g., goal setting and evaluating knowledge), r = .62 and r = .

20, respectively.  However, when examining the unique contribution of each 

variable in predicting learning outcomes, only task value was a significant 

predictor, indicating that it was more influential than self-efficacy on cognitive 

processes.  Similar to the OSLQ, the OLVSES needs to be related to actual 

learning processes and outcomes, and be used with more heterogenous samples to 

help establish its validity and utility as an online learning survey instrument.

Web-based or hypermedia learning potentially allows for the learner to 

take more responsibility for their learning, and could increase self-efficacy and 
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motivation by promoting learning goals and giving timely feedback.  The effects 

of learner control on motivation, however, are so varied that Lunts (2002) 

concluded that there are three types of studies: those that find no effect, those that 

find a positive effect, and those that find a negative effect.  Niemiec, Sikorski and 

Walberg (1996) also concluded that the effects of learner control on learning 

outcomes are inconsistent.  A better theoretical framework of learner control is 

needed to reconcile these inconsistent findings.  It is not a question of providing 

learner control or not, but how much and how to facilitate use of learner control 

(Chung & Reigeluth, 1992).  As with traditional learning, learner characteristics 

such as expertise, self-efficacy, and self-regulated learning abilities may also 

impact the effect of learner control in computer-based instructional settings.

1.6 Learner Control Interacting with Scaffolding and Learner Characteristics

Several studies have investigated the effects of learner control on 

computer-based learning and come to various conclusions concerning how learner 

control is moderated by different program features (e.g., scaffolding) and learner 

characteristics, including self-regulation of learning and learner expertise in a 

variety of domains.  

For instance, Burke et al. (1998) examined learner control and scaffolding 

in the form of navigational aids in a study involving fifth graders completing a 

hypermedia lesson on the solar system.  Although there was no difference 

between the learner-control and program-control versions, nor a main effect of 

navigational aids on achievement, there was a marginally significant interaction 
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between instructional control and navigational aids, F(1,85) = 3.43, p = .067. 

Learners in the learner-control condition benefited from having navigational aids 

(M = 23.82 and M = 20.55, respectively); learners in the program-control 

condition did better with no navigational aids (M = 22.26, and M = 20.14, 

respectively).  In addition, there were differences in attitudes and navigational 

paths between groups.  Compared to learners in the program-control condition, 

those in the learner-control condition had more positive attitudes about the 

instruction.  Compared to learners who did not have navigational aids, those who 

had navigational aids demonstrated more non-linear paths, possibly reflecting 

more cognitive engagement with the instructional content.  Thus, especially for 

those in the scaffolded learner-control condition, learning may have been 

enhanced because of both motivational and cognitive reasons.  An examination of 

a learner characteristics such as expertise, cognitive load, motivation, or self-

regulation of learning ability would have been helpful in clarifying causal 

relationships between the experimental manipulations with learning outcomes.

Young’s (1996) study more directly related learner control to a learner 

characteristic, namely self-regulation of learning.  The study examined seventh 

grade students who completed a computer-based tutorial on propaganda 

techniques in advertisement.  Students’ self-regulation of learning ability was 

measured with the Self-Regulatory Skills Measurement Questionnaire (SRSMQ), 

a 33-item survey adapted from Pintrich and De Groot’s (1990) MSLQ and 

Zimmerman and Martinez-Pons’ (1986) Self-Regulated Learning Interview 
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Schedule.  The SRSMQ items were designed to focus entirely on self-regulation 

of learning strategies and thus eliminated motivational items from the original 

scales.  There was a significant interaction between instructional control and self-

regulation of learning, but no significant main effects.  Low self-regulators in the 

learner-control condition had the worst post-test scores of the four conditions; 

regardless of instructional control, high self-regulators had comparable post-test 

scores.  Limitations to this study include the small sample size (N = 26), post-test-

only design, and elimination of motivation as a component of self-regulated 

learning.  By eliminating motivation, which is an important aspect of self-

regulation of learning (Pintrich & DeGroot, 1990; Zimmerman, 2002) and critical 

to academic achievement (Zimmerman et al., 1992), an important factor may have 

been overlooked that might have helped to explain why the low self-regulators in 

the learner-control condition did worse than the other groups.

In addition to self-regulated learning abilities and learner control (in the 

form of non-linear topic sequencing), McManus (2000) examined the effects of 

advance organizers (i.e., scaffolding) in a Web-based hypermedia instruction on 

using a computer operating system.  Half of the tutorials included advance 

organizers that attempted to connect prior knowledge with the learning content. 

There were three levels of sequencing linearity that reflected varying levels of 

learner control.  Self-regulated learning, which was classified into three levels, 

was measured by a modified version of the MSLQ, adapted for computer-based 
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instruction rather than in a traditional course.  On a post-test, learners were tested 

on both procedural knowledge and declarative basic computer knowledge.

McManus (2000) found two interactions that were marginally significant 

at the .05 alpha level: between non-linearity and self-regulated learning, F(2, 101) 

= 2.42, p = 0.054; and between non-linearity and advance organizers, F(2, 101) = 

3.05, p = 0.052.  No other interaction or main effect was significant or nearly 

significant.  The low level of statistical power (119 college participants for a 3 x 3 

x 2 between-subjects design) may explain the lack of significant findings.

However, the trends identified in this study suggest that the effect of non-linearity 

(learner control) may depend upon the presence of advance organizers and upon 

the self-regulating attributes of the learner.  These findings indicate that 

scaffolding, in the form of advance organizers, may be more effective in highly 

and moderately nonlinear instruction (higher learner control), respectively, than in 

mostly linear instruction (lower learner control).  The findings also indicate that 

lower learner control may impair learning for highly self-regulating learners, 

whereas, higher learner control may hurt the learning of less self-regulating 

learners.  McManus (2000) conjectured that the lack of a self-regulation of 

learning main effect may be due to learners not being familiar with an online 

learning environment, and thus having less than accurate self-assessments of their 

learning behaviors in that setting.

In a hypermedia study with second-graders learning about food groups, 

Shin et al. (1994) looked at three variables similar to those examined by 
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McManus (2000): advisement (provided or not), learner control (free access vs. 

limited access), and prior knowledge.  Advisement, a form of scaffolding, 

provided optional recommendations that students could use to navigate the 

sequence of topics, as well as visual aids to help them navigate the tutorial.  In 

this study, learner control could be considered similar to McManus’ 

conceptualization of linear sequencing.  Whereas McManus examined self-

regulated learning ability, Shin et al. focused on prior knowledge, as measured on 

a pre-test.

Shin et al. (1994) found that high-knowledge learners had significantly 

higher post-test scores than did low-knowledge learners.  Moreover, there was a 

significant interaction between learner control and prior knowledge.  Low-

knowledge students benefited more from the more linear limited-access module 

than the more non-linear free-access module.  In contrast, high-knowledge 

students benefited equally from both.  These findings regarding low-knowledge 

learners parallel those of McManus (2000), who found that learners with low or 

moderate self-regulating learning strategies were negatively affected by non-

linear sequencing (higher learner control); however, McManus found that high 

self-regulators were differentially affected by linearity of sequencing, unlike Shin 

et al.’s findings of a comparable benefit.

Although Shin et al. (1994) found that advisement on sequencing topics 

did not affect learning gains, advisement interacted with prior knowledge to 

impact the amount of time to finish the tutorial.  The low-knowledge students 
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completed the lesson faster when they received no advisement, 11.9 min, than 

those receiving advisement, 14.8 min; whereas the high-knowledge students did 

not differ in completion times, 13.3 min and 12.8 min, respectively.  This suggests 

that low-knowledge students may not be able to correctly gauge their learning and 

take appropriate steps to fill in any gaps in knowledge they may have.

1.7 Summary

There is some evidence that high levels of learner control may be 

detrimental to learning for some groups, including learners with low self-

regulation of learning abilities and low prior knowledge or domain expertise.  In 

addition, computer-based instruction may be the ideal setting for examining and 

promoting self-regulated learning via scaffolding and giving learners control over 

their learning processes (Scheiter & Gerjets, 2007).  However, only a few studies 

have assessed the relationship between learner control, self-regulated learning, 

and self-efficacy during computer-based learning (Moos & Azevedo, 2008a). 

Furthermore, much of the research done on self-regulated learning and self-

efficacy in online learning environments has been correlational, attempting to 

relate these learner characteristics to motivation and academic achievement 

(Artino & Stephens, 2009b).  Although computer-based instruction in statistics 

education has been shown to be effective (Hsu, 2003; Schenker, 2007; Sosa et al., 

2011), it is unclear how prior knowledge, self-efficacy, and cognitive-strategies 

differentially impact learning outcomes and how these factors influence one 

another especially in online learning environments teaching statistical concepts.  
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The effectiveness of instructional scaffolds, implemented in a variety of 

forms, advance organizers, advisement, navigational aids, can depend upon the 

learner’s expertise and prior experiences.  In terms of cognitive load, the expertise 

reversal effect may help explain how scaffolding instruction may be useful to 

novices with low domain knowledge but disrupt learning for experts with higher 

domain knowledge (Kalyuga & Sweller, 2005; van Merriënboer & Sweller, 2005). 

Experts bring with them well-established schemata of related concepts and these 

schemata may be in conflict with models presented by the instruction, placing a 

burden on their cognitive system to reconcile these conflicting models of 

information (Kalyuga, 2007).  Thus, learners with higher levels of domain 

expertise or self-regulation of learning ability may require different types of 

scaffolding or instructional control than novices, and experience different types of 

cognitive load when using the same instruction.  Cognitive load has been 

measured in a variety of ways, some more suitable for learning tasks than others, 

and some more discriminating among the different types of load (e.g., DeLeeuw 

& Mayer, 2008; Gerjets et al., 2009).  

Self-regulation of learning is a cyclical process that involves planning, 

managing, and evaluating one's learning (Puustinen & Pulkkinen, 2001).  Self-

evaluation is an important aspect of self-regulated learning and can place heavy 

cognitive demands on learners, especially novices, and may affect learning 

processes and ultimately outcomes (Kostons et al., 2009).  Novices may lack the 

knowledge of what constitutes good performance and even if they had adequate 
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criteria to self-assess their performance, may lack knowledge about how to 

improve their learning (Kostons et al., 2010).  Scaffolds that are intended to 

improve self-regulation of learning, such as goal-setting and feedback, may be 

used differently by experts and novices.  Instructional design, such as learner 

control, also has implications for motivation and self-efficacy, which in turn, also 

affect self-regulation of learning behaviors (Pintrich & de Groot, 1990; 

Zimmerman, 2000).

Thus, it is critical to link cognitive and motivational processes with actual 

learning outcomes.  Niemiec et al. (1996) concluded that the research on learner 

control is mixed, its impact on learning is “neither powerful nor consistent” (pg. 

157).  Therefore, to clarify the effects of learner control, it is important to examine 

the link between learner control and learner characteristics, including self-

regulated learning abilities, and how this link affects learning performance 

(Young, 1996).  It is also important to examine and validate the mediating effects 

of learner control on a learner’s cognitive load by manipulating learner control as 

part of the research design.

1.8 The Current Study

One possible reason why many computer-based statistics instruction 

programs have produced suboptimal results in learning is that they might have 

been implemented without regard to assessing prior knowledge and domain 

expertise.  As a result, these programs have accordingly failed to provide relevant 

scaffolding and given learners too much, or too little, control over the 
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instructional process to engage learners.  Low-knowledge learners may exhibit 

less effective learning strategies than high-knowledge learners and may benefit 

more from scaffolding and less learner control.  Furthermore, prior knowledge 

and metacognition factors that impact learning, self-evaluation, and self-

regulation of learning practices, were overlooked by many studies.

In fact, analyzing 45 statistics education studies that compared computer-

based instruction to traditional instruction (little or no use of technology) in 

teaching statistical concepts, Sosa et al.’s (2011) meta-analysis which determined 

a moderate advantage of computer-based instruction in statistics education, d = 

0.33, found that only 13 studies employed a pre-test of students’ prior knowledge 

and only 15 studies statistically controlled for pre-existing group differences. 

Moreover, none of the 45 studies were designed to test specific learner-centered 

variables.  Many of these statistical educational studies were explorative or lacked 

strong methodological considerations to be able to make causal inferences or 

theoretical connections.  Therefore, it would be particularly valuable to examine 

how to enhance understanding of basic statistical concepts such as variability 

using computer-based instructional and an experimental design involving learner 

characteristics and instructional control.

