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ABSTRACT 

Bivariate relationships play a critical role in school statistics, and textbooks are 

significant in determining student learning. In recent years, researchers have emphasized 

the importance of learning trajectories (LTs) in mathematics education. In this study, I 

examined LTs for bivariate data in relation to the development of covariational reasoning 

in three high school textbooks series: Holt McDougal Larson (HML), The University of 

Chicago School of Mathematics Project (UCSMP), and Core-Plus Mathematics Project 

(CPMP). The LTs were generated by coding for the presence of variable combinations, 

learning goals, and techniques and theories. Task features were analyzed in relation to the 

GAISE Framework, NAEP mathematical complexity, purpose and utility, and the 

CCSSM Standards for Mathematical Practice. 

The LTs varied by the presence, development, and emphases of bivariate content 

and alignment with the GAISE Framework and CCSSM. Across three series, about 80% 

to 90% of the 582 bivariate instances addressed two numerical variables. The CPMP 

series followed the GAISE’s developmental progression for all combinations whereas 

UCSMP deviated for two categorical variables. All CCSSM learning expectations were 

found in HML and CPMP but not in UCSMP. At the same time, several bivariate 

learning expectations present in textbooks were not found in CCSSM. For the task 

features, few instances were at a high level of mathematical complexity and rarely 

included a Collect Data component. Analyses revealed the accordance of the GAISE and 

mathematical complexity frameworks. Research findings provide implications for 

curriculum development, content analysis, and teacher education, and challenge the 

notion of CCSSM-aligned curricula.
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CHAPTER 1: INTRODUCTION AND RATIONALE FOR STUDY 

Rationale for the Study 

In today’s modern world, people are surrounded by data. Television news, 

newspapers, and labels for grocery products contain data in some form; all require 

appropriate interpretation. Students need to be data-literate when graduating from high 

school in order to be critical consumers of information (Franklin, Kader, Mewborn, 

Moreno, Peck, Perry, & Scheaffer, 2007). Societal needs are a force shaping priorities in 

school mathematics curricula and, hence, there is a push to place a greater emphasis on 

statistical literacy, reasoning and thinking (Ben-Zvi & Garfield, 2004; Shaughnessy, 

2007). Statistical literacy is especially important because “statistics has some claim to 

being a fundamental method of inquiry, a general way of thinking that is more important 

than any of the specific techniques that make up the discipline” (Moore, 1990, p. 134). 

Thus, in order to be productive citizens, it is essential for students to develop abilities for 

engaging in statistical inquiry. 

In addition to societal needs, professional organizations are another force shaping 

priorities in school mathematics curricula. The National Council of Teachers of 

Mathematics’ (NCTM) report of Curriculum and Evaluation Standards for School 

Mathematics (1989) and Principles and Standards for School Mathematics (PSSM) 

(2000) elevated probability and statistics from enrichment content to equal standing with 

other traditional domains such as Number Sense, Algebra, Geometry, and Measurement 

as the foundation for school mathematics. Specifically, NCTM (1989, 2000) 

recommended the introduction of probability and statistics concepts throughout the K–12 

school years. In the years since the publication of the NCTM Standards, probability and 

statistics have become more important in the school mathematics curriculum of the U.S.  
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In line with aiming to promote statistical literacy, in 2007, the American 

Statistical Association proposed the Guidelines for Assessment and Instruction in 

Statistics Education (GAISE) Report: A Pre-K–12 Curriculum Framework (2007). The 

GAISE Report described a cohesive and coherent framework for statistical education at 

Grades PreK–12 in the U.S. It was the first professional report that put an exclusive focus 

on statistics education and provided important connections to mathematics education. 

Yet another force influencing priorities in mathematics education was the recent 

joint efforts of the National Governors’ Association (NGA) and the Council of Chief 

State School Officers (CSSO). In 2010, the NGA Center for Best Practices and the 

CCSSO released the Common Core State Standards for Mathematics (CCSSM), which 

ostensibly serves as a de facto K–12 mathematics ‘national curriculum’ for the U.S. 

(Confrey & Krupa, 2012; Reys, Thomas, Tran, Kasmer, Newton & Teuscher, 2013). The 

primary purpose of the CCSSM is to provide a blueprint for the mathematics that students 

should learn in school (Heck, Weiss, & Pasley, 2011). The CCSSM identifies statistics as 

one of the major mathematics content areas that all students should have the opportunity 

to learn in school.  Statistics is included in the Measurement and Data domain of the 

CCSSM at the elementary school level, in the Statistics and Probability domain at the 

middle school level, and in the Statistics and Probability conceptual category at the high 

school level. In addition, at the high school level, Statistics and Probability are closely 

connected to the conceptual categories of Functions and Modeling. Hence, according to 

the CCSSM, statistics holds a prominent position in the school curriculum for 

mathematics in the U.S. 
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 Despite the important role that probability and statistics play in students’ lives, 

there are inherent challenges in learning and teaching statistics (Ben-Zvi & Garfield, 

2004). Given that textbooks are a strong determinant of what students experience in the 

classroom (Senk & Thompson, 2003; Stein, Remillard, & Smith, 2007), it is essential to 

examine how the learning of statistics is organized in textbook materials, yet there is a 

paucity of research examining statistical content in mathematics textbooks.  

Curriculum standards, textbooks, and assessments collectively provide insights 

into what is considered important for students to learn. Curriculum standards represent an 

intended curriculum but do not constitute a written curriculum, textbook curriculum or 

implemented curriculum. Along with the intended curriculum, textbooks serve as another 

indication of what is important in school mathematics (Senk & Thompson, 2003; Stein et 

al., 2007). In conjunction with the assessed curriculum, textbooks serve accountability 

and control functions (Woodward, 1994). Of all the factors influencing the teaching and 

learning of mathematics, textbooks arguably play the most crucial role in helping 

students learn mathematics. 

Although textbooks are not solely accountable for students’ achievement, they do 

play an important role in student learning (Stein et al., 2007; Willoughby, 2010). Students 

draw upon textbooks as one of the primary resources of examples and tasks for learning 

(Reys, Reys, & Chavez, 2004; Stein et al., 2007). It is essential to examine the 

opportunities in textbooks for students to learn mathematics. However, there is limited 

formal research on curriculum analysis (Mesa, 2004). 

Embedded in textbooks are lists of topics, a sequence of the topics, and 

instructional strategies, which serve as a resource for teachers’ instructional decision 
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making (Grouws & Smith, 2000;Tarr, Chavez, Reys, & Reys, 2006).  In textbooks, 

teachers find guidance about important topics and the sequencing of those topics. 

Examining the introduction and development of content evident in textbooks can identify 

the opportunities for students to learn. However, few studies have undertaken the 

systematic evaluation of statistical content in secondary mathematics textbooks. 

The construct of learning trajectories appeared in recent research literature as a 

way to conceptualize the progression of student thinking in specific content (e.g., 

Clements & Sarama, 2004; Confrey, Maloney, Nguyen, Mojica, & Myers, 2009; Daro, 

Mosher, & Corcoran, 2011). Researchers have emphasized the role of learning 

trajectories in different aspects of mathematics education including curriculum 

development, instruction, and assessment (Battista, 2004; Clements & Sarama, 2004; 

Confrey et al., 2009; Daro et al., 2011). Research on learning trajectories has primarily 

been conducted for elementary and middle school mathematics (Battista, 2004; Clements 

& Sarama, 2004; Confrey et al., 2009). In contrast, there has been limited research about 

LTs for secondary mathematics. Moreover, there have been no formal studies regarding 

LTs for bivariate data, which is arguably one of the most important topics in high school 

statistics. 

Statement of the Problem 

The importance of textbooks and the lack of systematic curriculum analysis in 

regard to textbook content related to statistics and probability indicate a need for content 

analysis based on rigorous methodological standards (NRC, 2004). Such an analysis has 

the potential to provide information and guidance for textbook selection as well as 

curriculum design. This study addresses the lack of available information regarding 
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analysis of statistical content as presented in textbooks currently used in mathematics 

courses in the U.S. 

There is also a need to examine existing textbook curriculum in terms of 

alignment with the CCSSM (Heck et al., 2011); such an analysis may provide curriculum 

developers’ and teachers’ perspective about the focus of the core content and what 

alignment with the CCSSM means. “Monitoring the extent and nature of alignment of a 

variety of curriculum materials with the CCSSM…will be revealing regarding the 

potential reach of the standards” (Heck et al. 2011, p.20). An analysis of existing 

curricular materials has the potential to inform the revision process of textbook materials. 

Bivariate relationships are among the important statistical concepts in school 

curricula (CCSSI, 2010; Jones, Langrall, Mooney, & Thornton, 2004; NCTM, 2000). In 

particular, the CCSSM (2010) addresses the concept of covariation as one important 

content area at the high school level. Further, many problems in statistics relate to 

multivariate situations that involve covariational reasoning (Shaughnessy, 2007). This 

research examines constructs of bivariate relationships in secondary textbooks through 

learning trajectories and nature of tasks related to bivariate data.  

Purpose of the Study 

The purpose of the study is three-fold: (1) to analyze current secondary 

mathematics textbooks’ portrayal of topics in bivariate relationships, (2) to assess the 

alignment of the textbooks’ bivariate relationships with the CCSSM and the GAISE 

Framework as found in teacher’s guide of the textbooks, and (3) to examine the nature of 

tasks related to bivariate data. 
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Research Questions 

Given the importance of textbooks in determining the scope and sequence of 

bivariate data content, this study investigates the following research questions: 

1. What learning trajectories for topics in bivariate data are represented in high 

school mathematics textbooks in the U.S.? How are those learning trajectories 

similar to and different from those embedded within the Common Core State 

Standards for Mathematics (CCSSM)? To what degree are the learning 

trajectories found in textbooks aligned with the developmental levels described in 

the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

Report? 

a. What topics in bivariate data are addressed in the textbooks and what 

learning trajectories for bivariate data are evident in the textbooks?  

b. How are connections made between the topics in bivariate data and topics 

in univariate data in the textbooks? How are connections made between 

bivariate data and other conceptual categories in mathematics at the high 

school level? 

c. To what extent are the CCSSM standards for bivariate data at the high 

school level evident in the textbook materials, and to what extent does the 

approach to, and sequence of, content in the materials reflect the 

developmental progressions of the topics described by the GAISE 

Framework? 
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2. With respect to bivariate data, what is the nature of the instructional tasks 

presented in textbooks?  Do the tasks provide opportunities for students to access 

the CCSSM’s Standards for Mathematical Practice (SMP)? 

a. What levels of mathematical complexity are required by the tasks related 

to bivariate data? 

b. To what degree are the GAISE developmental levels reflected in the tasks 

related to bivariate data? 

c. What is the quality level of the tasks in terms of purpose and utility? 

d. How do the tasks provide opportunities for students to access the 

CCSSM’s Standards for Mathematical Practice? 

Conceptual Perspectives 

Content Analysis 

Rigorous and comprehensive curriculum analysis is crucial to meaningful 

evaluation of curricular effectiveness. In 2004, the National Research Council (NRC) 

provided recommendations about curricular evaluation, hereafter referenced as the NRC 

Report. The NRC Report identified three approaches to measuring curricular 

effectiveness: content analyses, comparative studies, and case studies. Situated at the 

heart of curricular evaluation, content analysis plays a pivotal role. Ensuring 

“comprehensiveness, completeness, and accuracy of topic” and considering “if the 

sequencing forms a coherent, logical, and age-appropriate progression” (p. 43) provides 

insightful information about content. The authors of the NRC Report recommended three 

dimensions to address in content analysis: 
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1. Clarity, comprehensiveness, accuracy, depth of mathematical inquiry and 

mathematical reasoning, organization, and balance (disciplinary perspectives). 

2. Engagement, timeliness, and support for diversity, and assessment (learner-

oriented perspectives). 

3. Pedagogy, resources, and professional development (teacher- and resource-

oriented perspectives). (p. 93) 

While the learner-oriented and teacher- and resource-oriented perspectives of curricula 

are crucial in content analysis, the focus of this study is on the disciplinary component as 

presented in textbooks. Specifically, I consider “the importance, quality, and sequencing 

of mathematics content” (p. 40). The NRC Report further identified a number of factors 

to consider in content analysis that I have slightly modified for use in this study. The 

factors I considered include: (textbook) emphasis on context and modeling activities, the 

type and extent of explanations provided, problem solving, the use and emphasis on 

reasoning and sense making, the relationships among the mathematical strands, and the 

focus on calculation, symbolic manipulations, and conceptual development (Table 1). 

Table 1  
Factors to consider in content analysis of mathematics curricular materials (Adapted 
from NRC, 2004)	
  

• Listing of topics 
• Sequence of topics 
• Clarity, accuracy, and appropriateness of topic representation 
• Pace, depth, and emphasis of topics 
• Overall structure: integrated, interdisciplinary, or sequential 
• Types of tasks and activities, purposes, and level of engagement 
• Use of prior knowledge, attention to (mis)conceptions, and student strategies 
• Focus on conceptual ideas and algorithmic fluency 
• Emphasis on analytic/symbolic, visual, or numeric approaches 
• Types and levels of reasoning, communication, and reflection 
• Type and use of explanation 
• Form of practice 
• Approach to formalization 
• Use of contextual problems and/or elements of quantitative literacy 
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Learning Trajectories  

Learning comes about and accumulates over time; effective instruction is often 

based on information that came before and will come after the current learning goal. The 

construct of learning progressions in general and learning trajectories (LT) in 

mathematics education offer pathways for the development of student learning in 

mathematics. According to Daro et al. (2011), both learning progressions and learning 

trajectories are rooted in Simon’s (1995) use of the term hypothetical learning trajectory 

(HLT) and consist of: “the learning goals that define the direction, the learning activities, 

and the hypothetical learning process– a prediction of how the students’ thinking and 

understanding will evolve in the context of the learning activities” (p. 136).  

 Simply put, LTs are paths that lead to students’ learning and understanding of 

increasingly complex mathematical concepts. They show key waypoints along the path in 

which students’ knowledge and skills are likely to grow and develop in school subjects 

(Corcoran, Mosher, & Rogat, 2009). They “involve both the order and nature of the steps 

in the growth of students’ mathematical understanding, and about the nature of the 

instructional experiences that might support them in moving step by step toward the goals 

of school mathematics” (Daro et al., 2011, p. 12).  

 Historically, LTs were scope and sequence charts that developers used when 

designing curricular materials (Daro et al., 2011). The scope and sequence of learning 

formed the backbone of curriculum and assessment. They were normally based on the 

logic of mathematics and on the conventional wisdom of practice that the profession 

thinks school mathematics should be. Learning trajectories go further to include testable 

hypotheses related to their practicality in classroom with support from empirical data on 
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student learning. The hypotheses are validated when the learning of the content is 

accomplished.  In this sense, LTs are “empirical choices of when to teach what to whom” 

(Daro et al., 2011, p. 12) 

Within this study, the focus is on hypothetical learning trajectories, not on 

empirical validation. I seek to provide insight as to how curriculum developers and 

textbook authors choose to include topics related to bivariate data, how the topics are 

sequenced, and how the topics build upon each other. In addition, I examine the 

connections among different strands in mathematics (e.g., functions and statistics) and in 

what way curriculum developers link these strands.  

Instructional Tasks 

 The construct of instructional tasks has been the focus of several studies. “An 

instructional task is an activity engaged in by teachers and students during classroom 

instruction that is oriented toward the development of a particular skill, concept, or idea” 

(Stein & Lane, 1996). In the Mathematical Task Framework, Stein and Lane provided a 

series of task variables and associated factors. In particular, instructional tasks pass 

through three phases: (1) as represented in curriculum/instructional materials, (2) as set 

up by the teacher in the classroom, and (3) as implemented by students during the lesson. 

For the scope of this study, I focus on instructional tasks that are represented in textbooks 

with the assumption that there will be transformations of the tasks in subsequent phases.  

Furthermore, instructional tasks (as presented in textbooks) are examined in terms 

of cognitive demands (Stein & Lane, 1996). The cognitive demands facet refers to the 

kinds of thinking processes that are involved in solving each task. It is related to the level 

and kind of cognitive effort that students make when engaging in the tasks. The cognitive 
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demands facet of tasks is approached somewhat differently than that of Stein and Lane 

(1996) by the National Center for Education Statistics (NCES, 2007). They provided a 

framework that identifies three levels of mathematical complexity: low complexity, 

moderate complexity, and high complexity. These levels specify the cognitive demands 

of the items appearing on the National Assessment of Educational Progress (NAEP). The 

specific characteristics of each level are subsequently described; NCES framework for 

mathematical complexity was used to code the levels of cognitive demands in each task 

presented in the textbooks analyzed. 

Along with standards for content, the CCSSM contains eight mathematical 

practice standards that are included in students’ learning process. The eight practices 

describe expectations that students:  

1. Make sense of problems and persevere in solving them. 

2. Reason abstractly and quantitatively. 

3. Construct viable arguments and critique reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precisions. 

7. Look for and make use of structures. 

8. Look for and express regularity in repeated reasoning. (pp. 6–8) 

In this study, I carefully examine the features of tasks in order to gauge whether they 

offer the opportunity for students to learn the SMPs.  

GAISE Framework	
  

 The GAISE Framework, a 6 x 3 matrix, lists four key components of the 
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statistical process and provides three developmental levels for each. More specifically, 

the first four rows identify the four process components when learning statistics 

including: formulate question, collect data, analyze data, and, interpret results; the fifth 

and the sixth rows relate to the nature of variability and the focus of variability. The 

columns represent three developmental levels: students begin awareness of the statistics 

question distinction, students increase awareness of the statistics question distinction, and 

students can make the statistics question distinction (for detailed descriptions of the 

framework, see Figure 1). Using the GAISE Framework, I examined each learning task 

and identified which components of statistics were addressed and the task’s 

developmental level. Further, I used the progression for bivariate data suggested in the 

GAISE Framework to compare with those found in the textbooks. 

Task – Technique – Theory Framework (TTT) 

Artigue (2000, 2002) based on Chevallard’s theory of practices, built a model 

consisting of task, technique, and theory. In general, task refers to something that needs 

to be done, to be undertaken; specifically, the task often has mathematical objects such as 

numbers and relations embedded within it.  Technique is “a complex assembly of 

reasoning and routine work” that is used to solve the tasks (Artigue, 2002, p. 248). 

Technique is a method to carry out the process required of the tasks. Hence, the technique 

can be a simple routine process or a complex reasoning process when the solution is not 

readily available. Theory serves as a discourse explaining or justifying the techniques. It 

might be a cognitive structure constructed to serve as a warrant for validating techniques. 

Using this framework, I identify techniques that are likely to be employed when solving 

the tasks related to bivariate data suggested by the curriculum/textbook authors or on the 
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Figure 1.  GAISE Framework. From Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report – A 
Pre-K–12 Curriculum Framework by C. Franklin, G. Kader, D. Mewborn, J. Moreno, R. Peck, M. Perry, & R. Scheaffer, 
2007, Alexandria, VA: American Statistical Association, pp. 14-15. Copyright 2007 by the American Statistical Association. 
Reprinted with permission. 
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logic of mathematics. The data to be gained from analyzing tasks, techniques and theories 

provided information about learning goals, learning activities, and the hypothetical 

learning processes for the learning trajectories. In particular, analyzing the set of tasks 

related to bivariate relationships provides data describing the learning activities; the 

techniques and theories provide information about what is to be gained after solving the 

tasks and the process in which students engage in order to achieve the goals. 

Purpose and Utility Framework 

Ainley and colleagues (Ainley, Bills, & Wilson, 2003; Ainley & Patt, 2002; 

Ainley, Patt, & Hansen, 2006) provided a framework for the development of instructional 

tasks. The framework includes two aspects: the purposeful and utility features of tasks.  

The purposeful feature of tasks relates to the outcome of completing the task for the 

learner. A purposeful task provides challenge and relevance and creates the necessity for 

the learner to use and/or apply the target knowledge to create a meaningful outcome 

(Ainley et al. 2003; Ainley & Patt, 2002; Ainley et al., 2006). The utility feature of tasks 

relates to “knowing how, when, and why that mathematical idea is useful” (Ainley et al., 

2003, p.195). Students know how the mathematical concepts are used as tools to solve a 

set of problems. 

In this study, I use the framework developed by Ainley and colleagues to code the 

purpose and utility features of each task to evaluate how the bivariate data tasks are set up 

in the textbooks. In particular, I examine tasks to determine if, when solving the task, 

students are afforded opportunities to understand when, how, and why the mathematical 

ideas are used (utility) and if the task produces an end product (purpose). Data about the 

purpose and utility features of tasks provide another source of information to add to 
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mathematical complexity, statistical components, developmental levels, and 

mathematical practices when analyzing the multiple aspects of the opportunities 

textbooks provide for students to learn bivariate data content. 

Definitions 

In this section, I provide a list of terms that are used throughout this study. The 

terms are operationalized to fit the purpose of this study. They are rooted in the 

disciplines of mathematics and statistics as well as in mathematics education, and serve to 

facilitate communication and understanding in the field.  

Learning Trajectories 

Within the scope of this study, learning trajectories are considered at two levels: 

macro level and micro level. At the macro level, learning trajectories include big ideas 

(Baroody et al., 2004), an ordered network of constructs that students are likely to move 

through when learning particular content (bivariate data, in this study). At this level, they 

are extensions of the scope and sequence of topics “embedded within conceptual 

corridors” (Confrey et al., 2009, p. 346). At the micro level (lesson level), learning 

trajectories are: 

descriptions of children’s learning in a specific mathematical domain, and a 

related conjectured route through a set of instructional tasks designed to engender 

those mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking, created with the intent of 

supporting children’s achievement of specific goals in that mathematical domain. 

(Clements & Sarama, 2004, p. 83) 
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Given that the order of units, lessons, and tasks in the textbooks reflect the flow of the 

development of a concept, examining the sequence reveals learning trajectories. 

Bivariate Relationships (Covariation)  

Bivariate data are pairs of linked variables. Bivariate relationships or covariation 

concerns correspondence of variations; that is, how two variables change together. 

“Statistical covariation refers to the correspondence of variation of two statistical 

variables that vary along numerical scales” (Moritz, 2004, p. 228). It includes the 

correlation when dealing with numerical variables, and association for categorical 

variables. Reasoning about covariation is the process of translation among raw numerical 

data, graphical representations, and verbal statements about statistical covariation and 

causal association (Moritz, 2004). Another process might involve using mathematical 

tools to interpret the association of data or fitting the data to a functional equation 

(Moritz, 2004). These collectively serve as a framework to examine the concept of 

covariation in student learning. 

Significance of the Study 

Results from this study describe how the content of bivariate data is treated in 

U.S. secondary mathematics textbooks. The study has the potential to contribute to the 

understanding of different approaches to teaching bivariate data to foster student learning. 

An additional benefit is the information the study provides regarding the alignment 

between current curricular materials with the CCSSM; this information might help 

curriculum developers bridge the gap when reviewing and developing the next generation 

of high school mathematics textbooks. 
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A careful analysis of learning trajectories in mathematics textbooks can shed 

additional light on different approaches used when teaching and learning the topics. In 

doing so, the study serves as a means to evaluate curriculum coherence. The results might 

also provide insight for future researchers to compare multiple hypothetical learning 

trajectories. Such information has the potential to offer background for further research 

focusing on advantages and disadvantages of the trajectories, to consider whether the 

trajectories are suitable for the targeted students. In addition, results could provide useful 

guidance for developing a seamless set of curricular materials for student learning of 

topics in high school statistics. 

It is predicted that the CCSSM will have a major impact on revision of curriculum 

materials and curriculum design projects, and in turn influence teaching and learning in 

the U.S. (Heck et al., 2011). To assess the influence of the standards in mathematics 

education, it is critical to address the alignment of curriculum materials to the intent of 

the standards. This study can help bridge the gap in the research about the meaning of 

alignment and, in turn, to examine its influence on mathematics education. In addition, 

the results of this study can provide to curriculum developers with the suggestion about 

the development of bivariate data the CCSSM addresses and how to present the content 

in order to support meaningful learning.  

As the NRC (2004) noted, when evaluating a curriculum it is not valid to draw 

conclusions without first analyzing the mathematical content. This analysis can address 

the content portion in program evaluation. This research can provide information about 

content storylines in bivariate data when researching the impact of the curriculum on 

student learning.  
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Summary 

There are numerous high school textbooks series available in the U.S. The quality 

of content, sequence, and presentation is important in helping teachers make instructional 

decisions and foster student learning. Consequently, there is an immediate need to 

conduct textbook analysis particularly in key topics in school mathematics such as 

bivariate data. However, there has been a scarcity of research on this topic. Therefore, 

this study addresses an existing gap in the research literature and has the potential to 

inform curriculum developers as they revise and design new materials. Curriculum 

evaluators will find the study useful when addressing fidelity of implementation of the 

curriculum. Moreover, this study can provide insight into the coherence and rigor of the 

content. In turn, it can offer teachers a perspective in the interpretation of the CCSSM, 

and what alignment with the CCSSM means in practice. Finally, it adds to the research 

on content analyses in mathematics education using the construct of learning trajectory as 

the primary focus of this study.  
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CHAPTER 2: LITERATURE REVIEW 

A wide range of literature informed this study of learning trajectories for bivariate 

data in high school textbooks. In particular, research related to learning trajectories 

helped formalize the components of learning trajectories and informed the selection of 

data sources collected from curricular materials. Furthermore, research about bivariate 

relationships, covariation, helped to set the boundary for the inclusion and exclusion of 

tasks to be coded and served as a repertoire of learning expectations, techniques, and 

strategies involved in solving bivariate data tasks. In addition, the learning trajectories 

related to bivariate data suggested in the GAISE Framework are summarized. Finally, the 

literature related to textbook analysis helped inform the research design of this study.  

In this chapter, I summarize how different researchers conceptualize the construct 

of learning trajectories (LTs) and use examples to illustrate their views. I also discuss 

how researchers link LT with many aspects including curriculum development, 

instruction, and assessment. Next, I examine research related to students’ covariational 

reasoning in different fields. Finally, I conclude the chapter with a summary of the 

research methods employed in the analyses of curriculum materials.  

Learning Trajectories 

In this section, I describe the construct of learning trajectories (LTs). In addition, I 

discuss definitions of LTs, their origins, prominent models of the construct, and the ways 

the construct is utilized in conjunction with other aspects of mathematics education that 

are aimed toward improving student learning.  
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Multiple Definitions of Learning Trajectories 

The construct of LTs is rooted in Simon’s (1995) notion of hypothetical learning 

trajectory (HLT). Simon placed the construct at the core of the mathematics teaching 

cycle, using it to frame mathematics pedagogy from the constructivist perspective, which 

emphasizes learning over teaching. In the cycle, the reflective relationship between 

teachers’ design of tasks and consideration of students’ thinking and learning becomes 

apparent. According to Simon, the teacher uses knowledge of mathematics and his or her 

hypotheses about students’ understanding to frame the trajectory; the assessment of 

students’ knowledge helps modify the trajectory as learning progresses (Figure 2).  

 

Figure 2. Mathematics teaching cycle. Adapted from “Reconstructing mathematics 
pedagogy from a constructivist perspective,” by M. A. Simon, 1995, Journal for 
Research in Mathematics Education, 26, p. 136. Copyright 1995 by Copyright Clearance 
Center, Inc.  

According to Simon (1995), an HLT consists of three components: “the learning 

goal that defines the direction, the learning activities and the hypothetical learning 
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process – a prediction of how the students’ thinking and understanding will evolve in the 

context of learning activities” (p. 136). From the learning goal, the teacher plans the 

instructional activities or sequence to address the goal and determines the student 

learning process accordingly. An HLT “refers to the teacher’s prediction as to the path by 

which learning might proceed” (p. 135). However, because the teaching may not go as 

predicted, the teacher might change the initial goal and plan based on an assessment of 

students’ actual learning.  

To develop a meaningful HLT, it is necessary to specify the goals in terms of 

knowledge and skills the students will apply. It is not that the teacher always pursues one 

goal or one trajectory at a time, but it underscores the importance of having a learning 

goal and a rationale for instructional decision-making, and for developing a hypothetical 

trajectory of students’ thinking processes. Teachers might pose a task, but the students’ 

experiences when they engage in the task determine their actual learning. Teachers plan 

for classroom learning activities; however, interactions with students may create a 

learning experience that is different from the planned experience. There is a modification 

of the teacher’s ideas and knowledge as he or she makes sense of what is actually 

occurring in the classroom. The assessment of student thinking brings about a further 

adaptation in the teacher’s knowledge and understanding that brings about the creation of 

a new or modified HLT in the mathematics teaching cycle. 

Building on Simon’s (1995) HLT construct, Clements and Sarama (2004) defined 

learning trajectories as: 

descriptions of children’s thinking and learning in a specific mathematical domain 

and a related, conjectured route through a set of instructional tasks designed to 
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engender those mental processes or actions hypothesized to move children 

through a developmental progression of levels of thinking, created with the intent 

of supporting children’s achievement of specific goals in that mathematical 

domain. (p. 83) 

According to Clements and Sarama (2004), a LT includes three components: 

learning goals, a developmental progression, and a sequence of instructional tasks. 

Starting from a learning goal, researchers constructed student-learning models to 

illustrate the developmental progressions through the levels of “sophistication, 

complexity, abstraction, power, and generality” (p. 83). From the model, key tasks are 

developed to promote students’ targeted learning. By interacting with objects and actions 

inherent in the tasks, students can achieve the desired learning goal. The tasks are 

sequenced to correspond to the model developed and “constitute a particularly efficacious 

educational program” (p. 84). Clements and Sarama used LTs as paths the student 

thinking process is likely to follow and that have the likelihood of happening when 

learning specific mathematical concepts.  

In line with Simon’s (1995) conceptualization, Clements and Sarama (2004) 

asserted that the LT of specific topics is not completely known in advance; rather it is a 

conjectured path that provides important key points throughout the student learning 

process and an ongoing construction of students’ model of learning when 

teachers/researchers interact with the students. From a constructivist perspective, the LT 

serves as a cognitive model for student learning that leads to building the instructional 

sequence. However, the LT might be viewed from a social perspective through a 

reconceptualization of the construct as “a sequence (or set) of (taken-as-shared) 
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classroom mathematics practices that emerges through interaction (especially through 

classroom discourse – with the proactive involvement of the teacher)” (p. 85). Thus, 

learning is created within the social context of the classroom. 

Standing on an empirical perspective, Confrey et al., (2009) used the LT construct 

as a basis for their synthesis “to unpack complexity by revealing characteristics of 

gradual student learning over time” (p. 346).  In that sense they defined learning 

trajectory as: 

A researcher-conjectured, empirically supported description of the ordered 

network of constructs a student encounters through instruction (i.e. activities, 

tasks, tools, forms of interaction and methods of evaluation), in order to move 

from informal ideas, through successive refinements of representation, 

articulation, and reflection, towards increasingly complex concepts over time. (p. 

346) 

For this definition, they assume multiple possible paths and various obstacles that 

students typically encounter. They highlight the characteristics of LT: researcher-

conjectured, empirically supported, and successively refined through instruction. Confrey 

and Maloney (2010) stated that the LT is not  

a hard-and-fast order in which topics must be learned for students to be 

successful, they permit specification, at an appropriate and actionable level of 

detail, of ideas students need to know during the development and evolution of a 

given concept over time. (p. 1) 

Studying LT within the context of classroom activities, Steffe (2004) described 

the LT as a co-product of teachers and students interacting with each other. That is, they 
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are both inquirers when participating in the same world. He asserted, “Through the 

construction of learning trajectories that are co-produced by children, it is possible to 

construct learning trajectories of children that include an account of one’s own ways and 

means of acting and operating as a teacher” (p. 130). According to Steffe, the LT 

involves intensive interaction with children and is abstracted from acts of teaching: 

A learning trajectory of children includes a model of their initial concepts and 

operations, an account of the observable changes in those concepts and operations 

as a result of the children’s interactive mathematical activity in the situations of 

learning, and an account of the mathematical interactions that were involved in 

the changes. (p. 131) 

Researchers from various cultures have conceptualized the construct of learning 

trajectories, but they use different terminologies. Gravemeijer (2004), in the tradition of 

the Realistic Mathematics Education (RME) group, provided the construct of local 

instruction theories, which is quite similar to the construct of learning trajectories. 

Consistent with Simon’s (1995) HLT, a conjectured local instruction theory is composed 

of three components:  

(a) learning goals for students, (b) planned instructional activities and the tools 

that will be used, and (c) a conjectured learning process in which one anticipates 

how students’ thinking and understanding could evolve when the instructional 

activities are used in the classroom. (pp. 109–110) 

 The local theory serves as guidance for teachers to frame their instruction so that 

the activities help develop students’ current way of thinking into increasingly 

sophisticated ways of reasoning. 
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Graphical Representations of Learning Trajectories 

In addition to narrative definitions and descriptions of LTs, several researchers 

have graphically conceptualized LTs. For example, Lesh and Yoon (2004) 

conceptualized learning trajectories, which they referred to as model-eliciting activities, 

as an inverted genetic inheritance tree model (Figure 3):  

problem-solving situations in which goals include developing more powerful 

constructs or conceptual systems. Therefore, significant conceptual developments 

occur because students are challenged to repeatedly express, test, and revise their 

own current ways of thinking—not because they were guided along a narrow 

conceptual path toward (idealized versions of their teacher’s ways of thinking) (p. 

205) 

Lesh and Yoon (2004) criticized the ladder-like model of learning trajectories and 

pointed out the limitations of branch-tree models (Figure 3). The ladder-like approach – 

moving from informal to sophisticated understanding of specific constructs – is useful for 

curriculum developers whose goal is to guide students toward deeper understanding of 

important concepts in mathematics. However, the ladder-like approach has inherent 

problematic assumptions, such as the implication that development occurs linearly and 

bounded into a neat sequence. In contrast, branching tree diagrams have the advantage of 

fitting emerging ways of thinking; thus, allowing teachers to be flexible and adapt the 

activities. In addition, teachers may take both cognitive and social aspects into account. 

However, with the branching tree approach, it might be the case that “one perspective is 

treated as being more ‘politically correct’ than others” (p. 208). For example, there is the 

danger that some student thinking is rejected because the community does not favor it.  
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Figure 3. Ladder-like linear sequences, branching tree diagram, and genetic inheritance 
tree models of learning trajectories. Adapted from “Evolving communities of mind-in 
which development involves several interacting and simultaneously developing strands,” 
by R. Lesh & C. Yoon, 2004, Mathematical Thinking and Learning, 6, p. 225. Copyright 
2004 by Lawrence Erlbaum Associates, Inc.  

Along with attending to the role of teachers as guiding students along paths that lead to 

target goals, Lesh and Yoon suggested shifting the focus to activities that involve 

students in specifying learning trajectories. Hence, the LT resembles an inverted genetic 

inherence tree (Figure 3), emphasizing the integration and differentiation of diverse ways 

of thinking.  

Consistent with Lesh and Yoon’s (2004) perspective of the generic inheritance 

tree, Baroody, Cibulskis, Lai, and Li (2004) presented the concept of big ideas as 

guidance for hypothetical learning trajectories (HLTs). Baroody et al. suggested focusing 

on big ideas to make HLTs more practical. They modified the generic inheritance tree 

model proposed by Lesh and Yoon (2004) to create big ideas model of learning trajectory 

(Figure 4). This model links and integrates multiple branches of the inheritance tree. 

Thus, one large (overarching) idea can serve as the connector to several big ideas in 
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different content areas; in turn, each big idea can do the same for topics within the 

content. 

 

 

 

 

 

 

 

 

 

 

	
  

Figure 4. Big ideas tree model. Adapted from “Comments on the use of learning 
trajectories in curriculum development and research,” by A. J. Baroody, M. Cibulskis, M. 
–l. Lai, & X. Li, 2004, Mathematical Thinking and Learning, 6, p. 255. Copyright 2004 
by Lawrence Erlbaum Associates, Inc. 

Examples of Forming and Using Learning Trajectories 

Many researchers use the construct of LT to operationalize student learning in 

early mathematics such as spatial sense (e.g., Clements, Wilson, & Sarama, 2004) and 

major topics in mathematics such as rational number reasoning (e.g., Confrey et al., 

2009). Clements et al. (2004) operationalized the genesis of an HLT in young children’s 

learning of the composition of geometric shapes. They described the process of creating 
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an HLT and instrumentation to assess student learning along the developmental 

progression within the trajectory. Building on previous research on the geometric shapes 

topics, they developed a tentative developmental progression and relevant activities to 

guide student learning. Then they tested both developmental progression and instruments 

through a series of studies including formative case studies and summative studies of a 

larger number of participants.  The process included both teaching and learning 

throughout the processes of designing, testing, recognizing variations, and further 

refinement of the initial HLT. 

In another program of research, Confrey and colleagues (e.g., Confrey & 

Maloney, 2010; Confrey et al., 2009) described the sophisticated process leading to the 

genesis of equipartitioning learning trajectory. They started from an exhaustive research 

synthesis examining the theoretical claims and empirical evidence about equipartitioning, 

where they found areas of consensus in the field of mathematics education. Their 

synthesis of the research determined that the process of forming a LT passes through 

three phases: (a) using cases to build an initial learning trajectory; (b) iteratively 

developing the trajectory through the process of research synthesis and empirical 

investigation involving clinical and think-aloud interviews; and (c) designing assessment 

item response analysis and rubric development moving from small-scale to large-scale 

studies. Confrey et al. focus was on generating assessment tasks rather than developing 

curricular materials based on LTs research. 

Focusing on curriculum design, the RME local instruction theory approach (e.g., 

Gravemeijer, 2004) is similar to the process of design experiments. Researchers 

formulate HLTs by identifying a possible learning route and specific means (learning 
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activities) to support that learning by using the historical development of mathematical 

concepts as a heuristic, and then taking students’ informal solution strategies into 

account. A “best-case” instructional sequence is formed through several phases of 

refinement beginning with designing preliminary tasks and refining them in a series of 

processes of implementation in various classroom settings. This process leads to a local 

instruction theory that classroom teachers can use to construct trajectories that are 

sensitive to their student learning. 

In the tradition of RME, Gravemeijer (2004) used an example of addition and 

subtraction up to 100 to illustrate characteristics of the local instruction theory. Instead of 

a ready-made plan or an instructional sequence that works, the research “offers teachers 

an empirically grounded theory on how a certain set of instructional activities can work” 

(p. 105). This process takes into account ongoing personal input from students about their 

learning; thus, placing student learning rather than curriculum materials as the guide for 

learning activities.  

Previous studies report the process of forming LTs and use it in different phases 

of mathematics education. Indeed, learning trajectories have an essential role in 

improving learning and teaching of mathematics. Daro et al. (2011) stated, “We have 

concluded that learning trajectories hold great promise as tools for improving instruction 

in mathematics, and they hold promise for guiding the development of better curriculum 

and assessments as well” (p. 13). 

Several researchers have provided models of using the LT to inform classroom 

instruction at the elementary level (Clement & Sarama, 2004; Gravemeijer, 2004; Simon, 

1995). Learning trajectories are not deterministic; some LTs are more likely than others 
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to be followed and are more productive than others. Instruction that capitalizes on the 

“best case” learning trajectory will be the most effective in helping students and 

informing teachers about what to expect from students (Gravemeijer, 2004; Daro et al., 

2011). A well-developed learning trajectory provides an empirical basis for the choice of 

what to teach, to whom, and at what time. They “offer a stronger basis for describing the 

interim goals that students should meet in if they are to reach the common core college 

and career-ready high school standards” (Daro et al., 2011, p. 12). With knowledge of 

learning trajectories, teachers are well positioned to understand the evidence of learning 

that can be derived from students’ work and to use such information to inform their 

classroom instruction. 

In addition to the development and implementation of learning trajectories it is 

important to look at the role of LT in assessment. Battista (2004) provided the model of 

cognition-based assessment (CBA) for elementary school mathematics. Cognition-based 

assessment details the cognitive underpinnings of the progression of learning specific 

content, and emphasizes the developmental progression aspect of learning. Battitsta 

provided a conceptual framework based on levels of sophistication ranging from 

informal, pre-instructional reasoning to formal mathematical concepts. Under this model 

of assessment, teachers need to understand cognition-based research on students’ learning 

and use the results to determine and monitor the development of their own students’ 

reasoning. A CBA includes:  

(a) Descriptions of core mathematical ideas and reasoning processes,  

(b) Research-based descriptions of the cognitive constructions students must 

make in developing understanding of the idea, and  
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(c) Coherent sets of assessment items that enable educators to investigate 

students’ cognitions and precisely locate students’ positions in the constructive 

itineraries typically taken in acquiring competence with the idea. (pp. 188–189) 

With CBA, teachers can identify students’ position in the levels-of-sophistication 

framework to know what cognitive processes and conceptualizations students must 

acquire to make progress in learning/thinking. Using this information, teachers can make 

reasonable conjectures for instructional tasks that encourage development of higher levels 

of sophistication in the progression of student learning. 

Researchers also emphasize roles of LTs in designing curricular materials 

including standards and textbooks (Clement & Sarama, 2004; Confrey et al. 2010; Daro 

et al., 2011). With the knowledge about LTs for content areas, standards can take 

advantage of the sequence of big ideas in school mathematics. Learning trajectories 

support coherence and rigor in standards and curriculum development by addressing 

cognitive development, mathematical coherence, and the pragmatics of instructional 

systems (Daro et al., 2011).  

The common components of LTs, described by the previous researchers, helped 

inform data collection procedures for this study. That is, for the purpose of this study, 

LTs are identified as big ideas or a network of corridors (Baroody et al., 2004; Confrey et 

al., 2009). The learning trajectory is based on: (a) the learning goals (Clements & 

Sarama, 2004; Gravemeijer, 2004; Simon, 1995) the authors described in the curriculum 

materials, (b) the activities (Clements & Sarama, 2004) presented in the materials (such 

as the order of tasks), and (c) the link between the learning goals and learning activities 

and among activities. The student learning process (Clements & Sarama, 2004) while 
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engaged in the activities was interpreted accordingly based on the introduction and 

development of content evident in textbooks.  

Bivariate Relationships (Covariation) – Association and Correlation 

This section summarizes studies related to bivariate relationships. In particular, 

the conceptualization of multiple types of covariation and multiple aspects of 

covariational reasoning are included in the review. Furthermore, the learning trajectories 

related to bivariate data suggested in the GAISE Framework are summarized. Specific 

studies are described in the following paragraphs. 