The current study examined the effects of statistical expertise (in terms of 

number of statistics courses taken), self-efficacy, self-regulation of learning 

strategies, task value, and learner control on learning about standard deviation in 

the context of a Web-based hypermedia tutorial.  Two versions of a hypermedia 
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tutorial were created, differing only in the degree of control given to learners 

regarding the amount of instructional material they were given and the amount of 

feedback they received on their responses to questions.  

Learners in the low learner-control (i.e., program-control) condition were 

automatically presented explanative feedback on why each of their responses to 

multiple-choice questions was correct or incorrect.  After completing tutorial 

sections, they were also quizzed on summative true-or-false questions intended to 

integrate the concepts presented in that section.  In contrast, learners in the high 

learner-control condition could choose to skip these integrative, summative 

questions at the end of each section and to skip the feedback on why their 

response was correct or incorrect.  

1.9 Hypotheses and Analyses

The current study was designed to test the hypothesis that learning about 

standard deviation would benefit from program-control (vs. learner-control) 

instruction in the form of automatically providing feedback for each learner 

response and requiring learners to complete integrative, summary questions at the 

end of each section before moving on to the next section.  That is, participants in a 

program-control (PC) condition were expected to demonstrate greater learning 

than those in a learner-control (LC) condition.  Moreover, the PC benefit was 

hypothesized to be greater for learners with a low level of statistical experience 

than for more experienced learners and for learners who reported using less 

effective self-regulatory strategies than for highly self-regulating learners.  It was 
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also hypothesized that higher levels of self-efficacy would be associated with 

greater learning, but self-regulating strategies would have an even larger impact 

on learning.  Finally, it was predicted that higher levels of cognitive load would be 

associated with less learning.

A hierarchical regression analysis on learning outcomes, as measured by 

post-test performance adjusted for pre-test performance, was conducted with the 

predictors entered in blocks in the following order: (1) prior knowledge, time 

spent on tutorial, and statistical expertise (i.e., whether the participant had 

completed one or more statistics courses); (2) task value (i.e., valuing learning 

about standard deviation), self-efficacy and self-regulated learning; (3) 

instructional control; (4) cognitive load; and (5) instructional control x statistical  

expertise, and instructional control x self-regulated learning.  Predictors in the 

first block were considered to reflect general learner knowledge before the 

tutorial; predictors in the second block were considered to be learner 

characteristics more related to the tutorial itself.  Instructional control was 

assumed to have bearing on cognitive load and thus entered the model before 

cognitive load.  Lastly, interaction terms were entered after the main effects. 

Continuous predictors in the model were centered prior to entry and computing 

interaction terms to reduce problems associated with multicollinearity, according 

to procedures described by Aiken and West (1991).

Several predictions were made concerning learning about the standard 

deviation (as measured by post-test performance) on a hypermedia tutorial, with 
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time spent on the tutorial, prior knowledge, and statistical expertise controlled for. 

These predictions were as follows:

H1. Greater task value and self-efficacy both will be associated with greater  

learning.

This will be evidenced by positive and significant beta weights. 

H2. Self-regulated learning will have an even larger positive effect than task  

value and self-efficacy on learning.

This will be evidenced by a significant and even larger positive beta 

weight for self-regulated learning than for task value and self-efficacy. 

H3. Learning will be greater for the PC condition than the LC condition.

This will be tested by examining the significance and direction of the 

beta weight for instructional control, which is dummy coded as 0 for the 

PC condition and as 1 for the LC condition.  As such, it is expected that 

the beta weight will be negative, reflecting better learning for the PC 

condition. 

H4. Higher levels of cognitive load will be related to less learning.

 This will be reflected by a negative beta weight of cognitive load.

H5. Instructional control was predicted to interact with both statistical  

expertise and self-regulated learning strategy.  

H5a. The benefits of PC instruction compared to LC instruction will be  

greater for novice learners than for expert learners.  
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This will be tested by examining the significance and magnitude of the 

beta weight for this interaction.

H5b. The benefits of PC instruction compared to LC instruction will be  

greater for low self-regulating learners than for high self-regulating learners.  

This will be tested by examining the significance and magnitude of the 

beta weight for this interaction.

1.10 Importance and Implications

As early as 1991, there has been a call to provide a more explicit 

theoretical framework for learner control research (Milheim & Martin, 1991). 

Years later, Dinsmore, Alexander, and Loughlin (2008) explored how the 

constructs of metacognition, self-regulation, and self-regulated learning have been 

defined, studied, and reported in empirical research.  In a review of 255 studies 

examining these self-regulation of learning constructs, Dinsmore et al. concluded 

that there is conceptual ambiguity concerning the constructs and a need to sharpen 

their definitions.  Moreover, the literature on learner control would benefit from 

making more theoretical connections to cognitive processes such as cognitive load 

(Lunts, 2002; Scheiter & Gerjets, 2007).  The current study was designed to 

disentangle these constructs and help clarify the learning process.  In particular, 

the study examines whether an expertise reversal effect could explain differences 

between novice and expert learners on both learning processes and outcomes in a 

computer-based statistics instructional setting.
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In addition, the current study provides information on how learners of 

varying statistical expertise utilize scaffolding and benefit differently from having 

control over instructional materials (i.e., feedback and additional exercises) when 

learning about standard deviation, a basic statistical concept dealing with 

variability and distributions.  Many researchers and instructors would agree that 

understanding variability and distributions is necessary for understanding more 

complex topics such as statistical inference, p-values, and confidence intervals 

(e.g., Chance et al., 2004).  However, it is unclear what is required for 

understanding distributions and variability and how best to support learning about 

these concepts for learners with different levels of expertise.
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Chapter 2: Method

2.1 Participants and Design

Two hundred and ten undergraduate and graduate students were recruited 

at two public colleges and four private educational institutions, primarily those 

who were taking or have taken an introductory or more advanced statistics course. 

For participants currently taking a statistics course, participation in the study was 

optional or students were given extra credit for participating.  Approximately half 

of the participants were randomly assigned to the program-control (PC) condition 

(n =106); the rest were assigned to the learner-control (LC) condition (n = 104).

To determine an appropriate sample size to obtain power of .80 with a 

Bonferroni-adjusted alpha of .005, based upon a nominal alpha of .05 and 10 

comparisons, power analyses were conducted using G*Power 3 (Faul, Erdfelder, 

Lang, & Buchner, 2007).  Given a multiple regression design, 183 participants 

would provide adequate power for a minimum overall effect size of f 2 = 0.15 (a 

medium effect for overall R2 according to Cohen, 1988) with a total of eight 

between-subjects predictors and two interaction predictors.  These predictors of 

learning were time spent on the tutorial, prior knowledge, statistical expertise, 

task value, self-efficacy, self-regulated learning, instructional control, cognitive 

load, and two-way interactions between instructional control with prior 

knowledge and self-regulated learning.

2.2 Materials and Procedure
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In this hypermedia study, an informed consent form (Appendix A) was 

presented to participants, followed by demographic questions (Appendix B). 

Demographic questions concerned whether participants have learned about 

standard deviation before as well as their experience with statistics, number of 

statistics courses taken, educational level, educational field, age category, gender,  

and institutional affiliation.

Participants then rated themselves on twelve items on self-regulated 

learning behaviors, self-efficacy and task value.  Several of these self-rating items 

were adapted from the self-efficacy and self-regulation subscales on the 

Motivated Strategies for Learning Questionnaire (MSLQ, Duncan & McKeachie, 

2005, see Appendix C), as well as the Online Self-Regulated Learning 

Questionnaire (OSLQ, Barnard et al., 2008).  For the current study, three self-

efficacy items were adapted to focus specifically on learning about standard 

deviation on the online tutorial; whereas, the seven self-reported ratings on self-

regulation of learning were modified to reflect more general learning strategies 

(see Appendix D).  These self-regulation of learning items were designed to 

capture aspects of goal-setting, strategy usage, and self-evaluation applicable to 

online learning.  Two additional self-ratings were to measure the task value of 

doing well on the tutorial and learning about standard deviation.  On these twelve 

items, the learner rated how true these statements were of themselves on a 1-7 

scale, from “Not true at all” to “Very true of me.”
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Following these self-reported items, participants were introduced to the 

tutorial: “The goal of this tutorial is to provide a foundation for understanding the 

variability of observed scores.  Variability is a key concept for basic statistics and 

for many advanced statistical techniques you may encounter.”  Participants were 

then presented the learning goals for the tutorial:

1. How variability is related to the shape of a distribution.
2. How standard deviation is used as a measure of variability.
3. What makes a standard deviation larger or smaller.

These goals were presented to help participants focus their learning and to 

give them some criteria to self-evaluate their performance at later points in the 

tutorial.  After this brief introduction, participants completed a 15-item pre-test  

(Section 1 of 4) assessing baseline statistical knowledge, or prior knowledge, of 

interpreting histograms and comparing standard deviations in pairs of histograms. 

On five items that assessed understanding of distributions, the learner needed to 

interpret and match histograms with descriptions of various situations, such as 

scores on a very easy quiz (see Appendix E).  These five items were drawn from a 

nationally validated test called the CAOS (Comprehensive Assessment of 

Outcomes in Statistics) Test, which was developed by delMas, Garfield, Ooms, 

and Chance (2007) to assess concepts that introductory statistics students should 

master.  On 10 items adapted from those used by delMas and Liu (2005) to assess 

understanding of statistical variability, the learner compared two different 

histograms to determine which had a greater standard deviation (see Appendix F). 

Following the completion of the pre-test (Section 1), learners were given feedback 
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on how many items out of the 15 they got right, so that they would be engaged 

with all sections of the tutorial, including the post-test.  They were also given a 

motivational prompt either to improve their score (if their score was 10 or less), 

enhance their understanding (if their score was 14 or 15), or both (if their score 

was between 11 and 13 inclusive) by completing the tutorial.

Section 2 introduced the standard deviation, SD, and its calculation based 

upon the sum of squared deviations from the mean for each observation (squared 

deviations are computed by squaring the distance of each observation from the 

sample mean, and these values are totaled to form a “sum of squares,” or SS).  The 

SD is then calculated by dividing the SS by the sample size, N, minus 1, and then 

square rooting the result:

These squared deviation calculations were represented visually in an example 

histogram, from which the learner had to identify relevant values and calculate the 

SS and SD (see Figure 2.1).  In this same histogram, before calculating these 

values, the learners had to identify how many observations had a value of 2 and 

how many had a value of 3.
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Figure 2.1. Introductory histogram in the Standard Deviation Tutorial. The top 

figure is the original figure and the bottom figure is presented in an optional pop-

up window to illustrate how the sum of squared deviations is calculated. Here SS 

= 36 and SD = 3. 

Following this overview, the tutorial featured a series of interactive 

conceptual self-assessment activities.  These interactive activities were 

implemented in accordance with the principle that self-testing can improve 

learning (Roediger & Karpicke, 2006).  Throughout most of the tutorial, students 
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were asked to compare the standard deviations between pairs of histograms (see 

Figure 2.2 for an example) and choose a multiple-choice answer that reflected 

both the best answer and justification for the answer.  On each of the histograms, 

the sample mean was marked by a red arrow.  Multiple-choice distractors were 

constructed based upon specific common justifications—both correct and 

incorrect—used by students to produce the largest or smallest standard deviations 

in the delMas and Liu (2005) study.  Justifications were often related to 

Figure 2.2. Example of a histogram-pair in Section 2.  Participants compared the 

standard deviations of the histograms and chose a multiple-choice response to 

reflect best answer and justification. 
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comparing the shape, range, and how observations were distributed relative to the 

sample mean.  To move forward in the tutorial, participants had to correctly 

answer each multiple-choice question.  

For each of their responses, learners were told whether they were correct 

or not, and given a chance to view pop-up windows with explanatory histograms 

depicting the squared deviations and SD calculations for each of the original 

histograms (see Figure 2.3).  Participants in the PC (Program Control) condition 

were automatically given a text explanation of why their response was correct or 

incorrect; in contrast, LC (Learner Control) participants were allowed to go on to 

the next questions without viewing explanative text feedback on why they 

answered correctly or incorrectly.  To view explanative text feedback on each of 

their responses, learners in the LC condition needed to click on the “see why” 

link, which caused the explanation to appear in a pop-up window.  