Covariation involves the association of two or more variables – the 

correspondence of variations. Moritz (2004) categorized covariations into types: logical, 

numerical, and statistical covariation. Logical covariation involves logical variables, 

which have values of either true or false as in A=NOT (B). The value of A varies when 

the value of B changes from true to false to maintain the correct equation. Numerical 

covariation concerns functional relationships between two or more real variables. 

Common forms of functions, such as polynomial, rational and piecewise, are categorized 

in this type of covariation. The last type of covariation, “statistical covariation[,] refers to 

the correspondence of the variation of two statistical variables that vary along numerical 

scales” (p. 228). In most cases, the statistical association does not fit the deterministic 

models as in logical and numerical covariation. Instead, formal statistical tests are often 

involved to measure the degree of fit or variation of the models.  

When considering the nature of two variables in a bivariate relationship, there are 

three combinations: (1) two numerical variables, (2) two categorical variables, and (3) 

one categorical variable and one numerical variable. As depicted in Table 2, the term 
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correlation is often used for linear relationships between two numerical variables and is 

involved in making scatterplots and calculating regressions; statistical association is 

generally used for two variables (e.g., expressed in frequency tables and chi-square tests 

for two categorical variables); and the covariation judgment is reasoning about the 

relationship between two variables.  

Table 2 

Combinations of two variables in bivariate relationships 

 Numerical Data Categorical Data 
Numerical Data Correlation and Regression Comparing Groups 
Categorical Data Comparing Groups Association – Two-way Tables 
 

Moritz (2004) described the characteristics of reasoning about covariation –  

 covariational reasoning – as follows: 

Reasoning about covariation commonly involves translation processes among raw 

numerical data, graphical representations, and verbal statements about statistical 

covariation and causal association,…calculating and interpreting statistical tests 

of association, mathematical modeling to fit data to a specific functional equation, 

and translating to and from symbolic expressions of algebraic functions. (p. 228)  

Accordingly, I organize the literature on covariation into two sections: research related to 

graphing covariational relationship and studies that involved interpreting covariation. 

Representing Covariation in Graphs 

There has been substantial research involving point-wise construction and 

interpretation of graphs, such as, locating and plotting values (e.g., Bell & Janvier, 1993; 

Moritz, 2004). However, there has been a scarcity of research related to variation and 

qualitative graphs (Clement, 1989; Leinhardt, Zaslavsky, & Stein, 1990). Studies 

reported in this section involve examining student reasoning when transferring from 



	
   34	
  

verbal descriptions related to covariation into graphical representations (Bell, Brekke, & 

Swan, 1987a, 1987b; Coulombe & Berenson, 2001; Krabbendam, 1982; Mavarech & 

Kramarsky, 1997; Moritz, 2000, 2002, 2004; Swan, 1985, 1988; Watson & Moritz, 

1997).  

Watson and Moritz (1997) provided tasks requiring students in grades 6 and 11 to 

produce graphs to describe a nearly perfect relationship between increased heart rate and 

motor vehicle use. They developed a three-tier framework: (1) a basic understanding of 

stochastic terminology, (2) an understanding of stochastic language and concepts 

embedded in context of wider social discussion, and (3) a questioning attitude to apply 

more sophisticated concepts to contradict claims for coding students’ response. They 

found that most students were too willing to accept anything they read from the print 

related to claims about association and had difficulty graphing the association between 

the events. They also found that the students who performed well at the third level of the 

framework questioned whether there was an actual cause-and-effect relationship between 

the two events.  

 Moritz (2000) studied a similar problem, which asked students to graph increasing 

and curvilinear functions. Moritz used a three-tier coding scheme: unsuccessful, partial, 

and complete to categorize students’ responses. Related to curvilinear function graphing, 

he found that most students in grades 4–6 responses were coded in the partial or complete 

tiers. Students in grade 4 had difficulty with multivariate association tasks, in particular 

about one-third of grade 4 students’ responses were rated unsuccessful in multivariate 

association tasks. However, most grade 6 students’ gave complete responses. The task of 

representing multiple variables posed difficulty for most students, and most students at 
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grade 4 tried to reduce complexity by attending to selected data or selected variables as a 

means to reduce the complexity. 

In related studies, Moritz (2002, 2004) provided a similar task to students in 

grades 3, 5, 7, and 9, requiring them to graph positive and negative associations from a 

verbal description. Based on an analysis of student work, Moritz determined four tiers of 

responses: nonstatistical, single aspect, inadequate covariation, and appropriate 

covariation. He found that most students demonstrated at least tier-three responses while 

many older students performed at tier-four. More specifically, student responses were 

rated higher when graphing positive associations (one quantity tends to increase when the 

other increases) and when the association depicted by the graph was consistent with 

students’ prior beliefs and knowledge about the relationship between the two quantities.  

Krabbendam’s (1982) research focused on 12- to 13-year-olds’ ability to construct 

graphical representations of data. He concluded, “it appears to be rather difficult for 

children to keep an eye on two variables…[but that] time could play an important part in 

recording a relation” (p. 142). The findings support a view of attending to continuous 

variation rather than point-wise approach and utilization of time as an inherent 

independent variable when studying covariation.  

Other researchers have examined students’ ability to graph various kinds of 

association. Swan (1988) asked students to represent, for a fixed total cost of a bus, how 

the price per ticket varies with the size of the group. He found that more than a third of 

192 of the 12- to 13-year-old students drew a graph that showed a decreasing trend. 

Mevarech and Kramarsky (1997) extended the research for different kinds of 

associations. They found that more than half of 92 grade 8 students appropriately labeled 
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two axis graphs to represent verbal statements of positive association (“the more she 

studies, the better her grades”), negative association, and no association, whereas most 

students had difficulty representing curvilinear association. 

Some researchers have utilized contexts that are consistent with students’ prior 

beliefs of covariation for graph production. Researchers found that there is a natural 

mapping of time on the horizontal axis and another variable on the vertical axis (e.g., 

Ainley, 1995; Brasell & Rowe, 1993; Moritz, 2000, 2004). Such findings provide a 

rationale for using time as an implicit independent variable when developing the concept 

of covariation for students. 

Graphically displaying covariation was shown to be important content to include 

in textbook analysis. In particular, the literature helps inform a focus for looking into 

curricula: examining opportunities for students to translate between verbal statements 

about association to graphs. In addition, types of association are of interest in the analysis 

because research has shown that students’ performance varies with types of association 

displayed in graphs (e.g., linear, curvilinear)  

Interpreting Covariation 

Many researchers have investigated association in a variety of disciplines such as 

in social psychology (e.g., Alloy & Tabachnik, 1984; Crocker, 1981; Ross & Cousins, 

1993), science education (e.g., Bell & Janvier, 1981; Donnelly & Welford, 1989; 

Swatton, 1994; Swatton & Taylor, 1994), mathematics education (e.g., Brasell & Rowe, 

1983; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Clement, 1985), and statistics 

education (e.g., Batanero, Estepa, Godino, & Green, 1996; Batanero, Estepa, & Godino, 

1997).  The following section discusses research involving categorical data and numerical 
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data specifically as it relates to covariational reasoning. 

Research involves categorical data. 

In this section, I discuss the research literature related to categorical and 

numerical data and synthesize research from the fields of psychology, science education, 

mathematics education and statistics education. 

Research in psychology. A substantial body of research related to people’s 

judgments about categorical data, especially dichotomous data, has been conducted in the 

field of psychology. Generally, psychology researchers have been concerned with how 

people judge the covariation of events and what evidence they use to support their 

judgments (e.g., Crocker, 1981; Shaklee & Turker, 1980). Almost all researchers in this 

field have utilized one sample at one time-point to examine judgments related to 

covariation. 

 Research designs in this field have involved a traditional quantitative approach 

with large sample sizes of subjects ranging from young children to university students 

and adults. Most of the tasks included a two-way table, using dichotomous data. In only a 

few studies (e.g., Inhelder & Piaget, 1958; Lovell, 1961; Neimark, 1975; Smedslund, 

1963) were students required to sort the data themselves. Most studies asked people if 

there was any relationship between the variables and how they justified their conclusions 

about the relationship with given data.  

 Data collected were often coded with preconceived schemes, which were similar 

to the following hierarchy: 

 Event B Not Event B 
Event A [a] [b] 

Not Event A [c] [d] 
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• Level 1: Subjects used data/information only from one cell; usually, cell [a] 

• Level 2: Subjects compared [a] with [b] or [a] with [c] 

• Level 3: Subjects compared [a] with [b] and [a] with [c] 

• Level 4: Subjects used four cells, employing additive comparisons. 

• Level 5: Subjects used four cells, employing multiplicative comparison (Perez 

Echevarria, 1990). 

Most research studies have used randomized treatments and applied traditional 

quantitative analysis such as ANOVA to yield results. 

Although covariational reasoning is important in everyday lives, many researchers 

from psychology have concluded that people are generally poor at assessing relationships 

within data. In particular, people more often base their interpretation on their prior beliefs 

rather than data at hand and use deterministic thinking when judging covariation (Alloy 

& Tabachnik, 1984; Crocker, 1982; Jennings, Amabile, & Ross, 1982; Kuhn, Amsel, & 

O’Louglin, 1988; Kuhn, Garcia-Mila, Zohar, & Andersen, 1995; Nisbett & Ross, 1980; 

Peterson, 1980; Smedslund, 1963; Snyder, 1981; Snyder & Swann, 1987; Ward & 

Jenkins, 1965; Wason & Johnson-Laird, 1972).  

 In addition to the above findings, researchers found that people often hold an 

illusory correlation when judging covariation. Chapman (1967) defined illusory 

correlation as when people form a correlation between two events that “(a) are not 

correlated, (b) are correlated to a lesser extent than reported, or (c) correlated in the 

opposite direction from that which is reported” (p. 151). People often form the correlation 

of events based on their memory rather than the existing data (such as a positive 
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relationship between high price and quality of the products even though the data might 

suggest the opposite). This finding was consistent with other research in the psychology 

literature (e.g., Chapman & Chapman, 1967, 1969; Crocker, 1981, Fiedler, 1991). 

A second consistent finding regarding covariational reasoning, was that people 

tend to judge associations mostly based on the joint presence of the events (Level 1) and 

are less influenced by the joint absence of the events (Kao & Wasserman, 1993; Inhelder 

& Piaget, 1958; Levin, Wasserman & Kao, 1993; Lipe, 1990; Schustack & Sternberg, 

1981; Smedslund, 1963; Wasserman, Dorner & Kao, 1990 or use the sum of two cells [a] 

and [d] (Shaklee & Tucker, 1980). People do not appear to understand that both the 

presence and absence of events have the same meaning concerning the association, even 

though they admitted that cell [d] in the two-way table was also related to the existence of 

the association. Complete strategies involved using the quantities either 𝑅 = !!! !(!!!)
!!!!!!!

 

when confirming/disregarding the association (Inhelder & Piaget, 1958) or !
!!!

− !
!!!

, 

when marginal frequencies for the independent variable did not occur equally (Jenkins & 

Ward, 1965). 

Findings from other studies indicated that people have difficulty with negative 

associations (e.g., Beyth-Marom, 1982; Erlick, 1966; Gray, 1968). Other researchers 

found that subjects’ covariational judgment of the relationship between two variables 

tends to be smaller than the actual correlation presented in the data) (Jennings, Amabile, 

& Ross, 1982; Kuhn, 1989; Meyer, Taieb, & Flascher, 1997; Shaklee & Mims, 1981; 

Shaklee & Paszek, 1985) – a result that is in conflict with illusory correlation.  

Yet another consistent finding was that people tend to form causal relationships 

based on the correlation between two events (Crocker, 1981; Heider, 1958; Inhelder & 
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Piaget, 1958; Kelley, 1967; Ross & Cousins, 1993; Smedslund, 1963; Shaklee & Tucker, 

1980). In addition, people tend to dismiss an association in the data because there was no 

apparent causation or because other variables were more plausible causes (Crocker, 

1981). 

Other studies of covariational reasoning analyzed the conditions in which people 

tend to form more appropriate judgments about association. For example, people tend to 

present more accurate judgments about association when they are provided with detailed 

instruction addressing covariational reasoning (Allan & Jenkins, 1983; Ross and Cousins, 

1993; Jerkins & Ward, 1965; Shaklee & Tucker, 1980). In addition, they formulate 

association judgments better when data are given in easy-to-process formats such as in 

table form (Ward & Jerkins, 1965) and low frequency of data/cases in the cells of two-

way tables (Inhelder & Piaget, 1958). In other studies, if data are provided 

simultaneously people perform better than when given one case at a time (Seggie & 

Endersby, 1972; Smedslund, 1963).  

Another issue in covariational judgment research concerns the role of theory in 

judging. Although people tend to use their prior beliefs to form covariational judgments, 

Alloy and Tabachnik (1984) found that it is better to start with a theory/belief about the 

relationship between the events in mind rather than to be blinded about the events. That 

is, theories and data at hand collectively influence covariational judgments. 

Research in the field of psychology has not targeted the improvement of students’ 

learning regarding covariational reasoning; however, it instructs us about common 

misconceptions and difficulties people might demonstrate when reasoning about 

covariation. Next, issues related to student learning are addressed in research in science 
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education and statistics education. 

Research in science education. The research questions of interest in science 

education have been rather similar to those of psychologists. However, the focus of 

science educators has been how students used covariational reasoning in a specific 

educational context such as solving science-related problems. For instance, science 

education researchers asked students to judge if a correlation exists between events and 

how strong the relationship is (e.g., Adi, Karplus, Lawson, & Pulos, 1978). Echoing the 

claims about importance of covariational relationship, science educators assert that such 

reasoning is fundamental to scientific reasoning. 

Research methodology in science education was similar to that in psychology, but 

often involved a smaller number of participants, without randomized assignment to 

treatments, and the employment of qualitative data analyses. Findings from science 

education are rather consistent with the field of psychology. For example, two findings 

that mirror those from psychology are that students tend to use sub-optimal solution 

strategies to determine whether relationships exist in the data and form a causal 

relationship from correlational analysis (e.g., Adi et al., 1978). 

Research in statistics education. Several research studies in the field of statistics 

education considered (a) how technology impacts a student’s ability to judge the degree 

of covariation between two variables, (b) if students respond differently to tasks if they 

hold prior beliefs about the covariation they expect to see, (c) how they utilize strategies 

when carrying out the tasks, and (d) in what ways instruction help build covariational 

reasoning in students  (Batanero et al., 1997; Batanero et al., 1996; Batanero et al., 1998; 

Cobb, McClain, & Gravemeijer, 2003; Konold, 2002; Zieffler, 2006).  
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 Similar to research in science education, investigations in statistics education 

have been often conducted when teaching bivariate data in secondary schools or at the 

college level. Statistics educators utilized in-depth interviews with smaller sample sizes 

or used responses to questionnaires with larger sample sizes. Researchers used emerging 

coding schemes in their analyses (e.g., Batanero et al., 1997; Batanero et al., 1996; 

Batanero et al., 1998). Research in this field tends to extend 2x2 tables to 2x3 and 3x3 

contingency tables.  

Batanero et al. (1996) found that three factors affect the performance of students 

on contingency tasks: the dimensions of tables, students’ previous beliefs or theories 

about the context of the problem, and a lack of understanding of inverse association. In 

addition, their findings highlighted strategies that led to correct judgments including:  

(a) comparison of the conditional relative frequency distribution of one variable, 

when conditioned by the different values of the other variable, or comparison 

between these conditional distributions and the marginal relative frequency 

distribution, and  

(b)  comparison of frequencies of cases in favor of and against each value of the 

dependent variable B or comparison of ratio of these frequencies in each value 

of the independent variable A. (p. 166)  

In addition, Batanero and colleagues provided examples of incorrect strategies 

students demonstrated: (a) determinist conception, “considered that	
  cells [b] and [c] in 

the [2x2] table ought to be null in order to assume association”; (b) unidirectional 

conception, “considered that the frequency in cell [d] ought to be greater than the 

frequency in cell [c] in order to admit the existence of association”; (c) and a localist 
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conception, “compared the relative frequencies in only one conditional distribution” (p. 

165). Their findings also highlighted various combinations evident in students’ work: 

correct strategy and incorrect judgment, partially correct strategy and incorrect judgment, 

and incorrect strategy and correct judgment. 

Concerned with the impact of technology on student learning, Batanero and 

colleagues (Batanero et al.1997; Batanero et al. 1998) examined whether a computer-

based teaching experiment would improve 17- and 18-year-old secondary and 20-year-

old university students’ strategies of judging statistical association. Both studies asked 

students to assess the existence of correlation between two variables given to them in a 

2x2 contingency table. In these studies, Batanero and colleagues found an overall 

improvement in students’ strategies, and a persistence of unidirectional and causal 

misconceptions in some students after an intensive teaching experiment including 21 

sessions of 1.5 hours with one third of them working on statistical laboratory. In 

particular, students moved from comparing data points to the whole set of data, from 

absolute frequencies in the tables to relative frequencies, and overcame deterministic and 

localist conceptions of association. However, no improvement was observed in inverse 

association items and items in which correlation is due to concordance not causal 

influence. 

Findings in judging the covariation of categorical data cited one main category to 

attend to in the coding process. The literature indicates that misconceptions when judging 

covariation are worthy of examination in curriculum analysis because it is likely that the 

misconceptions will be exhibited when students solve covariation tasks. In particular, 

findings related to students’ difficulty when confronting situations that were 
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contradictory to their general beliefs about relationship inform the need to focus on 

examination of the context provided in the tasks. Finally, it is essential to document 

strategies textbook authors offer for tasks related to judging covariation and if the 

difference between correlation and causation is addressed in curricular materials.  

Research involves numerical data. 

As is the case with covaration, researchers in the fields of psychology, science 

education, mathematics education, and statistics education have examined the concept of 

association. The problems of concern have involved how well people judge correlation 

based on data provided in table format or graph forms, how theories influence people’s 

judgments, and what factors influence the judgment process.  

Research in psychology. Researchers in psychology approach numerical data and 

categorical data similarly. They have utilized traditional empirical approaches with 

random treatments to compare large sample-sized group performances in their research 

designs. Traditional statistical analyses, such as t-test or ANOVA, have been employed to 

draw conclusions about people’s covarional judgement (Bobko & Karren, 1979; Erlick & 

Mills, 1967; Cleveland, Diaconiss, & McGill, 1982; Konarski, 2005; Lane, Anderson, & 

Kellam, 1985; Ross & Cousins, 1993; Trolier & Hamilton, 1986; Wright & Murphy, 

1984). 

Consistent with students’ reasoning about categorical variables, students often 

performed poorly on tasks requiring covariational reasoning, and often focus on 

individual points rather than the data as a whole when making judgments. Furthermore, 

students experienced more challenges when judging negative association and naïve 

students tended to bias toward positive correlation (Erlick & Mills, 1967). They tended to 
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carry their theories into judging covariation about current data (Ross & Cousins, 1993; 

Wright & Murphy, 1984) and form causal relationships when making judgments about 

covariation (Ross & Cousins, 1993). Moreover, when the data at hand confirmed their 

beliefs about the relationship, students felt more confident judging the covariation. 

However, when data at hand did not confirm their beliefs, accuracy in their judgment of 

covariation depended on the relative strength of the two sources of information, previous 

beliefs and data at hand (Wright & Murphy, 1984).   

Several researchers explored the factors that affect correlational judgments, 

including representation forms, slope of the regressions, and deviations. In particular, 

students tended to make better judgments with graphs than tables, and their judgment was 

more influenced by the variance of error than variances of X or slope (Lane et al., 1985). 

Further, positive bias of estimates appeared when sequences included a few large and 

many small deviations versus all intermediate deviations (Erlick & Mills, 1967).  

Across many studies (e.g., Beach & Scopp, 1966; Erlick & Mills, 1967, Jennings 

et al., 1982), one consistent finding was that people tend to perform better in 

covariational reasoning with numerical data than categorical data. In addition, it appears 

that the ability to make a valid judgment for one type of data (e.g., categorical data) is not 

transferred to the other type of data (e.g., numerical data) (Ross & Cousins, 1993). 

Furthermore, people tend to develop their covariational judgment when aging (Ross & 

Cousins, 1993).  

Research in science education. Although a few studies related covariation of 

numerical data have been conducted in science education, most of them are related to 

research in the comprehension of graphs. For example, Wavering (1989) examined 
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students’ ability when doing a variety of tasks related to graphs such as scaling the axes 

and found they performed poorly due to their deficiencies in logical reasoning. Wavering 

also linked the successful completion of different tasks to different levels of reasoning 

within the hierarchy of Piagetian framework related to covariational reasoning.  

Research in mathematics education. Mathematics educators have approached 

covariational relationship somewhat differently, often looking at the covariational 

reasoning as related to functional thinking and rate of change (e.g., Carlson et al., 2002; 

Clement, 1989). Research in this field has used qualitative approaches to analyze 

students’ reasoning while solving problems. With in-depth interviews, researchers have 

gained a deeper understanding of the thinking processes that were taking place.   

Carlson et al. (2002) provided college students with the following task:  

“(i)magine this bottle filling with water. Sketch a graph of the height as a function of the 

amount of water that is in the bottle (p. 360).” Researchers found that most students, even 

after training in Calculus had challenges addressing the rate of change. In addition, 

representation aids, such as aesthetics of graphs, kinesthetic or physical enactment of 

certain problems appeared to support the students in their ability to reason correctly about 

covariation (Carlson, 1998; Carlson, 2002; Carlson et al., 2002; Carlson, Larsen, & 

Jacobs, 2001). Their research suggested the need for students to learn the concept of 

function by focusing on the covariational aspect through real life events. 

In line with other fields, mathematics educators have highlighted the importance 

of covariational reasoning specifically for learning algebra (Nemirovsky, 1996) and 

calculus (Carlson et al., 2002; Kaput, 1992; Thompson, 1994). Researchers found that the 

interpretation of covariation is slow to develop among students (e.g., Monk, 1992; Monk 
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& Nemirovsky, 1994; Nemirovsky, 1996), and students tend to look at graph of a 

function at pointwise rather than depicting covariation (Kaput, 1992; Thompson, 1994). 

Research in statistics education. A rich body of research literature regarding 

numerical data comes from the field of statistics education. Some researchers have asked 

students to assess the correlation co-efficient from a scatterplot (e.g., Stockburger, 1982; 

Estepa & Batanero, 1996) and interpret correlation coefficient (e.g., Sotos, Vanhoof, 

Noortgate, & Onghena; Truran, 1995) while others have incorporated technology into 

teaching and learning covariational reasoning (e.g., Batanero et al., 1997, Batanero et al., 

1998), and studied students’ development processes when learning the concept of 

covariation (e.g., Dierdorp, Bakker, Eijkelhof, & Maanen, 2011; Zieffler, 2006). Most of 

these studies have applied qualitative methods with in-depth interviews or employed an 

experimental design with a small sample size of secondary or university students. 

Moreover, they have used qualitative coding schemes to categorize students’ responses, 

applying coding schemes from their predecessors in psychology (Batanero, Estepa, & 

Godino, 1997; Batanero, Godino, & Estepa, 1998; Estepa & Batanero, 1996; Estepa & 

Cobo, 2001; Moritz, 2004; Stockburger, 1982).  

Estepa and Batanero (1996) examined senior secondary school students’ ability to 

read scatterplots and make correlation judgments. They found that students were accurate 

when provided with one coordinate to find the other coordinate using given graphs. They 

also found that the spread in the scatterplot influenced students’ judgment of the 

correlation. Estepo and Batanero emphasized that strategies such as using increasing, 

decreasing or constant shape of a scatterplot and comparing the scatterplot with a familiar 

function helped students at least to be partially correct. Other strategies that hindered 
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students from making correct judgments included: determinist conception of correlation, 

localist conception of correlation, and causalistic conception of correlation. 

More recently, research has explored the role of statistical technology tools in 

learning and teaching (e.g., Batanero et al., 1997; Batanero et al., 1998; Konold, 2002). 

Along with assessing students’ reasoning with categorical data, researchers have 

examined students’ learning of correlation for numerical data. Building a course of 

instruction for university students, Batanero et al. (1997, 1998) characterized the process. 

Working with statistical software that provided instant feedback, students showed 

improvement in their strategies, moving beyond merely choosing an algorithm to solve 

the tasks. 	
  

Some researchers have examined students’ covariational reasoning in relation to 

the comprehension of graphs (e.g., Bell & Janvier, 1981; Brasell & Rowe, 1993). Bell 

and Janvier (1981), in their comparative teaching experiment, found that most secondary 

students holding a local perspective were weak in interpreting global graphical features in 

order to extract information about contextual situations. This result is consistent with that 

of Brasell and Rowe (1983) who found that high school students had more difficulty 

comprehending graphs with derived variables more than directly measurable variables, 

and students had difficulty linking graphs with verbal description. 

Konold (2002) had a different view regarding people’s judgment of covariation. 

He suggests that people are not poor at judgments, but have trouble decoding the ways in 

which the relationships are displayed when using TinkerPlots statistical software. When 

some features of TinkerPlots such as the color-superimposing gradient were used, middle 

school students performed well when judging the correlation. He posited that by 
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manipulating the software, students divided the process into two stages: (1) anticipating 

what will be seen, and (2) examining the new display. 

Descriptions of the Progressions within the GAISE Framework 

In the previous section, I describe research literature related to bivariate data. In 

this section, I summarize the recommendations for bivariate data learning trajectories in 

the GAISE Framework (Franklin et al., 2007). Specifically, I discuss the three levels of 

statistical maturity for bivariate data as described within the GAISE Framework. 

Following is the summary of the progression for each combination of variables in the 

GAISE Framework.  

Two categorical variables. The authors of the GAISE Framework identify Level 

B as an appropriate level to first address the relationship of two categorical variables. At 

Level B, problems concern the association between two events (categorical) such as: “Do 

students who like rock music tend to like or dislike rap music? (Franklin et al., -. 74). By 

making a two-way frequency table (or contingency table), students can observe trends of 

the association. Then, they can use and compare relative frequencies of the cells (such as 

percentage of students who like both and percentage of students who do not like either of 

them), which can be displayed by pie or bar graphs. To quantify the strength of the 

associations in a 2x2 table, the authors of GAISE suggest statistics called Agreement-

Disagreement Ratio (ADR) or Quadrant Count Ratio (QCR) (see p. 97 of Franklin et al., 

2007). Moving to Level C, the GAISE authors suggest using tests of significance or 

simulation to determine if the differences of the proportions are statistically significant 

and the Phi measure (see p. 98 of Franklin et al., 2007) to test the differences. The 

GAISE authors suggest addressing Simpson’s Paradox at Level C of the framework. 
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One categorical and one numerical variable. At Level A, students become 

aware of the difference between groups (usually two) and look for an association. 

Students might use a back-to-back stem plots or two dot plots to get a sense of shape 

(symmetric), and draw conclusions such as “16 year-old boys tend to have longer 

standing broad jumps than 16 year-old girls.” Students could then estimate or calculate 

the mean and range for each group to understand the difference. Moving to level B of the 

GAISE Framework, students might use boxplots to compare groups, interpret results 

based on the global characteristics of each distribution (center, spread, and shape and 

interquartile range [IQR]). At Level C, students’ concern might be to test for outliers and 

compare more than two groups using distribution sampling or statistical tests to examine 

whether the difference is statistically significant. For example, students might consider if 

the difference in means of the two groups of boys and girls is statistically significant and 

if there are any outliers in each distribution. 

Two numerical variables. At Level A of the GAISE Framework, students 

consider if two variables are correlated.  By making a scatterplot for the data, students 

look for trends and pattern such as “generally as one gets larger, so does the other. Based 

on these data, the organizers might feel comfortable ordering some complete outfits of 

sweatshirts and sweatpants based on size” (Franklin et al., 2007, p. 32). In addition, 

students might observe how the values of a numerical variable change over time at a time 

plot (chart the data using a line graph). Moving to Level B, students start to quantify the 

association between two variables, determine if one can be a predictor for the other, and 

whether a linear function is a good model for the data. At this level (B), along with 

scatterplots, students might use QCR, negative/positive correlation, and eyeballed lines 
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(mean-mean lines were suggested). For example, they consider the strength of the 

relationship between sweatshirts and sweatpants and what might be a linear model of fit 

for the set of data and ask if the correlation is positive, negative. Continuing to Level C of 

the framework, students might use regression to fit the data and residual plots and r to 

assess the goodness of fit. They might embrace the error (two standard deviations of the 

residuals) when predicting. For example, when using the linear regression to predict the 

size of sweatpants if they know the size of sweatshirts, how confident they can be with 

that prediction considering the error of prediction. They might assess the goodness of fit 

for the linear regression using residual plots to determine if it is an appropriate model. 

The authors of the GAISE Framework also suggest three levels for learning about 

different types of scientific studies. At Level A, students engage in simple comparative 

experiments, e.g., conducting a census for the whole population (might be the classroom) 

without considering randomness. For example, they might divide the class into two 

groups and compare which group stacks pennies better. Moving to Level B of the 

framework, students conduct comparative experiments for two treatments, e.g., compare 

the effects of two or more treatments (including experimental conditions) on a specific 

response variable. Students start to design a strategy for collecting appropriate 

experimental data that involves randomness. For example, they might randomly assign 

students into two groups and randomly assign the treatments: stacking pennies with right 

hand or with left hand and examine which treatment yields a higher stack of pennies. At 

Level C of the framework, students distinguish observational studies and experiments, 

correlation vs. causation and link the understanding to drawing conclusions about causal 

relationships. Characteristics of well-designed studies are considered. For example, 
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students might realize that even though there is a high correlation between smoking and 

lung cancer, causation of lung cancer cannot be concluded from the observational study. 

An experiment would need to be conducted because observational studies do not 

establish causation.  

There is limited research related to transferring from graphical representations to 

verbal statements about covariation. Moritz (2004) addressed this aspect of reasoning in 

students of grades 3, 5, 7, and 9 when he asked students to translate a scatterplot into a 

verbal statement. He gave students descriptions and graphs that portrayed a negative 

association (e.g., numbers of people in classroom vs. level of noise), asking students to 

explain to another who did not have access to the graph. Using a four-tier framework, 

nonstatistical, single aspect, inadequate covariation, appropriate covariation, to 

categorize student responses, he found the challenges students encountered included: 

focusing on isolated bivariate points only, focusing on a single variable rather than 

bivariate data, and handling negative covariations that were counter to their prior beliefs. 

In additional to findings in research related to categorical data, studies in 

numerical data provide another main category to be coded in this study. Literature about 

judging numerical variables association advises this study to attend to multiple constructs 

including graph comprehension, interpretation of correlations, and the line of best fit. 

Taken together, the research studies related to bivariate data cited in the foregoing 

section, informed the coding framework that I describe in chapter 3.  

 There is limited research informing the development of learning trajectories for 

bivariate data.  In particular, formal studies about how the constructs are treated in 
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secondary curriculum were not found. In the next section, I discuss how my study 

addresses existing gaps in the literature. 

Textbook Analysis 

This section summarizes research related to textbook analysis that informed this 

study. The focus of this section is more on the methodology that researchers used in their 

analyses because these had the potential to inform the research design of this study. In 

particular, textbook analysis is categorized into horizontal and vertical approaches, the 

terminologies that Charalombous, Delaney, Hsu, and Mesa (2010) used in their analysis. 

In general, horizontal analysis deals with the textbook as a whole, focusing “on general 

textbook characteristics (e.g., physical appearance, the organization of the content across 

the book)” (p. 119); whereas, vertical analysis examines the treatment of a single 

mathematical concept in the textbooks, which view textbooks as an “environment for 

construction of knowledge” (Herbst, 1995, p. 3). 

Horizontal Approach 

The research reported in this section provides background information about 

curriculum such as page size, numbers of pages, topics, and sequence of topics, new 

versus old, which provide information about whether textbooks were suitable for 

students, or teachers’ need (e.g., Flanders 1987, 1994a, 1994b; Stevenson & Bartsch, 

1992; Valverde et al. 2002). The findings were often used for the purpose of informing 

educational policy, such as findings of Schmidt et al. (1997) who characterized the U.S. 

curriculum as “a mile wide, inch deep” (p. 122). However, a lack of details in the specific 

content and key questions were the way in which the concept was treated in the 

textbooks. 



	
   54	
  

Flanders (1987, 1994a, 1994b) was concerned about the repetition of the topics in 

popular K–8 textbook series. Flanders (1987) used scope and sequence charts to specify 

numbers of pages devoted to content and if the content was new or old compared to 

content that appeared in the previous grade level. In his later studies, Flanders (1994a, 

1994b) was interested in a similar topic when using items from the Second International 

Mathematics Study (SIMS) as an anchor to examine the presence of the items, and coded 

the content as old or new in six of the most commonly used grade-8 textbooks in the U.S. 

Such studies supported claims about the repetition of mathematics content in the U.S. 

curriculum. 

Stevenson and Bartsch (1992) examined Japanese and American K–12 textbooks 

in terms of which topics appeared in each country and in which grade level. Their 

findings showed that some topics are introduced earlier in the American textbooks and 

others earlier in the Japanese textbooks and some topics appeared in the textbooks of one 

country and not in the other.  

Valverde et al. (2002) were concerned about the structure and content of 

mathematics and science textbooks used in the schools of the students in the study, as a 

component of Trends in International Mathematics and Science Study (TIMSS). With a 

sample of 194 textbooks from 48 countries, they counted numbers of pages, calculated 

total page area of the text, identified the topics addressed in the text, and counted the 

numbers of times the text changed from one topic to another. They also analyzed the 

content of texts: primary nature of lessons (concrete and pictorial vs. textual and 

symbolic), other components of the lessons, and student performance expectations. They 

used a block, which “constituted narrative or graphical elements; exercise or question 
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sets, worked examples, or activities” (p. 141) as a unit of analysis. Such analytic 

framework highlights the general features of the textbooks as a measurement for 

comparing students’ achievement among the countries. For example, U.S. textbooks were 

among the upper extreme values of the sample in regard to frequently changing topics 

very often, “textbooks across all populations were mostly made up of exercises and 

question sets” (p. 143), and “the most common expectation for student performance was 

that they read and understand, recognize or recall or that they use individual 

mathematical notations, facts or objects. This is followed… by the use of routine 

mathematical procedures” (p. 128). 

Vertical Approach 

This section includes studies related to analysis in a single mathematical topic 

such as functions. Generally, researchers utilized frameworks closely related to the 

content as a lens to look into the curriculum. Some researchers used the mathematical 

task framework (Stein & Lane, 1986) as a common denominator to judge the cognitive 

demands of tasks and contingent opportunities for students to learn from textbooks.  

Li (1999) conducted a comparative analysis of 12 textbooks from four countries: 

Hong Kong, Mainland China, Singapore and United States (non-NSF funded textbooks). 

The goal was to obtain information about students’ performance through an international 

study. His research focused on the ways textbooks present content of Algebra in relation 

to the achievement data provided by the TIMSS. In particular, he was concerned about 

content emphases and requirements, presentation and organization of content and desired 

competence via to-be-solved problems (TBS). He used a focus on function, relations, and 

equations from the TIMSS curriculum framework to decide what chapters to include. The 
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number of chapters and number of pages were used to measure relative emphasis of 

mathematics content. For the TBS problems, he considered the mathematics features of 

new/old, context of content of pure or real-life, performance requirements of explanation 

or no explanation, and cognitive requirements. His findings mirrored findings from 

previous studies highlighting the difference between the U.S. and Asian curricula, namely 

that, U.S. textbooks covered too many topics and not at a deep level. Furthermore, he 

found fine-grained results in terms of TBS problems, cognitive demands, the nature of 

tasks, and expectation of an explanation of response.  

Mesa (2000, 2004) took another approach when examining the concept of 

function in a larger sample of textbooks from 18 countries (2000) and 15 countries 

(2004). She used the Balacheff's theory of conceptions and Biehler's notion of the 

prototypical domain of application of concepts to describe the practices associated with 

the notion of function. She further grouped countries in terms of similar textbook 

characteristics.  Across countries, the textbooks fell into four clusters according to the 

predominant conceptions and uses of function: (1) rule-oriented, (2) abstract-oriented, (3) 

abstract-oriented with applications, and (4) applications-oriented. Moreover, her analysis 

yielded five different practices – symbolic rule, ordered pair, social data, physical 

phenomena, and controlling image – that were present both across and within the 

textbooks analyzed.  In addition, the results suggested that there is no canonical trend for 

teaching function and organizing mathematics content on function in grade 8. 

Mesa (2000) used ten items from the TIMSS achievement test for seventh- and 

eighth-grade students to code and compare the tasks in the textbook clusters. She also 

kept track of students’ performance on the item in countries using textbooks promoting 
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the same conception. Two key findings were that (a) the test did not reflect any country’s 

distribution of conceptions, and (b) using a textbook belonging to a particular cluster or 

promoting a certain conception did not provide an advantage to students. Thus, at the 

fine-grained level of textbook content, there is no evidence that one textbook 

organization yields higher student achievement than the other.  

Ross (2011) also focused on the construct of function analyzing the contemporary 

curricula presented by three U.S. high school textbook series: the Glencoe Mathematics 

series, the University of Chicago School Mathematics Project series, and the Core-Plus 

Mathematics Project series. Taking another approach, he conducted an extensive 

literature review related to function in order to provide constructs for coding. In each 

series, functions were examined in four areas: language used in relation to functions, 

presence of functions, core features of function examples, and ancillary features of 

function examples.  

Ross’s (2011) findings regarding definitions, representations, and examples of 

functions in the textbook provide similar results to Mesa’s (2000, 2004) conception. All 

textbook series included multiple representations of functions with examples. Many 

examples include verbal descriptions, while there were smaller proportions of numeric 

and graphic representations. In addition, he found other related characteristics such as the 

presence of examples, the context where examples appeared, and the utilization of 

technology in curriculum to aid student learning. For example, examples mostly appeared 

in homework exercises and in abstract settings, explicit recommendations for using 

technology with examples are relatively infrequent, and opportunities for students to 

generate function examples or explore non-examples are limited.  
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Jones (2004) traced probability content throughout four eras of mathematics 

education in the U.S.: the New Math (1957–72), Back to Basics (1973–83), a focus on 

Problem Solving (1984–93), and the advent of the NCTM Standards (1994–2004). Using 

popular and alternative middle grade mathematics textbook series from four eras, he was 

interested in the extent and nature of the treatment of probability and structure of 

probability lessons within these textbooks. He examined background information such as 

determining the number of pages that contained probability tasks and their placement in 

the textbooks, checking whether content in later books was new or repeated. He also 

tracked the introduction and development of probability concepts, determined the level of 

cognitive demands required by each probability task, and selected archetypal tasks to 

illustrate each era. 

Jones (2004) highlighted the differences and similarities among the eras and 

provided comparable key suggestions in each era related to the probability topics. It was 

not surprising that Standards-era textbooks contained far more probability tasks than 

other eras and a wider variety of learning expectations. Consistent with findings in other 

areas, the majority of tasks in all series had low levels of cognitive demands and 

archetypal activities were remarkably similar across eras. Exceptions were the Standards 

alternate series and the Back to Basics alternate series, which contained more tasks with 

higher levels of cognitive demands.  

Dingman (2007) studied the alignment of textbooks with ten states’ grade-level 

learning expectations (LEs) related to fraction concepts. He used two popular elementary 

and two popular middle grade textbook series, those with statewide textbook adoption 

policies and those without such policies. He constructed a generalized set of LEs from a 
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sample of state frameworks as well as from research on rational numbers. He analyzed 

five types of instructional segments related to fraction concepts: lessons, pre-lessons, 

end-of-lesson extra features, end-of-chapter features, and games. For each instructional 

segment, he tracked the number of pages on which the concept occurred, the related 

learning objectives and the matching generalized LEs.  

Dingman’s findings along with other research (e.g., Reys, 2006) told the story 

about de facto national curriculum. Not surprisingly, with the diversity of U.S. 

educational system, he found considerable differences across states. There were many 

instructional segments in the textbooks that did not correspond to the states’ LEs, 

although textbooks generally incorporated the majority of states’ LEs related to fractions. 

Other researchers have focused on proof and reasoning in their analyses (e.g., 

Johnson, Thompson, & Senk, 2010; Stylianides, 2009). They share similar approaches 

when using frameworks closely related to proof to code the textbooks. For example, 

Johnson et al. (2010) used NCTM Reasoning and Proof Standards to code non-geometry 

textbooks: Algebra 1, Algebra 2, and Pre-calculus from Glencoe, Holt, Rinehart, and 

Winston; Key Curriculum, Prentice Hall, Core Plus Mathematics Project, and the 

University of Chicago School Mathematics Project; whereas, Stylianides (2009) 

developed “an analytic framework” (p. 261) grounded in the research related to proof to 

code one middle school textbook series: Connected Mathematics Program (CMP).  

Johnson et al. (2010) findings reveal what proof-related content in textbooks 

looks like and percentages of problems requiring reasoning. They found that the 

percentages of problems devoted to proof in the various series were quite low (less than 

8%). Johnson et al. highlighted examples of different kinds of activities related to proof 
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in the textbooks. Stylianides (2009) provided more details about a proof framework; 

which can be utilized to see proof-related problems in other strands. In this framework, 

Stylianides found a higher percentage of sections in the textbook that provided students 

opportunities to engage in proof-related tasks. 

Summary 

Generally, researchers approach their analysis with one or a combination of (a) 

tracking background information such as page numbers, portions of a page related to 

specific content or proportions of old and new content, (b) gauging the alignment of 

textbooks to standards, and (c) focusing on a single content utilizing frameworks from the 

literature related to the topics to code textbooks. My study is not intended to be 

evaluative, but descriptive in its nature. Even though there is a rating component related 

to the tasks in the textbooks, my focus is on the description of learning trajectories related 

to bivariate data in the curricular materials. To that end, I developed a coding framework 

grounded in the literature related to the construct of covariation. In addition, inherent in 

this study is a component to monitor the alignment of curricular materials and two 

aspects of the CCSSM. First, the learning trajectories related to the construct of bivariate 

data in the materials are compared with the CCSSM learning expectations. Second, a 

detailed framework for coding the CCSSM mathematical practices (described in chapter 

3) provides guidance when coding the tasks. This coding process highlights the 

opportunities the materials offered students to access the CCSSM practices standards.  

In line with other research categorized in the vertical approach, I chose to do an 

in-depth analysis of one topic at the high school level as in Ross’s (2011) study. In 

addition, I used the construct of LTs to document how the construct of bivariate data was 
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treated and highlight the opportunities for students to learn provided in the curricular 

materials. Admittedly, the horizontal approach provides a source of background 

information; however, the information yielded from one topic was not comprehensive 

enough to consider in this study.  