At any time, participants in both conditions could also click on a link to 

view only the squared deviations of observations in a histogram or the more 

detailed SD calculations.  Depictions of squared deviations in histograms and SD 

calculations appeared in separate pop-up windows and could be viewed one at a 

time whenever the learners desired.  Access to these scaffolds was allowed in both 

conditions so that comparisons of their usage across instructional conditions could 

be made. 

Pairs of histograms were designed to highlight how shape and distribution 

affected the standard deviation, and the comparisons between pairs increased in 
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difficulty progressing from 2-bar to 3-bar examples in Sections 2 and 3.  Section 3 

was more difficult conceptually than Section 2.  For instance, in Section 2, 

histogram pairs illustrated the idea that a mirror image of a histogram has the 

same standard deviation (see Figures 2.2 and 2.3).  In Section 3, range and shape 

needed to be integrated in comparing histograms (see Figure 2.4).  Section 2 

contained eight questions total: four questions on interpreting a histogram and 

calculating sums of squares and standard deviations, and four questions on 

comparing the standard deviation in pairs of histograms.  Section 3 contained six 

questions on comparing pairs of histograms.  The histogram pairs used in the 

tutorial involved only whole-number squared deviation scores and were less 

complicated than the ones presented in the pre-test and post-test, which depicted 4 

to 8 bars of observations (see Appendix F).

At the ends of Sections 2 and 3, participants were advised that “The next 

three True-or-False questions are designed to review and integrate the principles 

that you worked on” in that section.  Individuals in the PC condition were 

required to complete this set of questions before rating that section and then 

moving on to the next section.  Regarding the three review questions, participants 

in the LC condition were advised, “You may either review them or skip them” and 

then given a choice to do them or not.  As with the histogram pairs, these 

questions were easier on Section 2 than on Section 3.  For instance, at the end of 

Section 2, the learner had to evaluate whether the following statement was true or 

false: “SD is the same when bars in the histogram are flipped to form a mirror 
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Figure 2.3. Example of a histogram-pair compared and illustrated.  Squared deviations for each observation were depicted visually and  

standard deviation calculations were given.  This information appeared in an optional pop-up window.
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Figure 2.4. Example of a histogram-pair in Section 3.  Participants compared the 

standard deviations of the histograms and chose a multiple-choice response to 

reflect best answer and justification.

image.”  Section 3 included more difficult statements to evaluate (e.g., “When the 

range is the same, a bell-shaped distribution always has a smaller SD than a U-

shaped distribution.”).

After completing each of the tutorial sections, Sections 2 and 3, learners in 

both conditions rated their mental load and performance in each section by 

completing four questions related to: (1) their effort exerted, (2) difficulty of the 

section, (3) how frustrating it was, and (4) how successful they believed they were 

on that section (see Appendix G).  The measures of Effort, Difficulty, and 

Frustration were designed to provide an index of cognitive load.  At the end of the 

tutorial, on Section 4, participants completed a post-test consisting of the same 15 

items that were presented on the pre-test.  Participants were encouraged to earn a 
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higher score on Section 4 than they did on Section 1.  After completing Section 4, 

participants were told how many items they got correct on that section. 

Participants were expected to complete the tutorial, pre-test, post-test, and all 

ratings in about 45 minutes.  Time spent on the tutorial and each of its individual 

sections, as well as number of scaffolds used (optional SD/histogram pop-up 

windows and links to explanative feedback), were recorded for each participant.
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Chapter 3: Results

3.1 Demographic Information

A total of 210 students completed the tutorial, 104 in the program-control 

(PC) condition and 106 in the learner-control (LC) condition.  However, to ensure 

that the sample included only learners who engaged the tutorial and processed the 

presented questions, nine students who spent less than five minutes total on 

Sections 2 and 3 were eliminated from the sample.  A total of 201 participants 

remained in the sample, 100 in the PC condition and 101 in the LC condition. 

Overall there were 169 women and 32 men.  In the PC condition, there were 88 

women and 12 men; in the LC condition, there were 81 women and 20 men. 

Most of the students majored in psychology (n = 126), followed by humanities (n 

= 28), biological sciences (n = 20), business or organizational sciences (n = 15), 

and other or undeclared (n = 12).

Concerning their statistical experience, the majority reported having 

learned about the standard deviation before completing the tutorial (n = 173). 

Regarding statistics courses, 116 participants reported having taken one or more 

(these participants will be referred to as “experts”), while 85 participants reported 

that they had not taken a statistics course or were taking their first course (these 

participants will be referred to as “novices”).  There were 142 participants who 

were undergraduates or had completed their undergraduate studies but not 

continued on to graduate school, and 59 participants who were graduate students 

or had completed graduate school.  Most graduate students had taken one or more 
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statistics courses, whereas fewer than half of the undergraduate students had (see 

Table 3.1 for a breakdown of statistics courses by instructional control and 

education level).  

Table 3.1

Frequencies of Participants by Statistics Courses, Instructional Control, and  
Education

Statistics courses completed

Education Level Fewer than 
one course

One or more 
courses

Total

Instructional 
Control

Program-
control

Undergraduate 46 30

Graduate 2 22

 Total 48 52 100

Learner-
control

Undergraduate 35 31

Graduate 2 33

Total 37 64 101

Total 85 116 201

The majority of undergraduate participants reported their age to be 18 to 

22 years old (132 of 142); the majority of graduate students reported themselves 

to be 23 to 29 (47 of 59; see Table 3.2 for a breakdown of age categories by 

instructional control).  Thus, it can be concluded that the majority of 

undergraduate and graduate students were of traditional age for their educational 

status.
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Table 3.2 

Frequencies of Participants by Age Categories, Instructional Control, and  
Education

Age (yrs)

Education Level 18-22 23-29 30+ Total

Instructional 
Control

Program-
control

Undergraduate 69 7 0

Graduate 1 16 7

 Total 70 23 7 100

Learner-
control

Undergraduate 63 3 0

Graduate 3 21 11

Total 66 24 11 101

Total 136 47 18 201

3.2 Reliability of Self-Reported and Section Ratings

Following the demographic questions were 12 self-reported measures (see 

Appendix D) designed to capture self-efficacy, self-regulation of learning, and 

task value.  These items showed reliability of varying amounts.  Self-efficacy 

(SE) was measured by three items; Cronbach’s alpha for the composite based on 

this set of items was .852, indicating high reliability.  The seven self-regulation of 

learning (SRL) measures also demonstrated high reliability (Cronbach’s alpha = .

844).  Thus, the three items for SE and the seven items for SRL were averaged, 

respectively, to form composite measures of each of these two learner 

characteristics.  The two items designed to measure task value (TV) had 

unacceptable reliability (Cronbach’s alpha = .152).  Thus, only one of the items 

was retained to be used in subsequent analysis: “Learning about standard 
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deviation is important to me.”  Deleted from subsequent analyses was the more 

global item that dealt with the importance of doing things well in general.

Reliability was moderately high for each cognitive measure as originally 

designed (see Appendix G).  For the composite of three cognitive load measures 

on Section 2, Cronbach’s alpha was .685.  However, when the Effort rating was 

eliminated, Cronbach’s alpha increased to .816.  Indeed, Frustration and Difficulty 

ratings were more positively correlated to each other, r = .70, than Effort was to 

either, r = .19 and r = .41, respectively.  Similarly, for the three cognitive load 

measures on Section 3, Cronbach’s alpha was .710, but increased to .830 when the 

Effort rating was eliminated.  Again, Frustration and Difficulty were more 

correlated to each other, r = .71, than either was to Effort, r = .24 and r = .41, 

respectively.  Therefore, for both Sections 2 and 3, the Difficulty and Frustration 

ratings were summed as a measure of extraneous cognitive load, but the Effort 

and Success ratings were retained as single-item measures of germane cognitive 

load and performance self-evaluation, respectively.  

Table 3.3 presents the correlations among Self-Regulated Learning (SRL), 

Self-Efficacy (SE), and Task Value (TV) with ratings of Effort, Difficulty, 

Frustration, and Success in each Section.  SRL ratings were positively related to 

both Effort and Success ratings, but unrelated to Difficulty and Frustration ratings 

on Sections 2 and 3.  Both SE and TV ratings were negatively related to Difficulty 

and Frustration ratings, but positively related to Success ratings and unrelated to 

Effort ratings on both Sections.  These patterns further suggest that Difficulty and 
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Frustration ratings are distinct from Effort ratings, and that Effort is more related 

to behavioral measures such as SRL.  Additionally, learners who rated themselves 

highly on SRL, SE, and TV beforehand also tended to rate themselves as more 

Successful during the tutorial.

Table 3.3

Correlations between Self- and Section Ratings (N = 201)

Learner Characteristics

Ratings SRL SE TV

Self-Regulated Learning (SRL) -

Self-Efficacy (SE)   .44*** -

Task Value (TV)   .34***  .34*** -

Section 2:
    Effort (E)

 
.21** -.05

 
.08

    Difficulty (D) -.09 -.34*** -.25***

    Frustration (F) -.09 -.27*** -.26***

    Success (S)   .23**  .37***  .35***

Section 3:
    Effort (E)

  
.15* -.09

 
.08

    Difficulty (D) -.13 -.23*** -.20***

    Frustration (F) -.10 -.24*** -.25***

    Success (S)   .29***  .38***  .27***

Note.  **p <. 01, ***p <. 001.  SRL and SE are composites of seven and three 
items averaged, respectively, and TV was measured by one item.  Significant 
negative correlations are highlighted.  These correlations are only between the 
cognitive load measures and the learner motivational variables of SE and TV.
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3.3 Main Analyses Regarding Learning Outcomes

The overall average pre-test score on knowledge of standard deviations 

and histograms was M = 8.89, SD = 3.15, and the overall average post-test score 

was M = 10.18, SD = 3.06.  This increase on the post-test was significant, t(200) = 

6.74, p < .001, with a Cohen’s d = .42.  A d of .50 is considered to reflect a 

“medium” effect (Cohen, 1988) and a d of .25 is considered to be small but 

practically significant in educational settings (Slavin, 1990).  For participants in 

the PC condition, average pre-test scores (M = 9.25, SD = 3.00) increased on the 

post-test (M = 10.53, SD = 2.92), t(99) = 4.57, p < .001, d = .43.  Participants in 

the LC condition showed comparable increases from the pre-test (M = 8.53, SD = 

3.26) to the post-test (M = 9.84, SD = 3.17), t(100) = 4.95, p < .001, d = 41.  Thus, 

the tutorial was effective in helping participants in both conditions learn about the 

standard deviation.

A hierarchical regression analysis on post-test scores was conducted, with 

the predictors entered in blocks in the following order: (1) pre-test scores, minutes 

spent on tutorial, and statistical expertise (i.e., whether or not the participant had 

completed one or more statistics courses); (2) task value, self-efficacy, and self-

regulated learning; (3) instructional control; (4) cognitive load; and (5) 

instructional control x statistical expertise, and instructional control x self-

regulated learning.  The continuous predictors were centered prior to entry into 

the regression model and computation of interaction terms.  The overall model 

was significant, F(10, 190) = 17.46, p < .001; R2 = .48; adjusted R2 = .45 (see 
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Table 3.4).  About 45% of the variance in post-test scores can be explained by this 

set of predictors.  The following predictions were tested:

H1. Greater task value and self-efficacy will be associated with greater  

learning.

Both task value and self-efficacy were significantly positively related to 

learning when ignoring all other predictors (r = .19, p < .01; and r = .24, 

p < .001 respectively; see Table 3.4).  However, when controlling for 

other predictors in the model (pre-test knowledge, expertise, minutes on 

the tutorial, self-regulated learning, and cognitive load), neither task 

Table 3.4

Moderation Effects of Statistical Expertise on Learner Control in Predicting  
Learning Outcomes (N = 201).