In addition, following suggestions from NRC (2004), my research design has 

taken into consideration each of the following: selection of a set of standards with 

rationale for analysis, and components to consider in analysis. With training in advanced 

graduate courses in mathematics, a Ph.D. minor in statistics, and completing substantive 

coursework in mathematics education, I am well qualified to do the analysis. 

Furthermore, as I discuss in the next chapter, I selected frameworks to address the 

research questions, and specifically address the discipline perspectives suggested by NRC 

(2004). 	
  

The review of the research literature in the areas of learning trajectories, 

covariational reasoning, and textbook analyses revealed the existence of a gap and a need 

for this study. Heretofore, no studies have examined the treatment of covariation in high 

school textbooks. Using the construct of learning trajectory (LT) as guidance, I sought to 

understand how students’ opportunities to learn covariational reasoning are treated in the 

textbooks. In addition, in the era of the CCSSM, it is crucial to compare the findings with 

recommendation from widely adopted standards. In the following chapter, I provide a 

detailed accounting of the research methods employed in this study.  
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CHAPTER 3:  METHODOLOGY 

In this chapter, I provide an overview of the methodology utilized in this study. 

First, I provide a rationale for the selection of the textbook sample, then describe the 

coding scheme that is grounded in the research literature, and finally offer potential 

limitations of the study. Through the process of data collection and analysis, described 

herein, I seek to answer the following research questions:  

1. What learning trajectories for topics in bivariate data are represented in high 

school mathematics textbooks in the U.S.? How are those learning trajectories 

similar to and different from those embedded within the Common Core State 

Standards for Mathematics (CCSSM)? To what degree are the learning 

trajectories found in textbooks aligned with the developmental levels described in 

the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

Report? 

a. What topics in bivariate data are addressed in the textbooks and what 

learning trajectories for bivariate data are evident in the textbooks?  

b. How are connections made between the topics in bivariate data and topics 

in univariate data in the textbooks? How are connections made between 

bivariate data and other conceptual categories in mathematics at the high 

school level? 

c. To what extent are the CCSSM standards for bivariate data at the high 

school level evident in the textbook materials, and to what extent does the 

approach to, and sequence of, content in the materials reflect the 
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developmental progressions of the topics described by the GAISE 

Framework? 

2. With respect to bivariate data, what is the nature of the instructional tasks 

presented in textbooks?  Do the tasks provide opportunities for students to access 

the CCSSM’s Standards for Mathematical Practice (SMP)? 

a. What levels of mathematical complexity are required by the tasks related 

to bivariate data? 

b. To what degree are the GAISE developmental levels reflected in the tasks 

related to bivariate data? 

c. What is the quality level of the tasks in terms of purpose and utility? 

d. How do the tasks provide opportunities for students to access the 

CCSSM’s Standards for Mathematical Practice? 

Selection of Textbook Sample 

A set of three criteria informed the selection of the mathematics textbooks series 

for analyses: The series (1) elicits the potential for in-depth analyses of differences in 

sequencing and organizing bivariate data content, (2) explicitly includes learning goals to 

support teachers implementing the curriculum, and (3) is currently used in U.S. 

educational systems. The textbook series selected were:  

Holt McDougal Larson series (HML): 

• Algebra 1 (Larson, R., Boswell, L., Kanold, T. D., & Stiff, L., 2012a) 

• Geometry (Larson, R., Boswell, L., Kanold, T. D., & Stiff, L., 2012b) 

• Algebra 2 (Larson, R., Boswell, L., Kanold, T. D., & Stiff, L., 2012c) 

The University of Chicago School Mathematics Project series (UCSMP): 
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• Algebra (Brown, S. A., Breunlin, R. J., Wiltjer, M. H., Degner, K. M., Eddins, S. 

K., Edwards, M. T., et al., 2008) 

• Geometry (Benson, J., Klein, R., Miller, M. J., Capuzzi-Feuerstein, C., Fletcher, 

M., & Usiskin, Z., 2009) 

• Advanced Algebra (Flanders, J., Lassak, M., Sech, J., Eggerding, M., Karafiol, P. 

J., McMullin, L., et al., 2010) 

• Functions, Statistics, and Trigonometry (McConnell, J. W., Brown, S. A., 

Karafiol, P. J., Brouwer, S., Ives, M., Lassak, M., et al. 2010) 

• Precalculus and Discrete Mathematics (Peressini, A. L., DeCraene, P. D., 

Rockstroh, M. A., Viktora, S. S., Canfield, W. E., Wiltjer, M. H., et al., 2010) 

Core-Plus Mathematics Project series (CPMP): 

• Course 1 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E., 

Ritsema, B. E., et al., 2008a) 

• Course 2 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E., 

Ritsema, B. E., et al., 2008b). 

• Course 3 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E., 

Ritsema, B. E., et al., 2009). 

• Course 4 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., Watkins, A. E., 

Ritsema, B. E., et al., 2010) 

For the purpose of this study, I primarily analyzed teacher’s editions. However, I also 

examined other materials such as implementation guidelines in order to identify learning 

trajectories evident in the curricula. 
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The differences in organization and conceptualization of mathematical content 

among these textbook series creates a basis for comparing three different approaches to 

the teaching of bivariate data. In the next section, I describe how specific features of each 

textbook series address the selection criteria. 

Criterion 1: The Series Elicits the Potential for In-depth Analyses of Differences in 

Sequencing and Organizing Bivariate Data Content 

 Holt McDougal Larson Series (HML), (Houghton Mifflin Harcourt Publishing 

Company, 2012). The HML series uses the conventional three-course sequence: Algebra 

1, Geometry, and Algebra 2. Content is organized via many short examples and guided 

practices that include questions similar to those represented in the examples for students 

to learn specific skills and knowledge. Some lessons also include longer activities for 

students to relate content within a lesson. In addition, the authors emphasize that the 

textbooks align with the CCSSM and include processes/procedures that help students 

learn the CCSSM Standards for Mathematical Practices (SMP). This series offers the 

potential for a sequence of content that is aligned to the new standards. 

The University of Chicago School Mathematics Project Series (UCSMP), 

(Wright Group/McGraw-Hill, 2008, 2009, 2010). The UCSMP series includes five 

textbooks with conventional titles: Algebra; Geometry; Advanced Algebra (AA); 

Functions, Statistics and Trigonometry (FST); and Precalculus and Discrete 

Mathematics (PD). Even though the names of individual textbooks are conventional, the 

authors integrate content from different strands in each of the textbooks while still 

focusing on the main content theme (e.g., geometry) of each textbook. Furthermore, the 

UCSMP textbook series includes substantial statistical content that offers the potential for 
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in-depth analyses. Each lesson includes different components ranging from short 

responses such as mental math, guided examples for students to fill in the blanks to 

complete the tasks, longer activities within the lesson, and projects at the end of chapters. 

The textbook authors argue that the series differs from other secondary mathematics 

textbooks by requiring more reading, greater use of technology, and a more deliberate 

sequencing of mathematical applications (Usiskin, 2007).  

 Core-Plus Mathematics Project Series (CPMP) (McGraw-Hill Companies, 

2008, 2009, 2010).  The CPMP textbook series utilizes an integrated approach. The 

content related to algebra, geometry, statistics, and discrete mathematics are integrated in 

each of four textbooks, Course 1, Course 2, Course 3, and Course 4. CPMP topics are 

sequenced over the series not only to build concepts, but also to provide what the authors 

considered the most important mathematics content in each course in the high school 

sequence. Lessons generally consist of a series of questions that lead students to 

investigate, reflect on, and summarize mathematical concepts. The authors described this 

is as an extended design experiment with principles focusing on: substantial reading, 

fewer but longer examples and exercises, and a greater emphasis on mathematical 

modeling of real-world situations including the extensive use of technology (Fey & 

Hirsch, 2007). 

In contrast to HML, UCSMP and CPMP “offer an approach to mathematics 

teaching and learning that is qualitatively different from conventional practice in content, 

priorities, organization, and approaches” (Hirsch, 2007, p.1). In addition, these two 

textbook series were updated to include topics related to data analysis and probability, to 

focus on big ideas across grade levels with multiple representations connected among 
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ideas across mathematical strands and grade levels, and to emphasize depth over 

coverage to promote deeper understanding of important mathematical ideas (Hirsch, 

2007).  

The three textbook series offer fundamentally different organizations of the 

mathematical content and philosophy of curriculum design. Moreover, the UCSMP and 

CPMP series represent innovative, non-traditional approaches whereas the HML 

exemplifies a traditional approach while including many features that highlight the 

intentional alignment with the CCSSM.  Collectively, these three series together elicit the 

potential for differences in sequencing and organizing bivariate contents. 

Criterion 2: The Series Explicitly Displays Learning Goals to Support Teachers 

Implementing the Curriculum 

Holt McDougal Larson Series (HML). The HML series includes big ideas (as 

called in the series) for each chapter and lesson. At the start of each lesson, the authors 

make reference to content that was learned before to the now content, and provide 

reasons why to make connections within and across the lessons. In addition, the authors 

map the contents in each lesson to the CCSSM standards to link with big ideas for each 

lesson.  

The University of Chicago School Mathematics Project Series (UCSMP). The 

UCSMP series provides detailed information for teachers as they choose tasks to address 

learning goals. Specifically, for each lesson they include a list of objectives including 

skills, properties, uses, and representations. At the beginning of each chapter, the authors 

provide an overview of the chapters, and recommend teachers assign the final projects at 

the end of each chapter to target student learning through the chapter. 
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Core-Plus Mathematics Project Series (CPMP). The CPMP series is more overt 

in “conveying the mathematical goals at the unit, lesson, and sometimes problem level” 

(Fey & Hirsch, 2007, p. 139). This includes information about students’ level of 

proficiency expected when learning important topics. The authors also incorporate how 

students might approach the investigations and offer common misconceptions to support 

teachers’ understanding of the learning goals. In addition, scope and sequence materials, 

containing a list of core topics and how they are of focus and connection in each unit of 

the four courses, are provided to help teachers (and students) build connections among 

the content in investigations, lessons, units, and the textbook series as a whole. 

Criterion 3: The Series is Currently Used in U.S. Educational Systems 

Holt McDougal Larson Series (HML). The HML series was published by Holt 

McDougal in 2012, a subsidiary of by Houghton Mifflin Harcourt Publishing renamed 

after the merger of two companies Holt, Rinehart and Winston and McDougal Littell. 

This company, as a whole, publishes the textbooks that are most frequently used in U.S. 

schools (Dossey, 2012). 

The University of Chicago School Mathematics Project Series (UCSMP). The 

UCSMP series is continually revised and new material is developed. In 2009, UCSMP 

made available online lessons to supplement the third edition of the curricular materials 

for grades 6-12. The series is also designed to follow Everyday Mathematics (McGraw-

Hill Companies, 2007), which is the most popular elementary mathematics textbook 

series in the U.S. (Stanton, 2011). 

Core-Plus Mathematics Project Series (CPMP). The CPMP is currently in its 

second edition. In addition, the same group of authors for CPMP is currently developing 
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the Transition to College Mathematics and Statistics as an alternative to Course 4 for 

non-calculus bound students to follow the first three courses, which implies that the series 

is currently used U.S. systems. 

Analyses of the Textbooks 

	
   In this section, I describe the analyses of the textbooks. First, I define the unit of 

analysis for coding. Then, I discuss the coding scheme including learning trajectories and 

task features and use an example to illustrate the coding process. Finally, I describe the 

analysis of data to address the aforementioned research questions. 

Unit of Analysis 

The unit of analysis is defined as the primary entity to examine. For this study, I 

draw upon Olson (2010) and specify the unit of analysis as an instance that is either: (1) a 

super-problem includes one or more related tasks, (2) a problem with no sub-problems, 

(3) an example that the authors showed both prompt and solution, and (4) author text 

including definitions, explanation of content. The first two types of instance were referred 

to as to-be-solved (TBS) problems (Li, 1999) in which the solution was not readily 

available and students are required to solve the problems. 

 The method for defining an instance was (1) identifying prompts, or instructions 

for students to accomplish in each problem, (2) an example including questions, prompt 

or instruction and solution, or (3) portions consisted of the elaboration of concepts, 

definition of terminology, or presentation of content separate from author examples. For 

example, Figure 5, 6, and 7 show the first two types of instance; the prompts or 

instructions that appear at the beginning of each instance signify these types of super-

problems or problem. In particular, Figure 5 shows an instance including a super-problem 
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with two tasks (as numbered in the HML Algebra 1 textbook). Figure 6 depicts an 

instance of super-problems with related sub-problems including one task (as numbered in 

the textbook) from the CPMP Course 1 textbook. Figure 7 shows an example of a 

problem for students to solve without sub-problems that appears in the UCSMP Algebra. 

Figure 8 illustrates two instances of two types, an author example and text taken from 

UCSMP series. 

 

Figure 5. An instance containing more than one task. From Holt McDougal Larson 
Algebra 1 – Teacher’s Edition, by R. Larson, L. Boswell, T. D. Kanold, & L. Stiff, 2012, 
Orlando, FL: Houghton Mifflin Harcourt Publishing Company, p.291. Copyright 2012 by 
Houghton Mifflin Harcourt Publishing Company. Reprinted with permission. 
	
  

 
Figure 6. An instance of super-problems with related sub-problems. From Core-Plus 
Mathematics: Course 1 – Teacher’s Guide by C. R. Hirsch, J. T. Fey, E. W. Hart, H. L. 
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Schoen, A. E. Watkins, B. E. Ritsema, R. K. Walker, S. Keller, R. Marcus, A. F. 
Coxford, G. Burrill, 2008a, Columbus: OH: Glencoe/McGraw-Hill, p.5. Copyright 2008 
by McGraw-Hill Companies, Inc. Reprinted with permission. 
 

 
 

Figure 7. An instance of problems without sub-problems. From The University of 
Chicago School Mathematics Project: Algebra – Teacher’s Edition by S. S. Brown, R. J. 
Breunlin, M. H. Wiltjer, K. M. Degner, S. K. Eddins, M. T. Edwards, N. A. Metcalf, N. 
Jakucyn, & Z. Usiskin R, 2008, Chicago: IL: Wright Group/McGraw-Hill, p.332. 
Copyright 2008 by Wright Group/McGraw-Hill. Reprinted with permission. 
	
  

	
  
	
  

Figure 8. Instances of author examples and author texts. From The University of Chicago 
School Mathematics Project: Algebra – Teacher’s Edition by S. S. Brown et al., 2008, 
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Chicago: IL: Wright Group/McGraw-Hill, p.327. Copyright 2008 by Wright 
Group/McGraw-Hill. Reprinted with permission. 
	
  
Coding 

When relevant textbook content was located, the unit of analysis (i.e., each 

instance) was coded vis-à-vis learning trajectories and task features. All instances of “to-

be-solved” (TBS) (Li, 2000) problems were coded for learning trajectories and task 

features. That is, instances without solutions provided or learning activities requiring 

students to work through several steps were coded for both learning trajectories and task 

features. This also includes other portions of tasks that students have to accomplish for 

homework, self-tests, or chapter review. However, instances including author text and 

author examples with solution at hand, in which students do not have to solve them, were 

coded only for learning trajectories. In short, the task feature was only coded for TBS 

instances. 

Learning trajectories. 

Textbooks were analyzed to determine the flow of topics related to bivariate data, 

in turn to discern learning trajectories. In order to conduct the curriculum analysis, I 

applied several codes using a well-defined coding scheme.  In this section, I describe the 

data collected and the process used to assign codes. 

Combination of two variables. For each instance, the data was codified as one of 

the three types: (1) two categorical variables (CC), (2) one categorical variable and one 

numerical variable (CN), or (3) two numerical variables (NN). After I identified the types 

of data, I assigned codes to indicate the form in which data appeared, size and form of 

representations involved, and types of association.  More specifically, the process is 

described as follows:  
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• Two categorical variables: Form was coded as a ready-made table or as 

raw data that need to be sorted; the size was coded as dimension of the table, for 

example, 2x2, 2x3, 3x3; representation of data was coded in such ways as pie charts, bar 

charts, or numerical representation (e.g., proportions, probabilities); and types of 

association involved was coded as positive (one quantity increases when the other 

increases) or negative (one quantity increases when the other decreases). It should be 

noted that not all instances include two-way tables were coded. In particular, I excluded 

all instances related to reading and interpreting absolute frequencies of the cells in the 

table or those using the table to calculate conditional probabilities. Figure 9 is an example 

of such an instance taken from HML Algebra 1 (p. 674). This instance might offer 

potentials for students to attend to the association between two variables, gender and 

position of living, but the authors did not explicitly use that context for the purpose. 

 

Figure 9. An instance that was not coded for the CC association. From Holt McDougal 
Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.674. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission. 
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• One categorical variable and one numerical variable: form was coded as 

table or graph; the size was coded based on the number of data points in each 

distribution; representation of data was coded by types of graphs or other representations, 

such as back-to-back plots, histograms or box plots; and types of association involved 

were coded as positive (one quantity increases when the other increases) or negative (one 

quantity increases when the other decreases). Because tasks related to the association of 

one categorical variable and one numerical variable often involve comparing groups, all 

tasks related to comparing distributions were considered but were ultimately coded only 

if the goals addressed the association between the two variables as opposed to the simple 

comparison of two groups. Figure 10 is an instance from UCSMP Functions, Statistics, 

and Trigonometry (McConnell, 2010, p. 59) that involves comparing two distributions, 

length of bridges in the two countries. However, because it does not require students to 

identify the association between two variables, this instance was not coded. 

• Two numerical variables: form was coded as table, graph, or both; the size 

was coded based on the number of data points required/provided in the task; and 

representation was coded as the type graphical representation of the data such as graphs, 

scatterplot, order-case value bars, scatterplot slices, superimposed color gradient graph or 

algebraic; types of associations were coded according to the types of functions used to fit 

the data such as linear, polynomial with degree 2 or more, exponential, power, 

logarithmic, trigonometric, rational. Situations such as fitting functions to data were 

considered examples of covariational reasoning. However, situations that asked students 

to plot points that form a perfect fitting function and situations that involve functional 

relationship were not coded.  For example, the following instance from CPMP Course 1   



	
   75	
  

(Hirsch et al., 2008a, p. 6) was not identified as bivariate data because it involves a 

perfect fit of linear function based on the data provided in the table (Figure 11).	
  

 
 
Figure 10. An instance that was not coded for the CN association. From The University 
of Chicago School Mathematics Project: Functions, Statistics, and Trigonometry – 
Teacher’s Edition by J. W. Connell, S. S. Brown, P. J. Karfiol, S. Brouwer, M. Ives, M. 
Lassak, R. McCullagh, N. Jakucyn, & Z. Usiskin R, 2010, Chicago: IL: Wright 
Group/McGraw-Hill, p.59. Copyright 2010 by Wright Group/McGraw-Hill. Reprinted 
with permission. 
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Figure 11. An instance that was not coded for the NN association. From Core-Plus 
Mathematics: Course 1 – Teacher’s Guide by C. R. Hirsch et al., 2008a, Columbus: OH: 
Glencoe/McGraw-Hill, p.6. Copyright 2008 by McGraw-Hill Companies, Inc. Reprinted 
with permission. 
	
  

Abstract/Contextual. The context of the data provided was coded as either a 

contextual or an abstract (decontextualized) setting. Types of associations were recorded 

for each instance (positive, negative). When contextual-based data were specified, the 

solving of tasks and the solution offered in the materials were used to determine if the 

type of association was consistent with or contradictory to general beliefs. That is, I 

considered whether the relationship between the two variables was positive or negative 

and how it compared to the data at hand.	
  

Task – Technique – Theory Framework (Artique, 2000, 2002). This framework 

was utilized to code what techniques might be used to reach a solution. The teacher’s 

edition was used as a reference of techniques offered in the materials. Related theory 

(e.g., definition, properties provided in the textbooks) to explain the techniques used was 

also specified. Some constructs of bivariate data were referenced in this process such as 

when tasks offered opportunities for students to make links between association and 
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causation, tasks that involved interpreting, estimating, and using r, r2 and tasks which 

required judgments about the magnitude of an association between two variables. 

Learning Goals. Based on the lesson objectives or big ideas given for each lesson 

containing bivariate data, and the common techniques and theories for sets of instances 

related to bivariate data, I specify the learning goals for each lesson. Sometimes, the 

instances related to bivariate data were not included in lessons related to bivariate data 

but instead appeared for the purpose of review. In these cases, the codes of technique and 

theory provided information for learning goals.   

Task features. 

In this section, I describe how I coded the nature of tasks for the mathematical 

complexity, purpose and utility features, GAISE Framework, and CCSSM mathematical 

practices.  

Mathematical complexity. The mathematical complexity measures the cognitive 

demands required by each instance in the materials. To code the mathematical 

complexity of each instance, I used a three-level framework of mathematical complexity 

(low, moderate, and high) based on the National Assessment of Education Project’s 

(NAEP 2006) description of the features of each level (Table 3).  

Table 3 

Characteristics of tasks at different levels of mathematical complexity (National 
Assessment Governing Board, 2006, pp. 36-40)	
  
	
  
Characteristics of tasks at different levels of mathematical complexity 

Low Complexity 
   This category relies heavily on the recall and recognition of previously learned concepts and 

principles. Items typically specify what the student is to do, which is often to carry out some procedure that 
can be performed mechanically. It is not left to the student to come up with an original method or solution. 
The following are some, but not all, of the demands that items in the low-complexity category might make: 

• Recall or recognize a fact, term, or property. 
• Recognize an example of a concept. 
• Compute a sum, difference, product, or quotient. 



	
   78	
  

• Recognize an equivalent representation. 
• Perform a specified procedure. 
• Evaluate an expression in an equation or formula for a given variable.  
• Solve a one-step word problem. 
• Draw or measure simple geometric figures. 
• Retrieve information from a graph, table, or figure. 

Moderate Complexity 
Items in the moderate-complexity category involve more flexibility of thinking and choice among 

alternatives than do those in the low-complexity category. They require a response that goes beyond the 
habitual, is not specified, and ordinarily has more than a single step. The student is expected to decide what 
to do, using informal methods of reasoning and problem-solving strategies, and to bring together skill and 
knowledge from various domains. The following illustrate some of the demands that items of moderate 
complexity might make: 

• Represent a situation mathematically in more than one way. 
• Select and use different representations, depending on situation and purpose. 
• Solve a word problem requiring multiple steps. 
• Compare figures or statements. 
• Provide a justification for steps in a solution process. 
• Interpret a visual representation. 
• Extend a pattern. 
• Retrieve information from a graph, table, or figure and use it to solve a problem requiring multiple 

steps. 
• Formulate a routine problem, given data and conditions. 
• Interpret a simple argument. 

High Complexity 
High-complexity items make heavy demands on students, who must engage in more abstract reasoning, 

planning, analysis, judgment, and creative thought. A satisfactory response to the item requires that the 
student think in abstract and sophisticated ways. Items at the level of high complexity may ask the student 
to do any of the following: 

• Describe how different representations can be used for different purposes. 
• Perform a procedure having multiple steps and multiple decision points. 
• Analyze similarities and differences between procedures and concepts. 
• Generalize a pattern. 
• Formulate an original problem, given a situation. 
• Solve a novel problem. 
• Solve a problem in more than one way. 
• Explain and justify a solution to a problem. 
• Describe, compare, and contrast solution methods. 
• Formulate a mathematical model for a complex situation. 
• Analyze the assumptions made in a mathematical model. 
• Analyze or produce a deductive argument. 
• Provide a mathematical justification.  

 
GAISE Framework (Franklin et al., 2007). In addition to the NAEP framework 

for Mathematical Complexity, I applied the GAISE Framework to code the 

developmental levels of statistical components embedded in the tasks. The GAISE 

Framework consists of four statistical components: formulate questions, collect data, 
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analyze data, and interpret result. The framework also consists of the three 

developmental levels: Level A, Level B, and Level C (for a detailed description of the 

framework, see Figure 1). 

Purpose and utility framework (Ainley et al. 2006). This framework was used to 

determine if the instances were purposeful (meaningful) and the mathematics ideas were 

useful for students: Were they introduced purposefully and did they lead to meaningful 

outcomes for the learner, either with an actual or virtual product?  I also coded for the 

utility of the embedded mathematical/statistical concepts/objects when solving the 

problem at hand.  

Common Core State Standards for Mathematics – Mathematical Practices 

(2010). The CCSSM includes eight Standards for Mathematical Practices (SMP) that 

students should know and be able to apply when doing mathematics. These practices are 

intended to be observed in the classroom during actual teaching and learning. However, 

in the absence of classroom observations, I identified references to SMP within the 

textbook instances and narrative in the teacher’s editions. The performance expectation 

framework developed in TIMSS study  (Schmidt et al., 1996, 1997) was used to provide 

examples for natures of the instances, which offers the opportunities to look for the 

practices. The eight mathematical practices are: 

1. Make sense and persevere on solving problem. 

2. Reason abstractly and quantitatively. 

3. Construct viable arguments and critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 
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6. Attend to precision. 

7. Look for and make use of structure. 

8. Look for and express regularity in repeated reasoning. 

Table 4 provides example of one mathematical practice and descriptors of the practice 

that I use to code bivariate data instance. For full descriptions about SMPs and their 

coding framework see Appendix A. 

Table 4 

Example of description of SMP and its coding framework 

CCSSM Statement Descriptors of the coding 
framework 

Construct viable arguments and critique the reasoning of others  
 [S]tudents understand and use stated assumptions, definitions, and 
previously established results in constructing arguments. They 
make conjectures and build a logical progression of statements to 
explore the truth of their conjectures. They are able to analyze 
situations by breaking them into cases, and can recognize and use 
counterexamples. They justify their conclusions, communicate 
them to others, and respond to the arguments of others. They 
reason inductively about data, making plausible arguments that 
take into account the context from which the data arose. [S]tudents 
are also able to compare the effectiveness of two plausible 
arguments, distinguish correct logic or reasoning from that which 
is flawed, and—if there is a flaw in an argument—explain what it 
is. …Students learn to determine domains to which an argument 
applies. Students … can listen or read the arguments of others, 
decide whether they make sense, and ask useful questions to 
clarify or improve the arguments. (CCSSI, 2010, pp. 6-7) 

The task provides opportunities for 
students to argue or critique. Look for 
the performance expectations from the 
task that ask students to (a) verify the 
computational correctness of a 
solution, or justify a step in the 
solution, (b) identify information 
relevant to verify or disprove a 
conjecture, (c) argue the truth of a 
conjecture or construct a plausible 
argument, (d) identify a contradiction 
(something that is never true), (e) 
critique a written or spoken 
mathematical idea, solution, result, or 
method for solving a problem and the 
efficiency of the method or similarly 
critique an algorithm and its 
efficiency.  

  
Summary of the coding scheme for bivariate data. 

All the coding is applied for individual instance related to bivariate data. Table 5 

summarizes the framework for coding instances related to bivariate data.   

Table 5 

Framework for coding bivariate data 

1. Learning Trajectory 
• Combination of two variables 

§ Two categorical variables 
ü Form of data provided (Raw data, tables, graphs, unspecified) 



	
   81	
  

ü Size (Dimension of the two-way table such as 2x2, 2x3, 3x3, etc.) 
ü Types of representation involved (Tables, numeric/algebraic formulas, pie graphs, bar 

graphs, etc.) 
ü Types of association (Negative, positive, or unspecified) 

§ One categorical variable and one numerical variable 
ü Form of data provided (Raw data, tables, graphs, unspecified) 
ü Size (Number of data points for each sample/group) 
ü Types of representation involved (Tables, two boxplots, two histograms, back-to-back 

stem-and-leaf plots, etc.) 
ü Types of association (Negative, positive, or unspecified) 

§ Two numerical variables 
ü Form of data provided (Raw data, tables, graphs, unspecified) 
ü Size (Number of data points) 
ü Types of representation involved (Tables, scatterplots, order-case value bars, scatterplot 

slices, superimposed color gradient graph, algebraic, etc.) 
ü Types of association (Types of functional relationship) 

• Contextualize/Decontextualized 

§ Context 
ü Consistent with theory 
ü Inconsistent with theory 
ü Unspecified 

§ Decontextualized 

• Task, technique, theory (TTT) framework 

§ (Estimating r, interpreting r, r2, judgment of association, magnitude of association, 

association and causation) 

• Learning Goals 

2. Task Features 
• Mathematical Complexity - Low, Moderate, and High 

• GAISE Framework 

§ Formulate questions – Level A, B, C 
§ Collect data – Level A, B, C 
§ Analyze data – Level A, B, C 
§ Interpret results – Level A, B, C 

• Purpose and Utility framework 

§ Purpose 
§ Utility 

• Standards for Mathematical Practice 

§ Make sense of problems and persevere in solving them (MP1) 
§ Reason abstractly and quantitatively (MP2) 
§ Construct viable arguments and critique reasoning of the others (MP3) 
§ Model with mathematics (MP4) 
§ Use appropriate tools strategically (MP5) 
§ Attend to precision (MP6) 
§ Look for and make use of structures (MP7) 
§ Look for and express regularity in repeated reasoning (MP8)	
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Sample Application of the Coding Scheme 

To illustrate how the coding scheme was applied, I provide the following coding 

example from CPMP Course 1, Unit 1, Investigation 1 (Hirsch et al., 2008a, p. 5) relating 

the stretched length of a bungee cord to different weights that are attached (Figure 12). 

 
 
Figure 12.  Sample coding for one instance. From Core-Plus Mathematics: Course 1 – 
Teacher’s Guide by C. R. Hirsch et al., 2008a, Columbus: OH: Glencoe/McGraw-Hill, 
p.5. Copyright 2008 by McGraw-Hill Companies, Inc. Reprinted with permission. 
	
  

1. Learning Trajectories 

• Combination of two variables, namely two numerical variables 

o Form: No data are provided 

o Size: sample 6 data points 

o Type of association: positive linear 
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• Contextualize/De-contextualized: Data were provided in contextual setting and 

the type of association from the data is consistent with general belief (as the 

attached weight increases, the stretch of the cord also increases). 

• Task, technique, theory (TTT) framework:  

o Task: Bungee Cord.  

o Techniques: Students carry out experiment to collect data, record data in a 

table and make a scatterplot. They observe the pattern of 

increasing/decreasing the scatterplot, draw a line passing through the data 

points and use	
  the	
  line	
  to predict one variable given the other or write a linear 

equation and use it for prediction. Using the data, students compare the 

difference in the results, the error in measurement and the physical feature of 

the bungee cord that might account for the difference.  

o Theories: behind the action are: observation and functional relationship. 

• Learning goals: “use table and graph, algebraic expression to express the 

relationship among variables” (p. 3). 

2. Task Features 

• Mathematical Complexity: Moderate complexity. The students carry out 

multiple steps that go beyond the habitual and need to decide what to do.  

• GAISE Framework (Level A, B or C) 

o Formulate questions. This instance provides a context for a statistical 

investigation; however, students do not have to create a question, therefore it 

is coded as Level A. 
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o Collect data. Students have to do a simple experiment to collect data without 

being aware of design for differences, therefore the instance is coded as Level 

A. 

o Analyze data. Students are supposed to use simple models for association 

(eyeballed line), therefore the instance was coded as Level B. 

o Interpret results. Students make basic interpretation of models for association, 

using the equation or the eyeballed line to predict the stretch given a weight, 

therefore the instance was coded as Level B. 

• Utility and Purpose framework (Yes - No) 

o Purpose: In this instance, students have a final product to use, which is a 

formula or a line to predict the value of stretch when given a weight, therefore 

this instance is coded YES for the purpose feature. 

o Utility: In this instance, students can understand why scatterplots are used and 

how they are used for eyeballing line and prediction, therefore this instance is 

coded YES for the utility feature. 

• Standards for Mathematical Practice (SMP) 

o In this instance, students need to make sense of the weight and length and 

reason about the relationship between them (MP2: Reason abstractly and 

quantitatively); they need to “explain any differences in results” (MP3: 

Construct viable arguments and critique reasoning of others); they simplify to 

make an equation to model the relationship (MP4: Model with mathematics); 

they need to be precise when measuring, graphing, and calculating (MP6: 
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Attend to precision); and they need to look for a pattern to predict the length 

(MP7: Look for and make use of structures). 

The coding scheme was applied for all instances related to bivariate data. Then, I used the 

collected data for further analyses, which are described in the next section. 

Data Analysis 

Question 1. Learning Trajectories for Bivariate Data in the Curricular Materials 

and the Comparison with those in the CCSSM and GAISE Framework 

For each textbook series, I computed descriptive statistics of learning trajectories 

codes that are summarized in Table 5. Additional information related to the tasks 

including form of data provided, size, form of representations, and contextual vs. 

decontextualized codes are also reported as summary statistics.  The total and percentages 

of tasks in each series are reported in various levels: by chapter/unit, by textbook, and the 

whole series. The distributions of instances in the three combinations of bivariate data are 

reported at the chapter level.  

Qualitative analysis reveals the learning trajectories of these topics related to 

bivariate data. At the lesson-level, codes are specified for learning goals. The 

instructional activities related to the content and process of learning were examined using 

the technique and theory codes. The levels of the trajectories were specified: within the 

tasks, between the tasks, and between lessons. Information gained from the TTT 

framework analysis was used to further answer this research question by using the results 

coding the techniques and theories associated with each instance.  

For each lesson that includes instances related to bivariate data, I identified the 

learning goals and the flow of content. Data from learning goals code were used for the 
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start of specifying the flow of content for the lesson. The flow of a lesson is primarily in 

the development of the content, which is referred as development portion (Jones, 2004), 

aimed for students to involve in classroom. The flow includes how textbook authors 

introduce and develop the content through definitions, explanations, and examples. In 

some textbook series (e.g., CPMP), the authors include investigations and a list of 

guiding questions for students to learn the content. By solving this task or referring to the 

suggested strategies offered in the teacher’ edition, I specified the flow. In some cases, 

new learning expectations are introduced in the assignment portion (Jones, 2004) after 

the development of content is finished. When such cases are evident, these learning 

expectations are also reported. Learning goals and the flow of content for each lesson 

provide the learning trajectories at the micro level.  

After lesson’s learning goals are identified, I grouped related learning goals 

among lessons and chapters to form the learning trajectories for bivariate relationships for 

the whole textbook series. In addition, the prescribed scope and sequence was used to 

specify the connection among the topics. When the authors did not explicitly note the 

sequence in the teacher’ edition, the order of topics as appeared in the textbooks series 

was used to specify the flow. The findings related to the connection among topics related 

to bivariate data provide the macro level for the learning trajectories. The reporting of 

learning trajectories are grouped into three combinations of two variables.  

Along with this process, knowledge/skills from other mathematical strands that 

are needed to solve tasks related to bivariate data were identified. For example, to 

examine the association between one categorical and one numerical variable (e.g., gender 

vs. height), students need to compare distributions (in this case, distributions of male and 
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female heights). Therefore, students need to understand and use distributions of 

univariate data to examine the association for bivariate data. I also used the teacher’s 

editions as guidance to specify connections among bivariate data, univariate data, and 

other CCSSM conceptual categories at the high school level. 

In order to analyze the alignment of textbook series with the CCSSM regarding 

bivariate data, I examined the learning expectations (LEs) related to bivariate data present 

in the CCSSM. Eight standards related to bivariate data were found in the CCSSM. In 

some cases, the original standard is too broad because it comprises several outcomes. 

Hence, using this standard to identify if it was addressed in textbook series might 

sacrifice some level of precision. For example, consider the following standard S-ID.6: 

Represent data on two quantitative variables on a scatter plot, and describe how 

the variables are related. 

a. Fit a function to the data; use functions fitted to data to solve problems in the 

context of the data. Use given functions or choose a function suggested by the 

context. Emphasize linear, quadratic, and exponential models. 

b. Informally assess the fit of a function by plotting and analyzing residuals. 

c. Fit a linear function for a scatter plot that suggests a linear association. (p. 81)  

This standards consists of eight LEs: (1) Represent data on two quantitative variables on 

a scatter plot, and describe how the variables are related; (2) Fit a function to the data 

(emphasize linear models); (3) Fit a function to the data (emphasize quadratic models); 

(4) Fit a function to the data (emphasize exponential models); (5) Use functions fitted to 

data to solve problems in the context of the data; (6) Use given functions or choose a 

function suggested by the context; (7) Informally assess the fit of a function by plotting; 
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and (8) Informally assess the fit of a function by analyzing residuals. More often, for any 

given instance, several of the eight LEs but not all are addressed.  By breaking up the 

standards into LEs at smaller grain sizes, I am afforded greater precision in coding the 

instances of bivariate data that appear in the textbook series. Table 6 provides a list of 21 

LEs taken from eight CCSSM standards related to bivariate data at the high school level.  

Table 6 

Learning expectation related to bivariate data at the high school level of the CCSSM 
 
Code LEs 

S-ID.2 

Use statistics appropriate to the shape of the data distribution to compare center 
(median, mean) and spread (interquartile range, standard deviation) of two or 
more different data sets 

S-ID.5 Summarize categorical data for two categories in two-way frequency tables.  

 Interpret relative frequencies in the context of the data (including joint, marginal, and 
conditional relative frequencies). 

  Recognize possible associations and trends in the data. 

S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how 
the variables are related. 

  Fit a function to the data (emphasize linear models). 

 Fit a function to the data (emphasize quadratic models). 

 Fit a function to the data (emphasize exponential models). 

  Use functions fitted to data to solve problems in the context of the data. 
  Use given functions or choose a function suggested by the context. 

  Informally assess the fit of a function by plotting. 
  Informally assess the fit of a function by analyzing residuals. 
S-ID.7 Interpret the slope (rate of change) of a linear model in the context of the data. 
  Interpret the intercept (constant term) of a linear model in the context of the data. 

S-ID.8 Compute (using technology) the correlation coefficient of a linear fit. 

  Interpret the correlation coefficient of a linear fit. 

S-ID.9  Distinguish between correlation and causation. 

S-IC.3 
Recognize the purposes of and differences among sample surveys, 
experiments, and observational studies. 

  Explain how randomization relates to each [type of the studies]. 

S-IC.5  Use data from a randomized experiment to compare two treatments. 

  Use simulations to decide if differences between parameters are significant. 
  

For each instance related to bivariate data identified, I coded one or several LEs 

(from the list of 21 LEs in Table 6) that match the intent of the instance.  If no LE was 
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found to match with the instance, I left the cell for the instance blank and noted the 

content that the instance addressed. After this coding, I identified LEs in the CCSSM 

covered in textbooks and how many times the LEs appeared as counted by number of 

instances.  I also specified the list of LEs that appear in textbook series but not in the list 

of 21 CCSSM LEs. 

For the question regarding the GAISE Framework, the progressions of topics 

related to bivariate data described in GAISE Framework are reported. This information is 

taken from suggestion of sequencing in three developmental levels of bivariate data 

topics. In particular, I summarized the progressions for each combination of two variables 

as appeared in the GAISE Framework. I then used the progressions and examined which 

developmental levels were addressed and in what order they appeared in each textbook 

series.  I also report whether specific components recommended in the framework 

appeared in the textbook series and which components appear in the textbook series but 

not in the GAISE Framework. 

Question 2. Nature of Tasks and Opportunities to Access the CCSSM standards for 

Mathematical Practices 

In order to address the nature of tasks research question, I used information from 

the task features portion of the coding framework. In particular, for each of the three 

series, I report the distribution of the level of mathematical complexity, using mean and 

SD. In order to illustrate the mathematical complexity framework, I also provide 

examples of the three levels of mathematical complexity.  

For the results regarding the GAISE Framework coding, for each textbook series, 

I report the percentages of instances related to bivariate data that addressed each of the 
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four components of doing statistics. I then summarize the developmental levels using 

means and SDs of each component for each series. For illustration purposes, I also 

include examples of multiple components at the three developmental levels. 

In order to measure the association between task and GAISE frameworks, I use 

Goodman and Kruskal’s Gamma test, which is applicable for measuring association 

among ordinal categorical variables. That is, I examine whether the higher levels of 

cognitive demands according to the mathematical complexity framework were associated 

with higher levels of development in the GAISE Framework.  

With respect to purpose and utility, for each the three series I report the 

percentages of instances that addressed each feature and then compare the percentages 

across the three series. I also provide illustrative examples of instances that addressed two 

features, one feature, and no feature of the purpose and utility framework. 

Finally, regarding to the CCSSM mathematical practices coding, I provide the 

percentages of instances that addressed each of the eight practices for the three series. I 

then report on the prevalence of appearing, by practice and by series. In order to illustrate 

the features of instances, I provide specific examples related to each SMP. 

The previous sections describe the coding and analysis of data. Table 7 

summarizes the relationship between research questions and sources of data collected. 
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Table 7 

The Mapping of Data Sources to Research Questions 
 

 
Validity and Reliability 

 A validation of the coding framework was carried out before actual coding. I 

consulted with a mathematics educator who has expertise in statistics education, a 

statistician, and a Ph.D. candidate in statistics in order to decide the boundary for the 

inclusion of instances to be coded. In addition, the lead author of GAISE Framework also 

helped to clarify the GAISE Framework descriptors and to distinguish between 

mathematical and statistical tasks.  

The reliability of coding was established through two procedures. First, two 

additional coders were trained and in order to establish inter-coder reliability. A concise 

description of the coding framework and a manual for the coding process were provided 

to coders for reference as they worked. The instructional instances from CPMP’s 

Investigation 1 of Course 1, Unit 1, Lesson 1 (Hirsch et al., 2008) were used for training. 

Three meetings of two hours each were scheduled to develop an adequate understanding 

of the coding framework and application of the framework. After the first meeting, the 

Research Question Sources of Data 
1a Type of data 

Contextual-based/abstract setting and type of association 
TTT Framework 
Learning Goals 

1b TTT Framework 
Learning Goals 

1c TTT framework 
Learning goals 
Analysis of the CCSSM and GAISE Framework 

2a Mathematical Complexity 
2b GAISE Framework 
2c Purpose and Utility Framework 
2d Mathematical Practices 
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two coders were asked to code two other investigations in the same lesson. Their results 

were compared for consistency and verification and useful background information for 

planning of the second meeting. Discrepancies of coding were discussed in the second 

meeting and reconciled in the set of instances. After the two meetings, each coder 

independently coded 21 instances related to bivariate data from each textbook series. The 

third meeting was scheduled to reconcile and finalize the coding system. 