Step Variable r R2 Change B SEB Beta

1 Pre-test Knowledge
Statistical Expertise 
Minutes on Tutorial

 .616***
 .309***
-.074

.403***   .494***
  .822*
  .005

.060

.373

.015

  .508**
  .133*
  .019

2 Task Value
Self-Efficacy
Self-Regulation

 .192**
 .241***
 .120*

.012  -.082
  .189
 -.004

.109

.150

.202

-.047
 .081
-.001

3 Instructional Control (IC) -.113a .003  -.370 .351 -.061

4 Cognitive Load -.416*** .019*  -.092* .036 -.163*

5 IC x Statistical Expertise
IC x Self-Regulation

.042** 2.559***
 -.551

.681

.334
 .390***
-.121

(Constant) 9.912 .313

Note.  *p <. 05, **p <. 01, ***p <. 001. Cumulative R2 = .479; Adjusted R2 = .
451. Continuous predictors were centered by subtracting their means.
ap  < .10.
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value nor self-efficacy had a unique association with learning (beta = 

-.05, p = .45; and beta = .08, p = .21, respectively).

H2. Self-regulated learning will have an even larger positive effect than task  

value and self-efficacy on learning.

When ignoring other predictors, self-regulated learning was positively 

and significantly related to learning (r = .12, p < .05) but not as strongly 

as task value and self-efficacy.  Controlling for pre-test knowledge, 

expertise, minutes on the tutorial, self-efficacy, task value, and cognitive 

load, self-regulated learning was not statistically significant and had an 

even smaller beta weight (beta = -.00, p = .98) than did task value and 

self-efficacy.  In fact, as a set of predictors, these three self-reported 

learner-characteristic variables did not add predictive value to the model 

beyond pre-test knowledge, expertise, and time spent on the tutorial (R2 

Change = .012, p = .27).

H3. Learning will be greater for the PC condition than the LC condition.  

When controlling for pre-test knowledge, expertise, minutes on the 

tutorial, self-regulated learning, self-efficacy, task value, and cognitive 

load, instructional control did not reliably predict post-test scores (beta = 

-.06, p = .29).  

H4. Higher levels of cognitive load will be related to less learning.

Both when ignoring other predictors (r = -.42, p <.001) and controlling 

for all other predictors in the model (beta = -.16, p < .05), cognitive load 
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was negatively and significantly associated with learning outcomes. 

Moreover, the model was significantly improved with the inclusion of 

cognitive load (R2 Change = .019, p < .05).

H5. Instructional control was predicted to interact with both statistical  

expertise and self-regulated learning strategy.

The inclusion of both of these interactions significantly improved the 

model beyond all the main effects (R2 Change = .042, p < .01).

H5a. The benefits of PC instruction compared to LC instruction will be  

greater for novice learners than for expert learners.

The significant interaction between instructional control and statistical  

expertise indicates that novices and experts are affected differently by 

instructional control (beta = .39, p < .001).  Novices demonstrated better 

learning in the PC condition (M = 10.44, SD = 3.00) than in the LC 

condition (M = 7.32, SD = 3.01).  In contrast, experts did equally well 

regardless of instructional condition (M = 10.62, SD = 2.87; M = 11.30, 

SD = 2.22, respectively).  Follow-up analyses (see Section 3.4) were 

conducted to examine the nature of this interaction. 

H5b. The benefits of PC instruction compared to LC instruction will be  

greater for low self-regulating learners than high self-regulating learners.  

The non-significant interaction between learner control and self-

regulation of learning suggests there is no substantial difference between 
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low and high self-regulators with regards to the effect of instructional 

control (beta = -.12, p = .13).

3.4 Follow-Up Analyses Regarding Instructional Control and Statistical Expertise

To examine the significant interaction between instructional control and 

statistical expertise, an ANCOVA was conducted to examine the effects of 

instructional control and statistical expertise on post-test scores, controlling for 

pre-test scores.  The main effect of instructional control approached statistical 

significance, F(1, 196) = 3.84, p = .051, such that participants in the PC condition 

had higher adjusted post-test scores (M = 10.31, SD = 2.30) than did LC learners 

(M = 9.69, SD = 2.41).  Statistical expertise was significant, F(1, 196) = 11.04, p 

< .01, such that more experienced learners scored higher on the post-test, 

controlling for pre-test scores, (M = 10.60, SD = 2.01) than did novice learners (M 

= 9.45, SD = 2.78).  However, the main effects must be qualified by a highly 

significant interaction between instructional control and statistical expertise, F(1, 

196) = 15.31, p < .001.  Instructional control made a bigger difference for the 

novice learners than it did for the experts (see Figure 3.1).  The novices in the LC 

condition had significantly worse post-test scores than novices in the PC 

condition even adjusting for pre-test scores, F(1, 82) = 9.49, p < .01.  In contrast, 

among the expert learners, the difference between the PC and LC conditions was 

in the opposite direction and not reliable, F(1, 113) = 2.87, p = .09.
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Figure 3.1. Number of correct answers on the 15-item post-test, adjusted for pre-

test scores, as a function of instructional control and statistical expertise.

To follow-up on the statistical expertise by instructional interaction effect 

on post-test scores, separate ANOVAs were conducted on the three self-reported 

measures of self-efficacy, self-regulated learning, and task value, with statistical 

expertise and instructional control as independent variables.  Statistical expertise 

was statistically significant for self-regulated learning (F(1, 197) = 4.27, p < .05, 

d = .25) and task value (F(1, 197) = 10.88, p < .01, d = .47), and nearly 

statistically significant for self-efficacy (F(1, 197) = 3.56, p = .06, d = .28).  The 

more statistically expert participants in both instructional control conditions rated 

themselves higher on self-regulated learning and task value (see Table 3.5).  The 

main effect of instructional control was not significant for any of the three self-

ratings, p’s > .17, nor were interactions between instructional control and 

statistical expertise statistically significant, p’s > .74.
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Table 3.5

Average Self-Ratings, SD’s, and F’s by Instructional Control and Statistical  
Expertise

Mean Self-Ratings (SD)

Statistical 
Expertise

Self-
Regulation

Self-
Efficacy

Task Value

Instructional 
Control

Program 
Control

Novice 5.14
(0.81)

4.74
(1.33)

4.04
(1.70)

Expert 5.43
 (1.00)

5.03
(1.44)

4.94
(1.70)

 PC 
Average

5.29
(0.92)

4.89
(1.39)

4.51
(1.75)

Learner 
Control

Novice 5.02
(0.83)

4.42
(1.26)

4.00
(1.89)

Expert 5.28
(1.02)

4.83
(1.17)

4.73
(1.66)

LC 
Average

5.19
(0.96)

4.68
(1.22)

4.47
(1.78)

Statistical Expertise 
Averages

Novice 
Average

5.09
(.82)

4.60
(1.30)

4.02
(1.77)

Expert 
Average

5.35
(1.01)

4.92
(1.30)

4.83
(1.68)

Overall Average 5.24
(0.94)

4.79
(1.31)

4.49
(1.76)

F (1, 197)

Self-
Regulation

Self-
Efficacy

Task Value

Instructional Control (IC) 1.00 1.86 .25

Statistical Expertise   4.27*   3.56a    10.88***

IC x Statistical Expertise 0.01   .09 .11
Note. *p < .05, ***p < .001. 
ap < .07
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The ratings of Effort, Frustration, Difficulty, and Success after Sections 2 

and 3 were tested for relationships with instructional control and expertise. On 

Section 2, for Effort ratings, there were no significant main effects or interactions 

(see Table 3.6).  In contrast, for Frustration ratings, both main effects and the 

interaction were significant.  The LC tutorial was rated significantly more 

frustrating than the PC tutorial, F(1, 197) = 4.97, p < .01, and experts reported 

being less frustrated than novices, F(1, 197) = 31.88, p < .001.  These main 

effects, however, are qualified by a significant interaction, F(1, 197) = 6.92, p < .

01.  Novices reported being reliably more frustrated in the LC condition than in 

the PC condition, t(83) = 3.12, p < .01, while experts were equally frustrated in 

the both instructional conditions, t(114) = .31, p = .75 (see Figure 3.2).

On Section 2, for both Difficulty and Success ratings, there was a 

significant main effect of statistical expertise and a significant interaction between 

statistical expertise and instructional control (see Table 3.6).  Compared to 

experts, novices reported having more difficulty, F(1,197) = 19.84, p < .001, and 

being less successful, F(1,197) = 10.41, p < .01.  Novices and experts did not 

significantly differ on Difficulty in the PC condition, t(98) = 1.55, p = .12, but did 

differ in the LC condition, t(99) = 5.08, p < .001.  Similarly, novices and experts 

did not significantly differ on Success in the PC condition, t(98) = .43, p = .67, 

but did differ in the LC condition, t(99) = 4.21, p < .001.  Thus, these differences 

between novices and experts were greater in the LC condition than the PC 

condition (see Figures 3.3 and 3.4).
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Table 3.6

Average Section 2 Ratings, SD’s, and F’s by Instructional Control and Statistical  
Expertise

Mean Section-Ratings (SD)

Statistical 
Expertise

Effort Frustration Difficulty Success

Instructional 
Control

Program 
Control

Novice 4.40 
(1.50)

3.73 
(1.71)

3.94 
(1.51)

5.15 
(1.60)

Expert 4.06 
(1.72)

3.06 
(1.69)

3.46 
(1.55)

5.29 
(1.73)

PC 
Average

4.22 
(1.62)

3.38 
(1.72)

3.69 
(1.54)

5.22 
(1.66)

Learner 
Control

Novice 4.43 
(1.59)

4.81 
(1.41)

4.27 
(1.31)

4.27 
(2.01)

Expert 4.33 
(1.63)

2.97 
(1.37)

2.95 
(1.23)

5.62 
(1.23)

LC 
Average

4.37 
(1.61)

3.64 
(1.64)

3.44 
(1.40)

5.13 
(1.68)

Statistical Expertise 
Averages

Novice 
Average

4.41
(1.53)

4.20
(1.67)

4.08
(1.42)

4.76
(1.83)

Expert 
Average

4.21
(1.67)

3.01
(1.51)

3.18
(1.40)

5.47
(1.47)

Overall Average 4.29 
(1.61)

3.51 
(1.68)

3.56 
(1.48)

5.17 
(1.67)

F (1, 197)

Effort Frustration Difficulty Success

Instructional Control (IC) 0.44 4.97*      .19    1.35 

Statistical Expertise 0.90 31.88***  19.84***  10.41** 

IC x Statistical Expertise 0.25 6.92**    4.37*    6.82* 

Note. *p < .05, **p < .01, ***p < .001.
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Figure 3.2. Average Section 2 Frustration ratings as a function of instructional 

control and statistical expertise. 

Figure 3.3. Average Section 2 Difficulty ratings as a function of instructional 

control and statistical expertise. 

77



Figure 3.4. Average Section 2 Success ratings as a function of instructional 

control and statistical expertise.

Section 3 ratings showed similar patterns as did Section 2 ratings, 

although three effects that were significant in Section 2 did not attain statistical  

significance in Section 3: there was no significant main effect of instructional 

control on Frustration ratings, the interaction was marginally significant for 

Difficulty ratings, and no significant main effect of statistical expertise on Success 

ratings (see Table 3.7).  For both Frustration and Difficulty ratings, novices had 

higher ratings than experts overall, F(1, 197) = 14.46, p < .001; and F(1, 197) = 

9.74, p < .01, respectively.  The interaction between statistical expertise and 

instructional control was significant for Frustration, F(1, 197) = 6.44, p < .05; and 

marginally significant for Difficulty, F(1, 197) = 3.40, p = .06.  Novices and 
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Table 3.7

Average Section 3 Ratings, SD’s, and F’s by Instructional Control and Statistical  
Expertise

Mean Section-Ratings (SD)

Statistical 
Expertise

Effort Frustration Difficulty Success

Instructional 
Control

Program 
Control

Novice 4.40
(1.54)

3.67
(1.55)

3.94
(1.64)

5.10
(1.17)

Expert 4.00
(1.53)

3.38
(1.62)

3.65
(1.61)

4.90
(1.60)

 PC 
Average

4.19
(1.54)

3.52
(1.59)

3.79
(1.62)

5.00
(1.41)

Learner 
Control

Novice 4.24
(1.61)

4.46
(1.54)

4.35
(1.44)

4.32
(1.70)

Expert 4.19
(1.79)

3.05
(1.50)

3.25
(1.47)

5.09
(1.43)

LC 
Average

4.21
(1.72)

3.56
(1.65)

3.65
(1.55)

4.81
(1.57)

Statistical Expertise 
Averages

Novice 
Average

4.33
(1.56)

4.01
(1.59)

4.12
(1.56)

4.76
(1.47)

Expert 
Average

4.10
(1.68)

3.20
(1.56)

3.43
(1.54)

5.01
(1.51)

Overall Average 4.20
(1.63)

3.54
(1.62)

3.72
(1.58)

4.91
(1.49)

F (1, 197)

Effort Frustration Difficulty Success

Instructional Control (IC) .01 1.04    .00 1.93

Statistical Expertise .92 14.46*** 9.74** 1.80

IC x Statistical Expertise .52 6.44*  3.40a 5.23*

Note. *p < .05, **p < .01, ***p < .001.
ap  < .07
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experts did not differ significantly on Frustration in the PC condition, t(98) = .89, 

p = .38, but did differ in the LC condition, t(99) = 4.53, p < .001.  Following a 

similar pattern, novices and experts did not significantly differ on Difficulty in the 

PC condition, t(98) = .87, p = .39, but did differ in the LC condition, t(99) = 3.66, 

p < .001.  Again, the differences between novices and experts were greater in the 

LC condition than the PC condition (see Figures 3.5 and 3.6).  Neither main effect 

was significant for Success ratings, but the interaction was significant, F(1, 197) = 

5.23, p < .05.  Novices and experts had comparable Success ratings in the PC 

condition, t(98) = .71, p = .48, but novices had lower ratings in the LC condition, 

t(99) = 2.43, p < .05 (see Figure 3.7).

Figure 3.5. Average Section 3 Frustration ratings as a function of instructional 

control and statistical expertise.
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Figure 3.6.  Average Section 3 Difficulty ratings as a function of ratings as a 

function instructional control and statistical expertise.

Figure 3.7. Average Section 3 Success ratings as a function of instructional 

control and statistical expertise.
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Time spent on the tutorial was examined in an ANOVA for the different 

groups based upon instructional control and statistical expertise.  Overall 

participants spent an average of 17.5 min (SD = 12.5, median = 13.1) on the 

tutorial.  The instructional control groups differed significantly on how much time 

they spent on the tutorial, F(1, 197) = 13.76, p < .001.  PC participants spent an 

average of 20.9 min (SD = 14.8, median 17.1); LC participants spent an average 

of 14.1 min (SD = 8.6, median = 11.3).  In addition, novices spent more minutes 

on the tutorial (M = 20.8, SD = 15.5, median = 15.3) than did experts (M = 15.1, 

SD = 9.1, median = 11.7), F(1, 197) = 8.35, p < .01.  The interaction between 

instructional control and statistical was not significant, F(1, 197) = .13, p = .72 

(see Figure 3.8).

Figure 3.8. Average number of minutes spent on the tutorial as a function of 

instructional control and statistical expertise.
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The number of SD and squared deviation histogram pop-up windows used 

was also compared for the different groups, with instructional control and 

statistical expertise as between-subjects factors in an ANOVA.  Overall the 

average number of pop-ups selected was M = 8.80, SD = 8.33.  To reduce the 

skew of this variable, it was log-transformed to meet the assumptions of ANOVA 

better.  Neither main effect of instructional control or statistical expertise was 

significant, F(1, 197) = 1.25, p = .27; and F(1, 197) = .53, p = .47, respectively. 

Experts tended to use pop-ups equally across instructional conditions, while 

novices in the PC used more pop-ups (M = 10.88, SD = 9.94) than novices in the 

LC condition (M = 7.14, SD = 6.33), t(83) = 2.00, p < .05. (see Figure 3.9). 

However, the interaction between these factors failed to attain statistical 

significance, F(1, 197) = 2.45, p = .12.

Figure 3.9. Average number of SD and squared deviation pop-ups as a function of 

instructional control and statistical expertise.
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3.5 Actual Performance and Accuracy of Self-Assessments

To assess how accurate the different groups were in self-evaluating their 

performance during the tutorial, proportion of correct initial responses to 

questions on Sections 2 and 3 were compared to Success ratings.  Actual 

performance on Sections 2 and 3 and differences between sections were first 

examined in a repeated-measures ANOVA with statistical expertise and 

instructional control as between-subjects factors, and section as the repeated-

measure.  As expected, participants did worse on the more conceptually difficult 

Section 3 (M = .69, SD = .24) than they did on Section 2 (M = .85, SD = .16), F(1, 

197) = 132.10, p < .001.  The section x instructional control interaction was 

significant, F(1, 197) = 5.66, p < .05.  Differences between the sections in the PC 

condition were marginally significant, t(199) = 1.97, p = .05, but were significant 

in the LC condition, t(199) = 2.21, p < .01 (see Figure 3.10).  Overall both main 

Figure 3.10. Proportion of initial responses on tutorial overall that were correct as 

a function of section and instructional control.
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effects of instructional control and statistical expertise, and their interaction were 

significant across sections: F(1, 197) = 16.87, p < .001, F(1, 197) = 11.57, p < .01, 

and F(1, 197) = 13.36, p < .001, respectively.

Separate follow-up ANOVAs were conducted on proportion correct on 

each section.  On Section 2, both the main effects of instructional control and 

statistical expertise were significant, as well as their interaction: F(1, 197) = 8.16, 

p < .01, F(1, 197) = 14.17, p < .001, and F(1, 197) = 6.96, p < .01, respectively. 

Both of these main effects were also significant on Section 3:  F(1, 197) = 16.78, 

p < .001, F(1, 197) = 5.83, p < .05, and F(1, 197) = 12.80, p < .001, respectively. 

On Sections 2 and 3, learners in the PC condition did better (M =.87, SD = .14; 

and M = .74, SD = .19, respectively) than the learners in the LC condition (M 

=.82, SD = .18; and M = .64, SD = .26, respectively).  In addition, experts 

outperformed novices on each section (M =.88, SD = .15 vs. M = .80, SD =.18, 

and M =.71, SD = .21 vs. M = .65, SD = .26, respectively).  

However, these main effects are qualified by the significant interactions. 

There was no significant difference between novices and experts in the PC 

condition on Section 2 performance, t(98) = . 91, p = .36, but there was a 

significant expertise difference in the LC condition, t(99) = 4.05, p < .001. 

Likewise on Section 3, there was no significant difference in the PC condition, 

t(98) = . 98, p = .33, but there was in the LC condition, t(99) = 3.71, p < .001. 

Overall novices did worse than experts on each section, but these differences were 

mainly in the LC condition (see Figures 3.11 and 3.12).
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Figure 3.11. Proportion of initial responses on Section 2 that were correct as a 

function of instructional control and statistical expertise.

Figure 3.12. Proportion of initial responses on Section 3 that were correct as a 

function of instructional control and statistical expertise. 

To evaluate if different learners were more accurate in their self-

assessments on Sections 2 and 3, absolute deviation scores were calculated for 
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each participant and on each section.  Absolute deviation scores were computed in 

the following manner: (1) to convert the Success ratings to a scale comparable to 

proportion correct (0 to 1), these 1-7 ratings were subtracted by one and then 

divided by six; (2) deviation scores were calculated by subtracting proportion 

correct from the converted Success ratings; and (3) the absolute value of these 

deviation scores was computed.

These absolute deviation scores on each section were examined in a 

repeated-measures ANOVA with statistical expertise and instructional control as 

between-subjects factors, and section as the repeated-measure.  There was an 

marginally significant three-way interaction between the variables, F(1, 197) = 

3.72, p = .055; and significant effect of section, F(1, 197) = 8.47, p < .01.  Overall 

participants were less accurate at self-assessing on Section 2 (M = .21, SD = .19) 

than on Section 3 (M = .17, SD = .16).  Section did not interact significantly with 

either statistical expertise or instructional control, F(1, 197) = .10, p = .75; and 

F(1, 197) = .00, p = .97, respectively.  Overall across sections, the main effect of 

statistical expertise was significant, F(1, 197) = 6.83, p < .05, d = .36.  In self-

assessing their performance on both tutorial sections overall, novices were less 

accurate (M = .22, SD = .15) than experts (M = .17, SD = .13).  Neither the main 

effect of instructional control and their interaction were significant, F(1, 197) = .

01, p < .94, and F(1, 197) = 1.07, p =.30, respectively.

Two separate ANOVAs were conducted on the absolute deviation scores 

from the two different sections, using statistical expertise and instructional control 
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as between-subjects factors.  On Section 2, there was a significant effect of 

statistical expertise, F(1, 197) = 4.73, p < .05, a marginally significant interaction 

between statistical expertise and instructional control, F(1, 197) = 3.33, p = .07, 

and no significant effect of instructional condition, F(1, 197) = .01, p = .94. 

Novices were less accurate than experts on Section 2 (M = .24, SD = .21 vs. M = .

18, SD = .17).  On Section 3, there was also a significant effect of statistical 

expertise, F(1, 197) = 4.50, p < .05, but no significant effect of instructional 

condition, F(1, 197) = .00, p = .97, nor significant interaction, F(1, 197) = .08, p = 

78.  Novices were also less accurate than experts on Section 3 (M = .20, SD = .18 

vs. M = .15, SD = .14).  Thus, experts tended to be more accurate (i.e., have lower 

absolute deviation scores) than novices on both Sections 2 and 3 (see Figures 3.13 

and 3.14).

Figure 3.13. Absolute deviation scores on Section 2, as a function of instructional 

control and statistical expertise. These scores reflect accuracy of Success Ratings.
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Figure 3.14. Absolute deviation scores on Section 3, as a function of instructional 

control and statistical expertise.  These scores reflect accuracy of Success Ratings.

3.6 What Did Participants Learn and Not Learn?

To examine which concepts participants learned most from using the 

tutorial and which concepts remained difficult to understand, performance on 

individual items on the pre-test and post-test was examined.  Table 3.8 presents 

the overall percent correct for these items and related concepts, on the pre-test and 

post-test for the five questions involving comparing histograms in sets (H1-H5, 

see Appendix E) and the ten involving comparison of pairs (P1-P10, see Appendix 

F).  The five items that showed the most improvement were Items H5, P2, P3, P7, 

and P9.  These items illustrate the effects on the SD when changing either the 

shape or range of a distribution while keeping the other dimension constant, 

except on H5 which involved comparing multiple histograms.  On Items H5, P2, 
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Table 3.8

Percent Correct and Percent Changes from Pre-test to Post-Test by Item and  
Concept

Concept and Item Pre-test Post-test Change

Interpreting histograms

Item H1 70.6 73.1 +2.5

Item H2 57.7 61.2 +3.5

Item H3 64.7 72.1 +7.4

Identify smallest/largest SD of 5 histograms

Item H4 54.2 68.7 +14.5

Item H5 50.7 68.7 +18.0

Location shift preserves SD: Item P1 81.6 83.6 +2.0

More U-shaped distribution has larger SD when 
keeping range constant

Item P2 62.2 78.1 +15.9

Item P3 63.7 84.6 +20.9

More normal-shaped distribution has lower SD 
when keeping range constant: Item P4

41.6 43.6 +5.0

Larger range but same shape has larger SD: Item P5 78.6 87.6 +9.0

Mirror image preserves SD: Item P6 67.7 79.1 +11.4

Same shape and range, but with more scores farther 
from the sample mean has larger SD

Item P7 59.7 74.6 +14.9

Item P9 51.7 76.6 +24.9

Normal distribution may have larger SD due to 
larger range

Item P8 45.3 28.9 -16.4

Item P10 39.3 35.3 -4.0

Note. Top five positive percent-change items are bolded and negative percent-
change items are italicized. Problems involving sets of histograms are preceded 
by “H” (see Appendix E) and those involving pairs are preceded by “P” (see 
Appendix F).
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SD based upon its U-shape distribution.  On Items P7 and P9, participants had to 

recognize that when the range is the same and shape is similar across pairs of 

histograms, the larger SD is present in the histogram with more scores farther 

from the sample mean.

As delMas and Liu (2005) also found, Items P8 and P10 were the most 

difficult for participants.  On these items, participants were to integrate 

information from both the range and shape to make decisions about the SD; 

although normal distributions tend to have smaller SD’s than less normal 

distributions when the range is kept constant, the normal distributions in Items P8 

and P10 have larger SD’s due to their larger ranges.  The fact that participants 

were already sensitive to the effects of range on SD can be demonstrated by their 

relatively high pre-test and post-test performance on Item P5, where the shapes of 

the distributions are the same but one has been stretched out to occupy a larger 

range.  Thus, on Items P8 and P10, the range is overlooked and the shape 

becomes the dominating factor in deciding which histogram has a larger SD. 