 Once the practice coding was completed satisfactorily, each coder was assigned 

another set of instances purposefully selected because they include bivariate data content. 

For Coder 1, CPMP Course 2, Unit 4 – Regression and Correlation (Hirsch et al., 2008) 

was used, containing a total of 69 instances related to bivariate data. For Coder 2, Chapter 

2 of the UCSMP FST book – Functions and Models was used, consisting of a 66 

instances related to bivariate data. As a check of test-retest reliability, I recoded 66 

instances of UCSMP FST, Chapter 2 two months after the initial coding to ensure that I 

was coding the instances in a consistent manner across time.  

Table 8 displays the inter-rater and test-retest reliability coefficients for each 

code. Some dimensions were more reliably coded than others. For example, Combination 

of variables, Type of association, and Contextual/Decontextualized were fairly obvious 

within each instance based on the high rate of agreement for these codes (more than 

90%).  In contrast, the code for Mathematical Complexity, The GAISE Framework 

components, and Standards for Mathematical Practice (SMP) required some level of 

interpretation to determine. Notwithstanding, the agreement was reached on all but few 

(4) codes related to the GAISE Framework, with reliability coefficients exceeding 70%.  



	
   93	
  

There are some disagreements in coding for the GAISE Framework. For Coder 1, 

there were rather low rates of agreement in the assignment of codes related to Formulate 

Questions and Analyze Data (63% and 57%, respectively).  For Coder 2, the lowest 

agreement was observed on the Analyze Data code (55%) followed by Interpret Results 

(62%). Final discussions with the coders revealed the reason for the inconsistencies. In 

particular, in regard to the GAISE Framework - Formulate Questions, Coder 1 did not 

distinguish between statistical questions and questions to analyze data and, as a result, 

she coded all tasks that required students to analyze data. With respect to GAISE 

Framework - Analyze Data, the coding framework was aimed to attend to tools (such as 

graphical display and numerical statistics) required when solving the problems. However, 

both Coder 1 and Coder 2 took the level of cognitive demands into account when coding 

tasks and, as a result, both lower down the developmental level of the instance. For 

example, instance asking students to use graphing calculator to find the linear regression 

is supposed to be at Level C, but the coders categorized it as Level A because not much 

cognitive demands are required to solve this task; students must simply input the data and 

use calculator features to find the equation for linear regression. With respect to the 

GAISE Framework - Interpret Results, Coder 2 conceptualized it slightly differently 

when taking into account the contextual information from the teacher’s edition. For 

example, when an instance asked students to use the model for prediction, it should be 

coded as Level B of the GAISE Framework for Interpret Results. Despite this, Coder 2 

did not code such an instance as Level B because the measurement unit of prediction was 

not reported in the teacher’s edition. However, all coding differences were negotiated and 
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eventually reconciled.  More importantly, differences in the assignment of codes were 

fairly uncommon overall.   

Table 8 

Reliability measures 
 
Codes Agreement with 

Coder 1 (N=49) 
Agreement with 
Coder 2 (N=65) 

Test-Retest 
Agreement 

(N=65) 
Learning Trajectories    
Combination of variables 96% 98% 100% 
Type of association 94% 92% 92% 
Contextual/Decontextualized 94% 100% 100% 
Mathematical Complexity 78% 86% 88% 
GAISE Framework    
Formulate Questions 63% 89% 92% 
Collect Data 98% 98% 98% 
Analyze Data 57% 55% 92% 
Interpret Results 88% 62% 89% 
Purpose-Utility Framework    
Utility feature 78% 97% 94% 
Purpose feature 71% 83% 91% 
Standards for Mathematical 
Practice 

   

MP1 N/A N/A 95% 
MP2 78% 86% 87% 
MP3 82% 92% 92% 
MP4 71% 86% 91% 
MP5 78% 97% 94% 
MP6 76% 94% 98% 
MP7 71% 78% 91% 
MP8 71% 98% 100% 
 

Summary 

In this study, data were collected and recorded through an examination of the 

teacher’s editions of three commonly accepted textbook series.  Every page in the 

selected series that addressed bivariate data topics was analyzed using specific criteria. A 

coding framework was developed to identify and collect data in order to address two 

problems of interest: learning trajectories for bivariate data and the features of student 



	
   95	
  

learning tasks associated with the content of the textbooks. I sought to address two key 

aspects of textbook content: what content is covered and how the content is presented. 

Supports for the study of these aspects of textbook analysis were suggested in a NRC 

report (2004) and by Stein and colleagues in the Second Handbook of Research on 

Mathematics Teaching and Learning (2007). The study approach was more descriptive 

than evaluative even though it included elements of several established frameworks for 

curriculum analyses. Selected discipline perspectives in content analysis as suggested by 

NRC (2004) were embedded in the process: clarity of objectives, comprehensiveness, 

accuracy, depth of mathematical inquiry and mathematical reasoning, organization, and 

balance. Finally, to support the validity of my conclusions, I made a conscientious effort 

to address the reliability concerns related to the application of the coding framework.   
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CHAPTER 4: ANALYSIS OF DATA AND RESULTS 

For this study, I analyzed bivariate data tasks of three U.S. high school textbook 

series: Holt McDougal Larson series (HML), The University of Chicago School 

Mathematics Project series (UCSMP), and Core-Plus Mathematics Project series 

(CPMP). I examined the learning trajectories and the nature of tasks for bivariate data as 

presented in the teacher’s editions. In particular, I documented how learning trajectories 

for bivariate relationships were introduced and developed within each series. For each 

series, I compared the presence of the topics with the learning expectations (LEs) 

emphasized at the high school level in the Common Core State Standards for 

Mathematics (CCSSM) for bivariate data. Furthermore, I compared the learning 

trajectories for bivariate data in the Guidelines for Assessment and Instruction in 

Statistics Education (GAISE) Framework with those in each textbook series. In addition, 

I analyzed each instance related to bivariate data for the following features: level of 

mathematical complexity, the components of doing statistics and developmental levels of 

the GAISE Framework, the Purpose and Utility Framework, and the eight CCSSM’s 

Standards for Mathematical Practice (SMP).  

 Results are organized into two sections around the research questions. In the first 

section, I report findings related to the research questions about learning trajectories for 

bivariate data.  In the next section, I share results of my analysis of the features of tasks 

related to bivariate data in the textbook series. 

Learning Trajectories 

In this section, I organize my results into four sub-sections: (1) Distribution of 

Instances of Bivariate Data across Three Textbook Series, (2) Description of Learning 
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Trajectories within Each Series, (3) Alignment of Textbook Series with the Common 

Core State Standards for Mathematics Learning Expectations, and (4) Comparison of 

Textbook Series and the Guidelines for Assessment and Instruction in Statistics 

Education (GAISE) Framework Learning Trajectories. 

Distribution of Instances of Bivariate Data across Three Textbook Series 

Across the three series, there were 582 instances of to-be-solved (TBS) problems 

(in which solutions were not present) including 699 TBS tasks1 identified and coded for 

bivariate data. Table 9 summarizes the number of TBS instances and tasks across the 

three series. Because the structure of tasks varies across the three series, careful 

interpretations must be made when comparing these numbers. However, given that the 

structure of tasks is largely consistent within a given textbook series, the percentages of 

tasks related to bivariate data could provide a valid comparison across the three series. As 

observed in Table 9, the percentages of tasks were quite similar between HML and 

UCSMP and the percentage of TBS tasks within the CPMP series was about four-to-five 

times larger than the HML and UCSMP series percentages. 

Table 9 

Instances related to bivariate data  

Textbook Series Number of TBS 
instances related 
to bivariate data 

Number of TBS 
tasks related to 
bivariate data* 

Number of TBS 
tasks across all 
topics in series 

Percentage of 
TBS tasks 
related to 

bivariate data 
HML 122 165 17404 0.9 
UCSMP 214 269 20693 1.3 
CPMP 246 265 4993 5.3 
* More than one TBS task may be included in a single TBS instance 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  An instance might include one or more task[s]. For an example, see chapter 3.	
  



	
   98	
  

 The number of instances related to bivariate data also varied across textbooks 

within a series. Figure 13 illustrates the number of bivariate data instances in each 

textbook for the three series. In the HML series, the fewest number of instances (5) 

appeared in the Geometry book, whereas the greatest number of instances (78) appeared 

in the Algebra 1 book. Similarly, for UCSMP at the low end, no instances related to 

bivariate data appeared in the Geometry book, and at the high end, 103 instances 

appeared in the Functions, Statistics, and Trigonometry book (FST). In contrast, CPMP 

bivariate data instances were more uniformly distributed over four books (Course 1 to 

Course 4) ranging from 46 in Course 3 to 91 instances in Course 2.  

	
    

Note. The letters and numerals = Course and Order followed by book title  

 C1 C2 C3 C4 C5 
HML Algebra 1 Geometry Algebra 2   
UCSMP Algebra Geometry AA FST PD 
CPMP Course 1 Course 2 Course 3 Course 4  
 
Figure 13. Number of instances related to bivariate data across the textbooks in each 
series. 
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Figures 14, 15, and 16 depict the distributions of the instances related to bivariate 

data by chapters for each of the three series. For the HML series, about 60% of the total 

number of instances related to bivariate data appeared in the Algebra 1 textbook, and 

70% of those instances were in Chapter 4 of the textbook. About 35% of the bivariate 

data instances appeared in the HML Algebra 2 textbook; those instances were distributed 

throughout Chapters 4, 5, 6, and 10. In the UCSMP series, about half of the bivariate data 

instances appeared in FST, followed by the Advanced Algebra (28%) and Algebra (22%) 

books. The majority of those instances appeared in Chapter 2 of FST, Chapter 6 of the 

Algebra book, and Chapter 2 of the Advanced Algebra book. The instances related to 

bivariate data were dispersed in many chapters more than those in the HML series. For 

the CPMP series, all four books contained instances related to bivariate data. The 

plurality of those instances appeared in Unit 4 of the Course 2 book, Unit 5 of the Course 

4 book, and Unit 1 of the Course 3 book. The remaining instances related to bivariate 

data were distributed fairly evenly across five units2 of the Course 1 book. 

In regard to the combinations of variables, all three combinations—two 

categorical variables (CC), one categorical and one numerical variable (CN), and two 

numerical variables (NN)—were found in all three textbook series. However, the 

distributions of the instances were quite different for each combination of variable types. 

Generally, the vast majority of the instances used NN variables (Figure 17). This was 

addressed in every chapter containing instances related to bivariate data. In particular, 

about 77% of the total bivariate data instances are related to NN variables in CPMP to 

90% of those instances appeared in UCSMP. The percentage of instances 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  CPMP uses unit as an equivalence to chapter in HML and UCSMP. 
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Figure 14.	
  Distribution of the three combinations of bivariate data instances by chapters in the HML series (e.g., A1.1=Algebra 
1.Chapter 1).	
  	
  
 

 

Figure 15. Distribution of the three combinations of bivariate data instances by chapter in the UCSMP series (e.g., 
A.1=Algebra.Chapter 1). 

0	
  

20	
  

40	
  

60	
  

80	
  

A1
.1
	
  

A1
.2
	
  

A1
.3
	
  

A1
.4
	
  

A1
.5
	
  

A1
.6
	
  

A1
.7
	
  

A1
.8
	
  

A1
.9
	
  

A1
.1
0	
  

A1
.1
1	
  

G.
1	
  

G.
2	
  

G.
3	
  

G.
4	
  

G.
5	
  

G.
6	
  

G.
7	
  

G.
8	
  

G.
9	
  

G.
10
	
  

G.
11
	
  

G.
12
	
  

A2
.1
	
  

A2
.2
	
  

A2
.3
	
  

A2
.4
	
  

A2
.5
	
  

A2
.6
	
  

A2
.7
	
  

A2
.8
	
  

A2
.9
	
  

A2
.1
0	
  

HML	
  Series	
  

Two	
  Categorical	
  	
   One	
  Numerical	
  &	
  One	
  Categorical	
   Two	
  Numerical	
  

0	
  
20	
  
40	
  
60	
  
80	
  

A.
1	
  

A.
3	
  

A.
5	
  

A.
7	
  

A.
9	
  

A.
11
	
  

A.
13
	
  

G.
2	
  

G.
4	
  

G.
6	
  

G.
8	
  

G.
10
	
  

G.
12
	
  

G.
14
	
  

AA
.2
	
  

AA
.4
	
  

AA
.6
	
  

AA
.8
	
  

AA
.1
0	
  

AA
.1
2	
  

FS
T.
1	
  

FS
T.
3	
  

FS
T.
5	
  

FS
T.
7	
  

FS
T.
9	
  

FS
T.
11
	
  

FS
T.
13
	
  

PD
.2
	
  

PD
.4
	
  

PD
.6
	
  

PD
.8
	
  

PD
.1
0	
  

PD
.1
2	
  

PD
.1
4	
  

UCSMP Series 

Two	
  Categorical	
   One	
  Categorical	
  &	
  One	
  Numerical	
   Two	
  Numerical	
  



	
   101	
  

 

Figure 16.	
  Distribution of the three combinations of bivariate data instances by chapter in the CPMP series (e.g., C1.1=Course 
1.Unit 1). 	
  

 

Figure 17. Percentages of instances in three combinations of bivariate data across three series.
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related to CN variables was smallest for the UCSMP series (about 2%) and largest for the 

CPMP series (about 14%). In the CC combination, the percentage was smallest for the 

HML series (about 7%) and largest for the CPMP and UCSMP series (about 8%). 

Of the instances related to NN combination, only 1 of 131 instances in the HML 

series, 13 of 244 in the UCSMP series, 29 of 214 in the CPMP series contained a set of 

20 or more data points. For the CC combination, table dimensions other than 2x2 were 

found in the two of the three series. In particular, the UCSMP series included 2x4, 2x5, 

2x6, 2x7, 2x8, 2x12, 3x4, and 3x5 tables and HML series included 2x3, 3x3, and 3x4 

tables. In addition, when data were provided, the vast majority of the instances were 

presented in an organized table as opposed to raw data form. In particular, only 2 

instances in the HML series, 2 instances in the UCSMP series, and 10 instances in the 

CPMP series provided data in a raw format and required students to sort, categorize, and 

place the data in a well-formatted table. 

In the HML series, the instances involving NN variables were distributed across 

the textbooks, whereas the other two combinations of variable types appeared in two 

locations in the series. In particular, the CC combination instances appeared in Chapters 

10 and 11 of the Algebra 1 book and Chapter 12 of the Geometry book, whereas, the CN 

combination appeared in Chapter 10 of Algebra 1 and Chapter 6 in Algebra 2 (Figure 14). 

A similar pattern was found for the UCSMP series; the CN combination appeared in one 

location and the CC combination appeared in two locations in the series. All but two 

chapters (Chapter 11 of the Algebra book and Chapter 6 of FST) contained instances 

related to NN variables (Figure 15). For the CPMP series, the CC combination instances 

appeared in two units. Compared with the other two textbook series, more units (4) in 
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CPMP contained instances related to CN combination. Similar to the other two series, 

instances related to NN combination appeared regularly in nearly every unit that 

addressed bivariate data (Figure 16). 

Figure 18 depicts the proportion of functional models, by instances. For instances 

involving NN variables, multiple functional models for fitting data were addressed in 

each of the three series. In all three series, linear modeling appeared most often, at least 

twice as common as the second most often models, exponential modeling. The UCSMP 

series placed more emphasis on quadratic modeling than the other two series; in contrast, 

this series placed the least emphasis on power modeling compared with the HML and 

CPMP series. 

 

Figure 18.	
  Types of functional models in the three series.                                   

Description of Learning Trajectories within Each Series  

The following section describes the progression of content for each of the three 

combinations of bivariate data. The description of learning trajectories was derived 

mainly from the development portion of each lesson. Instances that appear in the 

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

HML	
   UCSMP	
   CPMP	
  

Unspeci:ied	
  

Trigonometric	
  

Rational	
  

Logarithmic	
  

Power	
  

Cubic	
  

Exponential	
  

Quadratic	
  

Linear	
  



	
   104	
  

homework assignment portion sometimes included learning expectations (LEs) that are 

somewhat different from those in the development portion. The LEs appeared in the 

homework assignment portion were also used to describe the trajectories. The 

descriptions of trajectories are organized into the three combinations of bivariate data for 

each series. 

Holt McDougal Larson (HML) series.  

HML series learning trajectory for two categorical variables. The relationship 

between CC variables is first introduced in Chapter 10, Data Analysis of the first book, 

Algebra 1, containing a total of 13 chapters. Specifically, in Lesson 10.3, Analyze Data, 

the authors of the HML series introduce two-way frequency tables as a means to 

determine the relationship between CC variables. They provide: (a) an example of the 

2x2 table to illustrate joint and marginal frequencies, (b) an example of a two-way table 

addressing how to interpret the frequencies in the table, and (c) an example of developing 

a two-way table based on a description of data and using that table to compare the 

categories. Figure 19 illustrates different types of frequencies in the table while Figure 20 

provides an example of making a two-way table and understanding frequencies to 

compare categories. The authors do not explicitly ask students to describe or quantify the 

relationship between the two variables, but merely to compare frequencies in the 

instances after the worked examples, which were referred as guided practices.  
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Figure 19.	
  Illustrating frequencies in a two-way table. From Holt McDougal Larson 
Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.673. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission. 
 

 

Figure 20.	
  	
  An instance requiring students to read/construct two-way tables. From Holt 
McDougal Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, Orlando, 
FL: Houghton Mifflin Harcourt Publishing Company, p.674. Copyright 2012 by 
Houghton Mifflin Harcourt Publishing Company. Reprinted with permission.	
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In Chapter 11, Probability, of the Algebra 1 textbook, a more complex use of 

two-way tables is introduced as a means to find probabilities, conditional probabilities, 

and in turn to judge the dependence of two events. It should be noted that this is a 

theoretical view of dependence and not a statistical association to judge the strength or 

statistical significance of the dependence of two events. The authors define independence 

as, “Two events are independent events if the occurrence of one event does not affect the 

occurrence of the other” (Larson et al., 2012a, p. 735). The property about the probability 

that both events occur equals to the product of probabilities for each event occurs is used 

to determine whether two events are independent (Figure 21).  A nearly identical 

sequencing of definitions, examples, and TBS problems about the independence of two 

events appear in Chapter 12, Probability, in the Geometry book.  

 
 
Figure 21.	
  Probabilities of independent and dependent events. From Holt McDougal 
Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: 
Houghton Mifflin Harcourt Publishing Company, p.735. Copyright 2012 by Houghton 
Mifflin Harcourt Publishing Company. Reprinted with permission. 
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 Summary of the LT for CC combination and its relation to other conceptual 

categories. The general progression of concepts of association between CC variables is as 

follows: (a) know how to make a two-way table, interpret frequencies in a two-way table, 

and (b) use two-way tables to calculate conditional probability and examine the 

independence of two events. Figure 22 summarizes the learning trajectory for the CC 

combination.	
  

 

 

 

 

 

 

 

Note. 

 

 

	
  

Figure 22:	
  Learning trajectory for the CC association in the HML series.	
  

For CC variables, the authors use conditional probability to judge the dependence 

of the events and used two-way tables as a means to calculate the probabilities. The 

connection between statistical association and conditional probabilities and frequencies is 

not explicitly addressed. Moreover, with the exception of the term frequency, no 

connection is made to univariate data topics for the CC combination.  
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HML series learning trajectory for one categorical and one numerical variable.  

The association between CN variables is introduced and developed in Chapter 10, Data 

Analysis of the Algebra 1 book. The concept of association is informally and implicitly 

introduced in Lesson 10.4, Interpret Stem-and-Leaf Plots and Histograms and Lesson 

10.5, Box-and-Whisker Plots. In particular, the authors provide one guided practice using 

a back-to-back stem plot comparing the time males and females spent watching television 

(Figure 23). 

 
 

Figure 23. Comparing two distributions using back-to-back stem-and-leaf plot. From 
Holt McDougal Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, 
Orlando, FL: Houghton Mifflin Harcourt Publishing Company, p.681. Copyright 2012 by 
Houghton Mifflin Harcourt Publishing Company. Reprinted with permission. 
 
 Similarly, the authors introduce box-and-whisker plots (boxplots) and how to 

make and interpret the plots. They then provide an example related to comparing two 

distributions using two side-by-side boxplots. In one instance in the assignment portion, 

the authors provide side-by-side boxplots and ask students to draw a conclusion about the 

relationship between two variables (Figure 24). Students are expected to use the five-

number summary of a distribution: median, two quartiles, maximum value and minimum 

value to compare the distributions. Three of four instances require students to compare 

two distributions of males and females in an attribute but do not explicitly expect students 

to use the comparison as a means to address the association between two variables. 
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Figure 24.	
  Comparing distributions using box-and-whisker plots. From Holt McDougal 
Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: 
Houghton Mifflin Harcourt Publishing Company, p.690. Copyright 2012 by Houghton 
Mifflin Harcourt Publishing Company. Reprinted with permission. 
	
  

In Chapter 6, Data Analysis and Statistics of Algebra 2, in the context of 

addressing the methods of scientific research (e.g., surveys, experiments, and 

observational studies), the authors introduce an activity that involved testing the 

hypothesis of an experiment. In particular, the problem is to determine if the treatment, a 

soil supplement, resulted in a significant difference in the yield (in kilograms) of cherry 

tomato plants. 