3.7 Supplemental Analyses Regarding Learner-Control Participants

In the LC condition, participants could choose to view more detailed, 

explanative feedback on why they answered a question correctly or incorrectly. 

Novices tended to view more instances of this feedback (M = 2.30, SD = 3.33) 

than did experts (M = 1.50, SD = 2.12), but this difference was not significant, 

t(99) = 1.47, p = .15.  The LC participants could also choose to skip or complete 

the optional review questions at the end of Sections 2 and 3.  Tables 3.9 and 3.10 
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present the frequencies of the LC participants who skipped or completed these 

questions.  On Sections 2 and 3, 51% and 49% of the novice completed the 

review questions, respectively.  In contrast, 61% and 48% of experts did so, 

respectively.  However, the chi-square tests of independence for both Sections 2 

and 3 were not significant, χ2 (1) =.88 , p = .35; χ2 (1) = .00, p = .98, respectively. 

That is, statistical expertise is not reliably related to the frequency of doing the 

review questions.  Thus, there is no evidence that novices sought out more 

information by doing these review questions than did experts.

Table 3.9

Frequencies of Learner-Control Participants Who Did Section 2 Review 
Questions as a Function of Statistical Expertise

Statistical Expertise

Novice Expert Total

Skipped 18 25 43

Completed 19 39 58

Total 37 64 101

Table 3.10

Frequencies of Learner-Control Participants Who Did Section 3 Review 
Questions as a Function of Statistical Expertise

Statistical Expertise

Novice Expert Total

Skipped 19 33 52

Completed 18 31 49

Total 37 64 101
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Chapter 4: Discussion

4.1 Summary of Findings and Implications

This study provides evidence supporting the use of computer based 

tutorials as effective tools for teaching statistical concepts, specifically the 

concept of standard deviation.  Furthermore, the findings from this study 

contribute to the body of research on learning theories and the use of technology 

in learning on ways to support conceptual learning for students with different 

levels of expertise.  The computer-based tutorial was effective overall in teaching 

standard deviations, with an effect size of d = .42, reflecting a “medium” effect 

(Cohen, 1988) and surpassing Slavin’s (1990) threshold of .25 for an effect to be 

considered practical in educational settings.  An effect size this large is impressive 

given the tutorial’s short duration, on average of 17.5 min, and the fact that the 

post-test items were more complex than those presented within the tutorial.  

Although participants who completed the tutorial showed increased 

knowledge of standard deviation on the post-test, these learning gains were 

moderated by the learners’ statistical expertise and how much control they had 

over viewing feedback and doing integrative review questions on different 

sections.  Indeed, statistical experts, who had completed one or more statistics 

courses, demonstrated different experiences and learning outcomes using the 

tutorial than did the novices, who were mostly completing their first statistics 

course.  These experts had already learned about standard deviation in an 

introductory statistics course and were no doubt exposed to the idea of sum of 
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squared deviations in some of the more advanced statistics courses.  They also 

rated themselves higher on several learner characteristics (self-regulation of 

learning and task value) before beginning the tutorial.

The following section describes findings regarding the main hypotheses of 

the current study and discusses implications of the results:

H1. Greater task value and self-efficacy will be associated with greater learning.

When ignoring other factors, both task value (placing importance on 

learning about standard deviation) and self-efficacy (belief that the learner will be 

successful in learning about standard deviation) were significantly and positively 

related to learning.  However, when controlling for other learner characteristic 

factors, including statistical expertise, neither task value nor self-efficacy was 

uniquely associated with learning.

It is noteworthy that self-regulation of learning is significantly and 

positively correlated with self-efficacy and task value, and that, compared to 

novices, experts rated themselves higher on all three of these learner 

characteristics.  This difference between novices and experts may help explain 

why self-regulation of learning has only a small unique contribution in predicting 

learning, while statistical expertise may be a better predictor of learning.  

H2. Self-regulated learning will have an even larger positive effect than task  

value and self-efficacy on learning.

Ignoring other factors, self-regulated learning was positively and 

significantly related to learning, but not as strongly as the motivational factors, 
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task value and self-efficacy.  Controlling for other factors, self-regulated learning 

was not significantly related to learning and had an even smaller impact on 

learning than did task value and self-efficacy.  In fact, as a set of predictors, these 

three self-reported learner-characteristics did not add value to predicting learning 

outcomes.  It may not be surprising, given their relationship with statistical 

expertise, that when statistical expertise is included in predicting learning, the 

effects of these learner characteristics on learning are greatly diminished.  Perhaps 

the failure of self-regulated learning to emerge as a stronger predictor than self-

efficacy and task value is because self-regulated learning was assessed as a more 

global and multi-faceted concept (which learners may find difficult to self-assess), 

while task value and self-efficacy were easier to self-assess and more directly 

related to the online tutorial at hand.

H3. Learning will be greater for the PC condition than the LC condition.  

Learners demonstrated more learning in the PC condition than in the LC 

condition, but when controlling for other factors, including statistical expertise 

and cognitive load experienced during learning, the effect of instructional control 

on learning was eliminated.  This finding indicates that the impact of learner 

control on improving knowledge about standard deviation may be affected by 

learner characteristics and experiences while using the tutorial.  Perhaps these 

sources of variability can account for the inconsistent effects of learner control on 

learning expressed by other researchers (e.g., Lunts, 2002; Niemiec et al., 1996).

H4. Higher levels of cognitive load will be related to less learning.
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As predicted, perceived cognitive load was negatively and significantly 

associated with learning, whether other factors were ignored or controlled.  Even 

for learners of similar profiles (expertise and learner characteristics), cognitive 

load scores that are higher are associated with a lower score on learning.  Adding 

cognitive load as a factor reliably improves predicting learning outcomes beyond 

all the other factors, including learner characteristics and instructional control.

H5a. The benefits of PC instruction compared to LC instruction will be greater  

for novice learners than for expert learners.

The significant interaction between instructional control and statistical  

expertise suggests that instructional control differentially affects novice and more 

expert learners.  Follow-up analyses examining this interaction illustrate that, 

when controlling for pre-test scores, adjusted post-test scores for the novices were 

better in the PC instructional condition than in the LC instructional condition.  On 

the other hand, experts demonstrated comparable learning using either LC 

instruction or PC instruction.  Therefore, when compared to LC instruction, PC 

instruction enhanced learning more so for novices than for experts.  Self-reported 

ratings on difficulty and frustration suggest that novices in the LC condition may 

have experienced cognitive overload that negatively influenced their learning.

H5b. The benefits of PC instruction compared to LC instruction will be greater  

for low self-regulating learners than for high self-regulating learners.  

In contrast to the findings regarding statistical expertise, the non-

significant interaction between instructional control and self-regulated learning 
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suggests that the effect of instructional control on learning does not differ 

substantially between those classified as low versus high self-regulators based 

upon individuals’ self-ratings of their self-regulation of learning behaviors.

This finding may not necessarily lead to the conclusion that self-regulation 

of learning abilities has no bearing on how the learner interacts with the learning 

environment to influence knowledge acquisition processes.  Rather, it may reflect 

weakness in the measure of self-regulation and the relative difficulty of making 

accurate judgments about self-regulatory behaviors over time.  In contrast, it is 

easier for learners to report accurately a more objective, specific number 

regarding statistical courses they have taken, which reflects statistical expertise. 

In addition, although both statistical expertise and self-regulation of learning 

measures are global, statistical expertise is more directly related to the tutorial in  

terms of content and knowledge of concepts related to standard deviations.  The 

measures of self-regulation of learning were designed to capture relevant aspects 

of self-regulated learning that might take place on an interactive online tutorial  

that allowed for self-assessment opportunities and seeking additional information. 

Yet individuals may not have had enough experiences with online learning to 

make accurate subjective self-judgments of behaviors applicable to such 

environments (Joo et al., 2000; McManus, 2000), and aspects of self-regulated 

learning more influential to online learning may not have been measured by the 

items used.
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Thus, expert learners who had completed one or more statistical courses 

did not suffer from having more learner control over their learning process (i.e., 

viewing feedback and selecting to do review questions or not) on the computer-

based statistics tutorial, whereas novice learners did suffer and instead 

demonstrated better learning with PC instruction than with LC instruction. 

Learners who experienced higher cognitive load, as expressed by how difficult 

and frustrating a tutorial section was to the learner, demonstrated impaired 

learning.  Novice learners in the LC condition had the highest perceived cognitive 

load ratings on both sections.  However, certain concepts remained elusive for 

participants even after completing the tutorial.  Even though the “expert” learners 

did better than the novice learners throughout the tutorial, they still did not fully 

master the items on the post-test, especially those items that required integrating 

information about both the shape and range of the distribution.

Still, statistical expertise moderated the effects of learner control on 

overall knowledge acquisition.  Participants with more statistical expertise seemed 

to be more motivated in some regards; they reported that they valued learning 

about standard deviation more than participants who had less statistical expertise. 

Experts also reported demonstrating more self-regulation of learning behaviors. 

Self-efficacy, task value, and self-regulation of learning were all positively and 

significantly correlated with learning.  Yet after controlling for each other, 

statistical expertise alone significantly predicted better learning outcomes (for the 
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more expert learner) and moderated the effects of instructional control on 

cognitive load and learning.

Interactions between statistical expertise and instructional control were 

found throughout the tutorial in terms of performance and self-reported ratings 

regarding cognitive and motivational processes.  There was only a hint of an 

expertise reversal effect.  Compared to experts in the PC condition, experts in the 

LC version tended to do slightly better on the post-test, reported the tutorial to be 

slightly less frustrating and difficult, and reported feeling slightly more successful 

on each section.  Although these differences did not attain statistical significance, 

the data on all of these measures was in the expected direction.  These trends 

suggest that experts in the PC instruction may have experienced some cognitive 

constraints or reduced motivation by being exposed to unnecessary or unwanted 

feedback, review problems, or both.

Performance on the post-test revealed that even after completing the 

tutorial, the majority of learners still had difficulty integrating range and shape in 

making comparisons of variability, although the learners could more easily judge 

how changing just one of these dimensions affects standard deviation.  This 

deficit in statistical understanding is also reflected by the relatively worse 

performance on the conceptually more difficult Section 3 than on Section 2.  Both 

novices and experts did consistently worse on Section 3 than they did on Section 

2.  Section 2 dealt with easier principles such as the fact that histograms have the 

same standard deviation if they are mirror images.  In contrast, Section 3 dealt 
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with more difficult ideas, such as a histogram that had a smaller range could have 

the same or bigger standard deviation than a histogram with a larger range but a 

more normal shape.  Thus, Section 3 presented histograms that represented more 

complex distributions that required integrating information about both the shape 

and range of distributions to make judgments about standard deviation.  

In general, participants demonstrated over-reliance on shape in making 

standard deviation judgments, even on the post-test.  Perhaps the stated goals in 

the overview of the tutorial should have also mentioned how “range” and not only 

“shape” affects the standard deviation.  In addition, rather than just presenting a 

series of histogram pairs, perhaps more dynamic and interactive representations of 

histograms/distributions differing in standard deviations, such as by delMas and 

Liu (2005; 2007), would be useful in helping learners integrate information about 

different dimensions in making comparisons of variability.

Differences between novice and expert learners tended to diminish on 

Section 3 compared to Section 2, possibly reflecting experience with learning 

about standard deviation.  Especially in the LC condition, experts tended to be 

more accurate in self-assessing their performance on a tutorial section than 

novices; however, this difference was reduced on Section 3.  Presumably, with 

more experience with learning about statistics and a particular topic, novices can 

improve self-assessment of their performance.  On Section 2, compared to 

novices, experts were more accurate in self-evaluating their performance, 

especially in the LC condition than the PC condition (although the interaction 
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between statistical expertise and instructional control was only marginally 

significant, p = .07).  Superior accuracy of experts in the LC condition may reflect 

that having more control over their learning helps the experts to be more self-

reflective of their learning in terms of choosing to view explanative feedback or 

not for each response they gave.  More accurate self-assessment of their own 

performance by experts compared to novices in the LC condition may also be due 

to the fact that the experts did more of the optional review questions on Section 2 

than did the novices.

Cognitive load was measured by how difficult and frustrating a tutorial 

section was to a learner.  Cognitive load ratings were negatively related to 

learning, controlling for other factors including pre-test scores, instructional 

control, time spent on the tutorial, statistical expertise, and other learner 

characteristics.  Supporting Cognitive Load Theory, the novice learners in the LC 

condition, reported the highest levels of cognitive load and demonstrated the least 

learning; in contrast, expert learners learned equally well in either instructional 

control condition and tended to report equal amounts of cognitive load.  These 

self-ratings were originally conceptualized to be measures of underlying cognitive 

resources allocated for the learning tasks, yet they can also been seen as 

measuring motivational aspects.  When a task is frustrating or too difficult, a 

learner may become disengaged and discouraged.  In fact, cognitive load ratings, 

based on Difficulty and Frustration on both Sections 2 and 3, were negatively 

associated with the motivational learner characteristics of self-efficacy and task 
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value that were self-reported before the beginning the tutorial.  That is, the more a 

learner reported being confident in doing well on the tutorial and the more they 

valued learning about the standard deviation, the less frustration and difficulty 

they reported while completing the tutorial.  At the same time, compared to 

novices, experts reported higher task value and less frustration and difficulty 

overall.

Yet there is reason to believe that these cognitive load measures are not 

purely motivational or affective, but also reflect underlying cognitive processes. 

Novices in the LC condition did not differ significantly from novices in the PC 

condition on task value or how important it was to learn about standard deviation 

when beginning the tutorial.  Across instructional control conditions, novices and 

experts did not differ on their self-reported Effort ratings on both Sections 2 and 

3.  In terms of tutorial time, novices took longer than experts overall and in the 

LC version, undermining the notion that novice learners were less motivated than 

experts in the LC condition.  Additionally, in the LC condition, novices viewed 

instances of optional explanative text feedback in a way that was comparable to 

experts’.

The differential use of scaffolds may help explain the differences in 

cognitive load experienced by learners.  Compared to novices in the LC condition, 

novices in the PC condition accessed more histograms that visually depicted the 

squared deviations of individual observations and calculations of SDs.  Thus, 

novices, in the LC condition, not using these visual scaffolds may have lacked the 
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supports to integrate new knowledge with their existing schemata, contributing to 

extraneous cognitive load.  In contrast, across instructional conditions, experts 

used more equal instances of this visual scaffolding, which may have reduced 

cognitive load when coupled with their superior knowledge base, leading to better 

learning.  The histograms may also be more helpful than explanative text 

feedback.  These superiority of histograms may be due to their visual nature and 

ability to guide learners toward the correct responses, not just provide feedback 

only after responses are made.  The possibly less useful and more cognitively 

demanding explanative text feedback may have put the novices at a greater 

disadvantage for learning.  In the PC condition, novices and experts were 

presented this text feedback automatically for each of their responses.  However, 

novices in the PC condition used the most histogram scaffolds out of the four 

groups, possibly enhancing their learning more so than novices in the LC 

condition who may have been cognitively overloaded by having to decide when to 

view the explanative text feedback as well as to choose when to view these 

histograms.

To assess efficiency of learning, time spent on instruction must be 

considered along with knowledge acquired.  Considering this criterion, expert 

learners in the LC condition were the most efficient group.  They showed learning 

comparable to experts in the PC condition but spent only about two thirds as 

much time on average to complete the tutorial (M = 12.5, SD = 6.5 vs. M = 18.3, 

SD = 10.9).
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4.2 Limitations and Future Research

Garfield (2002) argued that for students to fully understand sampling, they 

need a variety of discovery learning activities and explicit instruction, including 

text or verbal explanations, concrete activities involving sampling, and 

interactions with simulated populations and sampling distributions.  She 

concluded that teaching specific training rules is not adequate.  On the other hand, 

supporting the view that teaching formal rules about reasoning can enhance 

learning, Fong, Krantz, and Nisbett (1986) improved the frequency and quality of 

statistical reasoning in sample size judgments concerning the law of large 

numbers (i.e., bigger samples result in more accurate sample means) with two 

different interventions that lasted as short as a half hour.  

The current study seems to be in the middle in terms of teaching formal 

rules versus having more experiential experiences in teaching statistical concepts, 

giving validity to both viewpoints.  The standard deviation tutorial in the current 

study was focused in duration and scope, and significantly increased the 

understanding of variability.  While not teaching rules explicitly, the tutorial used 

interactive questions and a constructivist approach with structured examples to 

teach underlying principles regarding what affects variability.  Such an approach 

resulted in overall yet inconsistent improvements in the statistical knowledge, 

suggesting a need for more expansive instruction as suggested by Garfield (2002). 

Yet even with more instruction, statistical misconceptions may form (Hodgson & 

Burke, 2000).  This underscores the need for assessment and for considering both 
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prior knowledge and new knowledge as it develops to ensure that incomplete 

understanding and misconceptions are effectively addressed by instruction. 

This study represents one step in advancing statistics education research 

by examining the effects of scaffolding, cognitive processes, motivation, and 

expertise on learning, and also by illuminating aspects of computer-based 

instruction that may enhance statistical understanding.  At the same time, some 

issues, particularly measuring cognitive load and the role of self-regulation of 

learning, remain unresolved.  Future research should examine in more detail the 

self-regulation not only of cognitive processes but also of motivational processes 

in learning (Pintrich, 2004); however, measuring these constructs remains 

challenging.  For instance, self-reported measures of self-regulated learning do 

not necessarily provide an accurate picture of actual self-regulatory behaviors 

(Puustinen & Pulkkinen, 2001).  On the other hand, there is evidence that students 

can indeed accurately judge and report their learning behaviors.  Their self-

reported use of self-regulation of learning behaviors was highly correlated with 

teachers’ ratings of students’ self-regulation of learning behaviors, r = .70 

(Zimmerman & Martinez-Pons, 1988).

In the current study, all three learner characteristics measured before the 

tutorial (self-regulation of learning, self-efficacy, and task) were positively related 

to learner outcomes when ignoring other factors.  When statistical expertise and 

cognitive load are added as factors, these three learner characteristic factors did 

not provide statistically significant unique contributions to predicting learning, 
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which is not surprising given their positive relationship with expertise.  Yet self-

regulation of learning, which was expected to have the biggest impact on learning 

outcomes, especially may be difficult to assess due to its more global and multi-

dimensional nature.  Using measures of actual behaviors reflecting self-regulatory 

practices, rather than or in addition to self-reported measures might be more 

useful to designing effective instruction, as noted by McManus (2000):

Finding a way of assessing the actual use of self-regulated learning 
strategies within an environment through pattern analysis would be more 
effective for automatically individualizing instruction than self-report 
measures such as the MSLQ. (p. 248)

Self-regulation of learning and self-directed learning, as described by 

Song and Hill (2007) and Garrison (2003), share many similarities.  In both 

frameworks, learners who are autonomous and self-motivated are predicted to 

more effectively use resources to enhance their understanding.  Both frameworks 

postulate a cyclical process involving planning, monitoring, and evaluating the 

learning process.  Both are learner-centered and emphasize the contributions of 

motivational and cognitive processes in impacting learning outcomes.  The 

research on self-regulated learning may benefit from research done on self-

directed learning.  However, as Boekaerts (1999) recognized, self-regulation of 

learning, a multi-faceted construct, still presents challenges:

The problem with a complex construct such as self-regulated learning 
(SRL) is that it is positioned at the junction of many different research 
fields, each with its own history. This implies that researchers from widely 
different research traditions have conceptualized SRL in their own way, 
using different terms and labels for similar facets of the construct. (p. 447)
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Similarly, the measurement of cognitive load remains a challenge. 

Cognitive Load Theory posits there are different types of cognitive load (Sweller, 

van Merriënboer, & Paas, 1998).  Intrinsic load and germane load are, 

respectively, neutral and beneficial to learning for experts.  In contrast, intrinsic 

load and germane load can become extraneous load for novices who lack the 

capacity to process materials as efficiently as experts, interfering with their 

learning (Kalyuga, 2007).  This makes it challenging to measure these different 

types of cognitive load for experts and novices using similar items and to 

manipulate the amount of cognitive load experienced differentially by both 

groups.  In the current study, the cognitive load measures, reflected by Frustration 

and Difficulty ratings, seemed to represent extraneous load as they were 

negatively related to learning.  Less clear is whether Effort ratings, which did not 

differ either by expertise or by instructional control, represented germane or 

intrinsic load, or some combination of the two.  Effort ratings were positively 

correlated with self-regulation of learning, but this construct was not necessarily 

associated with better learning, or thus, higher germane processing.  Intrinsic load 

reflects the inherent difficulty of the material and should vary according to the 

learner’s expertise, but experts and novices did not differ on Effort ratings. 

Previously studies have used self-reported Effort ratings to reflect either germane 

load (e.g., Gerjets et al., 2009) or intrinsic load (e.g., DeLeeuw & Mayer, 2008), 

without strong support for either classification.  

107



Measurement of statistical understanding is yet another challenge. 

Assessment is an integral component of statistics instruction (Franklin & Garfield, 

2006; Garfield & delMas, 2010; Garfield et al., 2011).  Traditionally in both 

educational and research settings, assessments are administered at the end of an 

instructional phase and have no bearing on the next instructional phase.  The 

utility of assessments, however, may be increased when the assessments are used 

to guide the types of explanations and feedback to be presented during future 

instruction.  As with pretraining or advance organizers, they may be especially 

useful even before instruction begins or even during online instruction to help 

learners self-assess their performance and make decisions about subsequent 

learning activities.

Garfield and Ben-Zvi (2008) declared that understanding the concept of 

statistical variability is much more difficult and complex than previous literature 

would suggest.  Whereas traditional assessments of understanding of variability 

focus on calculations and simple interpretations of standard deviation, inter-

quartile range, and range, Garfield and Ben-Zvi suggested assessing deeper 

conceptual understanding of variability by having students perform tasks such as 

interpreting summary measures and drawing and comparing graphs.  In addition, 

Garfield and Ben-Zvi (2005; 2008) differentiated between statistical literacy 

(knowledge of the basic language and tools of statistics), statistical reasoning 

(making sense of statistical information and making conceptual connections), and 

statistical thinking (a higher order of reasoning that mimics experts’ reasoning, 
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including understanding of theoretical underpinnings).  These different aspects of 

statistical cognitive abilities capture a range of associated skills and underlying 

knowledge that is often not assessed by traditional methods.  Garfield and Ben-

Zvi (2007) also observed that although there is some evidence for the 

effectiveness of certain types of training, there is less support for long-term 

retention and transfer of knowledge due to these training interventions.  In 

measuring an aspect of transfer of learning, the current study used assessment 

items that were intended to measure understanding of specific statistical concepts 

in more complex problems than presented during instruction.  By examining 

performance on these assessment items, it was easier to discern that even after 

completing the tutorial, learners still had issues with integrating information about 

the range and shape of distributions in making judgments about variability.

Teachers in classrooms seldom assess their students’ motivation, specify 

concrete learning goals, or teach learning strategies, all of which would enhance 

students’ ability to self-regulate their own learning (Zimmerman, 2002). 

Computer-based instruction introduces both advantages and disadvantages over 

traditional instruction.  Dynamic and interactive representations presented in 

computer-based instruction, not otherwise possible with traditional instruction, 

can enhance learning (Larreamendy-Joerns & Leinhardt, 2006).  Yet without a 

human instructor continuously monitoring the learner, it is more challenging to 

assess motivation and knowledge in online settings, and creative ways of doing so 

are required to build effective computer-based instructional tools.  Cognitive 
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engagement in distance education courses can be a critical component of learning 

(Bernard et al., 2009).  More generally, both cognitive and motivational processes, 

as well as self-regulation of learning strategies, play roles in computer-based 

learning.  Future research should examine how best to promote these processes 

and strategies that are conducive to learning in both traditional and computer-

based settings.

Even though learner characteristics, including self-efficacy and self-

regulation, are important aspects of online learning research, the features of the 

learning interface matter as well (Swan, 2004).  There will always be the need to 

scaffold online instruction and provide instructional support (Artino & Stephens, 

2009b) as well as to give learners control over their learning, although how much 

control and what kind of control are debatable (Chung & Reigeluth, 1992). 

Future research should further elucidate what kinds of scaffolds and learner 

control should be implemented to optimize learning and to minimize extraneous 

cognitive load.

Other research has shown that with continuing and extensive instruction, 

individuals can develop their domain expertise to the extent that certain scaffolds 

that were once helpful may later hamper learners as the learners become more 

proficient, reflecting the expertise reversal effect (Kalyuga, 2007).  The current 

study did not replicate the expertise reversal effect by demonstrating that experts 

are at a large learning disadvantage using PC instruction.  The current study did, 

however, indicate a non-significant trend for experts using LC instruction to 
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experience less cognitive load and more effective and efficient learning compared 

to experts using PC instruction.  

In addition, experience with online learning could possibly improve the 

accuracy of self-assessment.  The development of expertise and the relationship 

between expertise and different instructional features, such as scaffolds and 

learner control, should be further investigated.  In addition, for researchers to 

clarify which learning processes, including self-regulation practices, contribute to 

better learning outcomes, Lajoie (2008) recommended investigating how experts 

in a given domain go about learning.  Instructional design could then be used to 

encourage these self-regulated learning practices, especially important in online 

instructional settings (Artino, 2008).  Lajoie's recommendation highlights the 

influence of domain in determining what constitutes beneficial and effective self-

regulatory practices; some learning practices may be more helpful in some 

domains or contexts than others.

4.3 Concluding Remarks

From 2002 to 2008, the use of online instruction has grown substantially, 

far exceeding the growth of total enrollment at higher education institutions and 

mostly at the undergraduate level (Allen & Seaman, 2010).  The current study has 

implications especially relevant for designing effective hypermedia, computer-

based instruction that will be an essential part of online learning.  It shows that the 

benefits of learner control depend upon learner characteristics, including prior 

experiences.  Furthermore, it sheds light on the effects of expertise and cognitive 
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load on learning, which points to important avenues for future research (Kostons 

et al., 2009).  These findings have implications for the design and implementation 

of computer-based instruction in general education as well as statistics education; 

for instance, the findings highlight the need to be thoughtful about how much 

learner control should be given and the factors this decision depends upon, 

including the expertise of learners.  The findings direct researchers and designers 

where to focus their resources, thereby optimizing benefits while reducing costs. 

Especially important is promoting self-regulation of learning and self-evaluation 

when learners are using computer-based instruction (Vovides et al., 2007). 

Computer-based instruction also needs to address cognitive demands placed on 

learners and provide different kinds of scaffolding to experts and novices 

(Lambert, Kalyuga, & Capan, 2009).

In Statistics Education Research Journal’s special issue on reasoning 

about statistical distributions, Pfannkuch and Reading (2006) identified four 

themes across the five articles in the issue: (1) educational research is becoming 

more cognitive based, (2) research is generating meaningful qualitative data, (3) 

qualitative data provides rich information, and (4) statistical variation is a key 

concept closely linked to understanding data distributions.  These themes are 

consistent with the issues raised in this study.  Research relying on constructivist 

approaches to learning is cognitive-based as it advocates accounting for students’ 

existing knowledge and cognitive load, as well as considering the best external 

representations that may be presented.  Examining how instructional practices 
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differentially impact procedural and conceptual knowledge can help guide 

instructional development.  An integrative approach is warranted in assessing 

students’ statistical knowledge and, in particular, understanding of variability and 

distributions.  Such an approach recommends a variety of assessment techniques 

not just for collecting pre-test and post-test data but also for delivering optimized 

instruction and helping learners self-assess their own understanding and choose 

appropriate follow-up learning tasks.  The effectiveness of computer-based 

instruction can be enhanced with appropriate consideration of prior knowledge, 

expertise, and ongoing cognitive and motivational processes that occur during 

learning and the self-regulation of learning.
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Appendix A:  Informed Consent Form

You are being asked to participate in a dissertation research project conducted by 
Amanda Saw, a graduate student in the School of Behavioral and Organizational 
Sciences at Claremont Graduate University. 

PURPOSE: The purpose of this study is to examine how features of an online 
statistics tutorial influence learning. 

PARTICIPATION: You will be asked to complete an online tutorial on standard 
deviation, which will include questions designed to assess your knowledge and 
enhance your learning. We expect your participation to take about 30 to 50 
minutes of your time.

RISKS & BENEFITS: No risks are anticipated, beyond those associated with 
completing an online tutorial. If at any time you feel uncomfortable about giving a 
response, you may discontinue your participation without penalty. We expect the 
project to benefit you by enhancing your knowledge of fundamental statistical 
topics.

COMPENSATION: No reimbursement or payment is offered. However, if you 
are completing this study as part of a class assignment, your instructor may give 
you course credit or a comparable assignment for credit.

VOLUNTARY PARTICIPATION: Please understand that participation is 
completely voluntary. Your decision whether or not to participate will in no way 
affect your current or future relationship with Claremont Graduate University or 
its faculty, students, or staff. You have the right to withdraw from the research or 
refuse to answer any questions at any time without penalty. 

CONFIDENTIALITY: Your individual privacy will be maintained in all 
publications or presentations resulting from this study. Your name and all 
individual responses will be kept confidential by the researcher (you will be given 
a number for identification purposes). 

If you have any questions or would like additional information about this 
research, please contact Amanda Saw via email at: amanda.saw@cgu.edu. You 
can also contact my research collaborator/advisor Dr. Dale Berger at Dept. of 
Psychology, Claremont Graduate University, 123 East Eighth St., Claremont CA 
91711, or via email at: dale.berger@cgu.edu. The CGU Institutional Review 
Board, which is administered through the Office of Research and Sponsored 
Programs (ORSP), has reviewed this project. You may also contact ORSP at (909) 
607-9406 with any questions.
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You may print this form before proceeding onto the tutorial.

By checking the box, I indicate the following:
1) I understand the above information and have had all of my questions about 
participation on this research project answered. 
2) I voluntarily consent to participate in this research and may be receiving 
course credit. 
3) I am at least 18 years of age.

To continue, please indicate your consent by checking the box above and then 
clicking on the "Continue" button below.
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Appendix B: Demographic Questions

Before beginning the tutorial, we would like to ask you a few questions about 
yourself.

 1. Have you learned about standard deviations before?
__ Yes    __ No

2. What is your experience with statistics (check all that apply):
 __ None 
 __ Student 
 __ Instructor (I teach or have taught statistics) 
 __ Professional (I use statistics in my profession)
 __ Other: ________

3. How many statistics courses have you completed?
 __ None 
 __ Currently taking first course 
 __ Completed one course only 
 __ Completed multiple courses

4. What is your highest level of education completed?
 __ Less than high school 
 __ High school 
 __ Currently in college 
 __ College (B.A.) 
 __ Currently pursuing Masters 
 __ Masters 
 __ Currently pursuing PhD 
 __ PhD 

5. If you are a current student, what field are you in? ______________
6. What is your gender?   __ Female     __ Male
7. What is your age (in years)?
 __18-22 

__ 23-29
__ 30+ 

8a. Which institution/college are you affiliated with?  ______________
8b. If your instructor gave you a code, please enter it (or your name) here: 
__________
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Appendix C: Self-Efficacy and Self-Regulation Subscales of MSLQ (Motivated 
Strategies for Learning Questionnaire, Pintrich & DeGroot, 1990)

Self-efficacy for Learning and Performance (α = .93, 8 items)
5. I believe I will receive an excellent grade in this class.
6. I’m certain I can understand the most difficult material presented in the 
readings for this course.
12. I’m confident I can learn the basic concepts taught in this course.
15. I’m confident I can understand the most complex material presented by the 
instructor in this course.
20. I’m confident I can do an excellent job on the assignments and tests in this 
course.
21. I expect to do well in this class.
29. I’m certain I can master the skills being taught in this class.
31. Considering the difficulty of this course, the teacher, and my skills, I think I 
will do well in this class.

Metacognitive Self-Regulation (α = .79, 12 items)
33. During class time I often miss important points because I’m thinking of other 
things. (REVERSED)
36. When reading for this course, I make up questions to help focus my reading.
41. When I become confused about something I’m reading for this class, I go 
back and try to figure it out.
44. If course readings are difficult to understand, I change the way I read the 
material.
54. Before I study new course material thoroughly, I often skim it to see how it is 
organized.
55. I ask myself questions to make sure I understand the material I have been 
studying in this class.
56. I try to change the way I study in order to fit the course requirements and the 
instructor’s teaching style.
57. I often find that I have been reading for this class but don’t know what it was 
all about. (REVERSED)
61. I try to think through a topic and decide what I am supposed to learn from it 
rather than just reading it over when studying for this course.
76. When studying for this course I try to determine which concepts I don’t 
understand well.
78. When I study for this class, I set goals for myself in order to direct my 
activities in each study period.
79. If I get confused taking notes in class, I make sure I sort it out afterwards.
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Appendix D: Self-Ratings 
(adapted from Pintrich & DeGroot, 1990)

For each of these twelve items, the learner rated how true these statements were 
of themselves on a 1-7 scale, from “Not true at all” to “Very true of me.”

Self-efficacy (3 items)
2. I’m certain I can understand the most difficult material presented in this 
tutorial.
6. I expect to do well on this tutorial.
11. I’m confident I can learn the basic concepts taught in this tutorial.

Self-regulation of learning
 
(7 items)

3. I ask myself questions to make sure I understand the material I have been 
reading.
4. I summarize my learning to examine my understanding of what I have learned.
5. When I don’t understand something I’m reading, I go back and try to figure it 
out. 
7. I try to change the way I study in order to fit the material and learning goals.
8. When I’m told I’m wrong, I look for more information.
9. I try to think through a topic and decide what I am supposed to learn.
10. When reading I try to connect new information with what I already know.

Intrinsic value (2 items)
1. Learning about standard deviation is important to me.
12. It is important to me to do well in everything I do.
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Appendix E: Items from CAOS Test Assessing Knowledge of 
Distributions and Variability (from delMas et al., 2007)

Four histograms are displayed below. For each item, match the description to the 
appropriate histogram. 

1. A distribution for a set of quiz scores where the quiz was very easy is 
represented by:

A. Histogram I. B. Histogram II. C. Histogram III. D. 
Histogram IV. 

2. A distribution for a set of wrist circumferences (measured in centimeters) 
taken from the right wrist of a random sample of newborn female infants is 
represented by:

A. Histogram I. B. Histogram II. C. Histogram III. D. 
Histogram IV. 

3. A distribution for the last digit of phone numbers sampled from a phone 
book (i.e., for the phone number 968-9667, the last digit, 7, would be 
selected) is represented by:

A. Histogram I. B. Histogram II. C. Histogram III. D. 
Histogram IV. 
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Five histograms are presented below. Each histogram displays test scores on a 
scale of 0 to 10 for one of five different statistics classes.

4. Which of the classes would you expect to have the smallest standard deviation, 
and why? 

- Class A, because it has the most values close to the mean. 
- Class B, because it has the smallest number of distinct scores. 
- Class C, because there is no change in scores. 
- Class A and Class D, because they both have the smallest range. 
- Class E, because it looks the most normal. 

5. Which of the classes would you expect to have the greatest standard deviation, 
and why? 

- Class A, because it has the largest difference between the heights of the 
bars. 
- Class B, because more of its scores are far from the mean. 
- Class C, because it has the largest number of different scores. 
- Class D, because the distribution is very bumpy and irregular. 
- Class E, because it has a large range and looks normal.
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Appendix F: Test Items Assessing Knowledge of Standard Deviation 
(adapted from delMas & Liu, 2005)

Item A B

P1

P2

P3

P4
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P5

P6

P7

P8

P9

142



P10
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Appendix G: Tutorial Section Ratings

You have completed the second [third] section. Now it's your turn to rate this 
section.

1. Rate your mental effort on the previous part of the tutorial.
O O O O O O O

Low High

2. How difficult was this part of the tutorial?
O O O O O O O

Easy Difficult

3. How frustrating was this part of the tutorial?
O O O O O O O

Relaxing Frustrating

4. How successful do you think you were on this part of the tutorial?
O O O O O O O

Not very 
successful

Very 
Successful
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