The authors prompt students to calculate the means of the two groups and the 

difference between the means, state the null hypothesis about soil supplement, conduct a 

simulation (collecting data in class), and display the differences between means in a 

histogram. They provide a histogram for 50 samples and ask students to locate the 

difference between the means in the histogram in order to determine the probability of the 
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event happening and decide to reject or accept the null hypothesis. The authors do not 

describe how to make the histogram using graphing calculators or computer software. 

Types of studies. One issue that underlies the CC and CN combinations is 

distinguishing between observational studies and experimental studies. Often used to 

confirm causation, experimental studies involve assessing if a treatment causes a 

significant difference in the incidence of some attribute. In order to assess the causal 

relationship, one has to randomly form groups and assign the treatment randomly into 

groups, and then compare the groups’ attribute after the treatment. Consequently, 

experimental studies often involve at least one categorical variable, namely groups. 

Furthermore, association and causation are closely related; a high correlation of two 

events, which is established through observational studies, helps motivate to examine the 

causation between them. Hence, addressing the association between CC or CN variables 

relates to distinguishing between observational studies and experimental studies. 

The distinction between types of studies is first addressed in one instance in 

Chapter 10 of the Algebra 1 book in which the authors ask students to determine which 

study of the link between exercise and incidence of heart attack was more reliable, a 

randomized experiment or an observational study. The definitions of the terms, 

randomized experiment and observational study, are not introduced prior to the 

presentation of the instances to students. Consequently, students would have to use their 

intuitive understanding about these terms to finish this instance. 

  The topic of differences among research methodologies receives greater emphasis 

in Chapter 6, Data Analysis and Statistics of Algebra 2 book. In Lesson 6.5, Compare 

Surveys, Experiments, and Observational Studies, the authors describe experiments and 
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observational studies in the context of “determin[ing] whether a quantity that varies can 

be associated with measured differences in two different groups of individuals” (Larson 

et al., 2012c, p. 415). The authors define the types of studies as follows: 

An experiment imposes a treatment on individuals in order to collect data on their 

response to the treatment…. 

In some cases, it may be difficult to control or isolate the variable being studied, 

or it may be unethical to subject people to a certain treatment or to withhold it 

from them. An observational study observes individuals and measures variables 

without controlling the individuals or their environment. (p. 415) 

Using these descriptions, the authors provide examples to illustrate each type of study as 

well as practice for the learning expectation (Figure 25). The authors then introduce 

controlled experiment and randomized comparative experiment with illustrative 

examples and then link the characteristics of an experiment to the concepts of correlation 

and causality. The lesson ends with an example of how to choose and design a study to 

address a statistical question specified in the book. In addition, the authors highlight 

randomization as a characteristic of well-designed studies (including sample survey, 

observational study, and experiment).   
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Figure 25.	
  Distinguishing among three types of studies. From Holt McDougal Larson 
Algebra 2 – Teacher’s Edition, by R. Larson, L. Boswell, T. D. Kanold, & L. Stiff, 
2012c, Orlando, FL: Houghton Mifflin Harcourt Publishing Company, p.419. Copyright 
2012 by Houghton Mifflin Harcourt Publishing Company. Reprinted with permission. 
	
  

Summary of the LT for CN combination and its relation to other conceptual 

categories. The progression of the relationship between CN variables is as follows: (a) 

compare two or more groups using graphical displays or numerical statistics of 

distributions, and (b) assess the significance of the mean difference between two groups. 

Figure 26 summarizes the trajectory for CN combination in the HML series. 
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Note. 

 

 

 
Figure 26.	
  Learning trajectories for the CN association in the HML series.	
  

For CN combination, graphical displays such as stem-and-leaf plots and boxplots, 

and numerical statistics (e.g., mean, median, interquartile range) for univariate data are 

used as means to address the association between CN variables. Simultaneously, 

comparing the differences of groups sets the stage for students to understand the utility of 

the statistics and the graphical displays of univariate data. In the textbooks, histograms 

are used to specify the probability of the difference between two groups happening in an 

experiment. To understand the significance of the difference, students need to understand 

that empirical probability, in a large number of trials, reaches the theoretical probability 

and graphical display of probabilities (area under a curve). It should be noted that 

examining the distribution of the difference of means is applicable only for two samples 

with the same size. 

HML series learning trajectory for two numerical variables.  

Linear fitting. In Chapter 1, Expressions, Equations, and Functions of the 

Algebra 1 textbook, authors of HML first introduce the bivariate relationship by asking 

students to represent data of NN variables on a scatterplot, observe and informally use the 

pattern of increasing/decreasing in the plot for prediction. In Chapter 3, Graphing Linear 

Equations and Functions of Algebra 1, the authors then introduce a formula to determine 

rate of change and use it as a means to assess the magnitude of a specific linear model. 

Prior knowledge 
students need in 
order to learn 
LE(s) in the 
rectangular box  

Order LEs appear 
in the textbooks Hypothetical 

order/connection 
between LEs 

LE(s) related to 
bivariate data 

Brief explanations of how 
authors introduce/develop 
the LE(s) 
 



	
   114	
  

These same expectations are revisited in Chapter 2, Reasoning and Proof and in Chapter 

3, Parallel and Perpendicular Lines of Geometry. 

Fitting a line to data first appears in Lesson 4.6, Fit a Line to Data of Chapter 4, 

Writing Linear Equations in Algebra 1. In a decontextualized setting, the authors show 

scatterplots of positive correlation, negative correlation, and relatively no relationship. 

They demonstrate these correlations using examples of a positive correlation between 

hours of studying and test scores, and a negative correlation between hours of television 

watching and test scores. Students are expected to apply their prior knowledge (making a 

scatterplot) to this current lesson.  They are asked to make a scatterplot using given data, 

observe the scatterplot and describe the correlation. Furthermore, students were 

introduced to using a line of fit as follows:  

Step 1 Make a scatter plot of the data.  

Step 2 Decide whether the data can be modeled by a line.  

Step 3 Draw a line that appears to fit the data closely. There should be 

approximately as many points above the line as below it.  

Step 4 Write an equation using two points on the line. The points do not have to 

represent actual data pairs, but they must lie on the line of fit. (Larson et al., 

2012a, p. 265)  

The authors use an example of the number of active “red-cockaded woodpecker clusters 

in a part of the De Soto National Forests in Mississippi” (p. 266) over time to 

demonstrate the procedure.  

Following the instances related to lines of fit, the authors introduce the term – 

linear regression and its relationship to best-fitting line, the correlation coefficient r, 
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using the line for prediction: interpolation and extrapolation. They explain linear 

regression as, “the line that most closely follows a trend in data is the best-fitting line” 

(Larson et al., 2012a, p. 271). Using the total sales from women’s stores from 1997-2002 

as an example, students are guided through the process of using a graphing calculator to 

determine the best-fitting line to model the set of data. The authors show examples of 

finding the best-fitting line and applying the model for prediction in other situations. In 

addition, the correlation coefficient r is introduced as “how well the best-fitting line fits 

the data” (Larson et al., 2012a, p. 272) and obtained when doing linear regression with 

graphing calculators. Although the authors do not provide a formula for r, they describe 

the connection between an r-value close to 1, –1, and 0 and strength and direction of the 

correlation. Figure 27 provides an example of instances related to linear fitting. 

After introducing correlation coefficient and to show the difference of correlation 

and causation, in Chapter 4, Extension, Correlation and Causation, of Algebra 1, the 

authors provide an example of “the number (in millions) of music album downloads and 

the number (in millions) of individual federal income tax returns filed electronically each 

year from 2004 to 2008” (Larson et al., 2012a, p.273). In this lesson, students use 

graphing calculators to find r and confirm that the correlation between the two variables 

is high; however, they are prompted to use informal knowledge to conclude that an 

increase in album download does not cause an increase in the filing of electronic tax 

returns. 
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Figure 27.	
  Using linear regression to make a prediction. From Holt McDougal Larson 
Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.272. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission.  

 After two approaches to finding lines of fit were addressed, the authors focus 

students’ attention on how to assess the fit of a model. They introduce residual plots, 

show how to make them, and describe characteristics of a good model of fit for a set of 

data. They explain: 
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If a line is a good fit for a set of data, the absolute values of the residuals are 

relatively small and more or less evenly distributed above and below the x-axis in 

a residual plot. Residuals that are mostly positive or mostly negative imply that 

the line is in the wrong place. Residuals that are steadily increasing suggest the 

data is not linear, while wildly scattered residuals suggest that the data might have 

relatively no correlation. (Larson et al., 2012a, p. 283) 

They use one example to illustrate how a line is not a good fit for a set of data. 

The TBS instances often involve providing students with data and a linear model and 

asking them to determine whether or not the model is a good fit for the data.	
  

Curve fitting. Continuing to fit a model to a set of data, in Lesson 7.4, Write and 

Graph Exponential Growth Functions of Chapter 7, Exponents and Exponential 

Functions of Algebra 1, one instance asks students to use graphing calculators to find the 

exponential regression to model the relationship between the frequency of piano notes 

and the position of the key that creates the note. The authors do not provide a formal 

introduction to this kind of regression before students proceeded to accomplish the 

instance. This learning expectation (exponential regression) is revisited and developed in 

a stand-alone activity appearing in Lesson 9.8, Compare Linear, Exponential, and 

Quadratic Models of Chapter 9, Quadratic Equations and Functions. Several instances 

involve students’ use of calculators to find exponential regression, quadratic regression 

and check the scatterplot to determine how the models fit the data. No narrative is 

provided in the text to define the regression; the models are found using graphing 

calculators. 
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The process of fitting various types of functions is revisited and developed in 

Algebra 2, Chapter 4, Exponential and Logarithmic Functions. In a stand-alone activity, 

Model Data with an Exponential Function, the authors instruct students to collect data 

and use the exponential regression feature of graphing calculators to model the data and 

assess the fit of the model by superimposing the model on a scatterplot. The authors then 

introduce the linearization of data by performing log and log-log transformations and 

asking students to observe if the transformed data points lie in a linear pattern. By solving 

a system of linear equations for the transformed data, a model is determined and then 

transferred back to find a model for the original data. Furthermore, students are prompted 

to use exponential and power regressions as a reference for the aforementioned methods. 

The chapter also includes multiple instances that asked students to find, choose or make 

an appropriate model based on the set of available models (linear, exponential, and power 

models). 

The idea of fitting rational, trigonometric models to data is addressed in this 

series. In Chapter 5 of Algebra 2, Rational Functions, rational model-fitting appears in 

Lesson 5.1, Model Inverse and Joint Variation. By trying multiple products of x*y 

students are prompted to observe if the products are approximately equal to each other in 

order to specify the model (𝑦 = !
!
) for a set of data. Students use graphing calculators to 

find trigonometric regression in Chapter 10, Trigonometric Graphs, Identities, and 

Equations, Lesson 10.5, Write Trigonometric Functions and Models. The authors use 

data collected over time about the number of kilowatt-hours used per month by the Cape 

Canaveral Air Station in Florida to illustrate the process.  



	
   119	
  

Summary of the LT for NN combination and its relation to other conceptual 

categories. The relationship between NN variables is introduced implicitly through 

content related to functions and explicitly in chapters related to curve fitting, regression 

and correlation. Other than linear fitting, other types of regressions are introduced using 

graphing calculators without definitions provided. For linear fitting, linear regression and 

correlation are obtained from calculators without the provision of formulas and their 

properties in related to sum of square residuals. Exponential and power fitting are also 

transferred to linear fitting via linearizing data by log and log-log transformations. Table 

10 and Figure 28 summarize the learning trajectory for NN variables in the HML series. 

It should be noted that the dashed arrows are the hypothetical trajectory/connections 

between the LEs, which are drawn from the strategies involving when solving tasks 

related to LEs. For example, students can move directly from learning patterns in 

scatterplots to eyeballed line and linear regression and not pass through rate of change 

without any difficulties. Because of the way the authors introduce and develop content 

related to eyeballed line and linear regression, no prior knowledge related to rate of 

change is needed to learn linear fittings. This argument also holds true for other textbook 

series. 

Table 10 

Summary of learning trajectories for two numerical variables in the HML series 

LEs related to 
association of 
bivariate data 

Brief explanations of how authors introduce/develop 
the LEs column 

Prior knowledge/ 
knowledge from other 
conceptual categories 
related to the LEs 

Patterns in 
scatterplots 

Prompt students to observe patterns of 
increasing/decreasing on a scatterplot 

Make a scatterplot 

Rate of change Prompt students to use formulas to calculate rate of 
change 

Slope of a line 
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Eyeballed line 
Linear regression 

Illustrate positive, negative, and no correlations in 
scatterplots 
Prompt students to write the equation for an eyeballed 
line 
Describe linear regression as best-fitting line without 
further explanation and asked students to obtain the 
regression using calculators 
r was a value obtained when doing the regression without 
giving a formula and property, linked to how well the 
best-fitting line fits the data 
Introduce residual plots and state the property of the plot 
for a good model, and provided residual plots/or asked 
students to make residual plots to assess the goodness of 
fit 

Write an equation of a 
line passing 2 points 

Exponential 
regression 

Prompt students to use graphing calculators to find the 
regression without providing any descriptions 

Know exponential 
functions 

Exponential 
regression 
Quadratic 
regression 

Prompt students to use calculators to find the regression 
without providing any descriptions 
Prompt students to informally assess the goodness of fit 
of a model using scatterplots 

Know behaviors of 
exponential and quadratic 
functions 

Linearizing data Prompt students to linearize data using logarithmic 
transformations and fit a linear function for the 
transformed data 
Prompt students to use calculators to find the regressions 

Know the logarithmic 
operation/function 
Solve a system of linear 
equations 

Rational functions 
fitting 

Prompt students to use provided formulas and substitute a 
pair of data to find the function 

Know behaviors of 
rational functions 

Trigonometric 
regression 

Prompt students to use graphing calculators to find the 
regression 

Know behaviors of 
trigonometric functions 

 
In the learning trajectory of fitting models to a set of data, functions are closely 

connected to the topic of model fittings. In particular, linear functions, their graphs, 

behavior, and slope as rate of change are used as means to study the relationship of NN 

variables. The behaviors of exponential, logarithmic and power functions are used to 

specify the kind of mathematical model that fits the data. However, students are not asked 

to decide which model to use until the logarithm operations are introduced to linearize 

data (in Chapter 4 of Algebra 2). Hence, the knowledge about taking the logarithm of a 

number and transferring it back to the original data is prerequisite to the study of curve 

fitting. By observing the transformed data, students are able to decide which model to 

choose, an exponential or power function.                                                                                                           
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Note. LTs in the textbook series begin at the bold box and end at the dashed box  
 
 
 
 
	
  

Figure 28.	
  Learning trajectories for association between NN variables in the HML series.      

The University of Chicago School Mathematics Project (UCSMP) series.  

UCSMP series learning trajectory for two categorical variables. The authors first 

introduce the Chi-square test in Lesson 11-8, The Chi-Square Statistics in the Algebra 

textbook as a means to examine the association between CC variables.  The test for 
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discrete data differs significantly from values that would be expected when certain 

probabilities are given” (Brown et al., 2008, p. 697). Using an example to determine if 

birthdays are randomly distributed across seven days of a week, the authors demonstrate 

the procedure for determining the association with an explanation of how to calculate the 

Chi-Square value for the set of data. In particular, they show how to calculate the 

expected values, the deviation between the expected and the observed values, the sum of 

all the squares of deviations, as well as how to read the Critical Chi-Square Values table 

by specifying the degrees of freedom in order to decide if the test-statistic is significant 

(i.e., the probability is less than .05). Most instances in this chapter explicitly ask students 

to use the Chi-Square statistic to determine if the event occurs randomly.  

The Chi-Square test is revisited and expanded in Lesson 6-9, The Chi-Square Test 

of FST. The authors define the test using a formula and use an example to show how to 

calculate the test. Next, they provide an activity simulating the likelihood of a chi-square 

test using a technology application to make a histogram for the chi-square values and 

specify where the original chi-square value lies on the histogram (Figure 29). Next, they 

introduce how to read the Critical Chi-Square Values table to determine if the event 

happens randomly without doing the simulation and to observe the probability of the 

event in a large number of trials. To illustrate the procedure for application of the Chi-

Square test, the Titanic problem is used to determine if the unequal survivors by class 

happened by chance. The procedure includes: stating the hypothesis, calculating expected 

values, computing chi-square statistics and using calculators to specify the probability of 

the event to determine if it is significant. Students are also instructed to use the 

technology to do simulations as another approach to testing the significance.  
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Instances explicitly relating to the association of bivariate categorical data using 

frequencies appear in Chapter 1 of FST. By using percentage in multiple categories of the 

table, the association between two variables is revealed. For example, the authors show a 

two-way table including boys/girls vs. types of sports. They ask students to specify 

categorical variables in the table, compute the percentage for each category of gender in 

each type of sports, and “write a few sentences about the differences between boys’ and 

girls’ participation in these sports” (McConnell et al., 2010, p. 13). 

 
 

Figure 29.	
  Simulation of the likelihood for a Chi-square value with technology. From The 
University of Chicago School Mathematics Project: Functions, Statistics, and 
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Trigonometry – Teacher’s Edition by J. W. McConnell et al., 2010, Chicago: IL: Wright 
Group/McGraw-Hill, p. 419. Copyright 2010 by Wright Group/McGraw-Hill. Reprinted 
with permission. 
 

The association between CC variables is developed fully in Lesson 6-5, 

Contingency Tables. Using the aforementioned data from the Titanic, the authors provide 

a table about class vs. survival and show how to calculate the percentage of survival in 

each class. The comparison of percentages is delayed until the assignment portion of the 

lesson when they are used to address the CC association. In another example about the 

association between getting a tattoo and becoming infected with Hepatitis C (HCV), the 

authors prompt students to use percent of each cell to reveal the association. In addition, 

they note the caution about drawing conclusion of causation by identifying lurking 

variables, factors that are that account for the relationship between two events but not 

mentioned in the study. 

The authors finally introduce Averaging and Simpson’s Paradox to show the 

discrepancy between the overall average and the average within categories of bivariate 

data. Using an example about lawsuit brought for gender discrimination in graduate 

school admissions the authors illustrate the paradox – the difference between the 

acceptance rates within each program and the overall acceptance rates (Figure 30).  
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Figure 30. Simpson’s Paradox. From The University of Chicago School Mathematics 
Project: Functions, Statistics, and Trigonometry – Teacher’s Edition by J. W. McConnell 
et al., 2010, Chicago: IL: Wright Group/McGraw-Hill, p. 391. Copyright 2010 by Wright 
Group/McGraw-Hill. Reprinted with permission. 
 

Summary of the LT for CC combination and its relation to other conceptual 

categories. The learning progression of this content is as follows: (a) use Chi-Square test 

to examine association for bivariate data, and (b) revisit the test with the aid of 



	
   126	
  

simulation, and use frequencies as a means to look for association. Figure 31 summarizes 

the UMCSP series’ learning trajectory for the CC combination of bivariate data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Note. 

 

	
  

Figure 31.	
  Learning trajectories for the CC association in the UCSMP series. 
	
  

For the CC combination, the authors compare percentages to detect the 

association between the events and used two-way tables as a means to calculate the 

percentages. The connection between statistical association and percentages is explicitly 

addressed; that is, no connection is made to univariate data topics for the CC 

combination. In addition, the authors use Chi-Square test to judge the association of the 

events. To understand this content, students need to understand that in the long run, 

empirical probabilities are expected to approximate theoretical probabilities and students 

are able to connect probabilities to their graphical model (the area under a curve). 

UCSMP series learning trajectory for one categorical and one numerical 

variable. Content related to the association between CN variables appears in Chapter 1, 

Exploring Data of FST. In Lesson 1-7, Comparing Numerical Distributions, graphical 
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displays including histograms and side-by-side boxplots and numerical statistics are used 

to compare two distributions. The authors use an activity comparing the height of players 

in the National Basketball Association and the National Football League during the 2007-

2008 seasons to show the process of comparing distributions. The process includes: 

describing each distribution in terms of its shape, center, and spread and deciding which 

measures of center and spread to use to compare the two distributions. Figure 32 is an 

example of instances that asks students to compare groups. In the example, populations in 

two regions of the U.S. are compared. The comparison could lead to a conclusion about 

the relationship between location and population, yet this is not explicitly stated in the 

text.  

No content related to distinguishing the types of studies is found in this textbook series.  

 
 
Figure 32.	
  Comparing two distributions. From The University of Chicago School 
Mathematics Project: Functions, Statistics, and Trigonometry – Teacher’s Edition by J. 
W. McConnell et al., 2010, Chicago: IL: Wright Group/McGraw-Hill, p.419. Copyright 
2010 by Wright Group/McGraw-Hill. Reprinted with permission. 
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 Summary of the LT for CN combination and its relation to other conceptual 

categories. The association between CN variables is introduced once in the UCSMP 

series: comparing two or more distributions using graphical displays and/or numerical 

statistics. Figure 33 summarizes the trajectory for the CN combination. 

 

 

 

 

 

Note. 

 

 

 

Figure 33. Learning trajectories for the CN association in the UCSMP series. 

For the CN combination, graphical displays such as histograms and boxplots and 

numerical statistics (e.g., mean, median, interquartile range) for univariate data are used 

as means to examine the association. Simultaneously, comparing the differences of 

groups sets the stage for students to understand the utility of the statistics and the 

graphical displays of univariate data. Understanding about using histograms and boxplots 

to summarize a set of data is prerequisite for comparing distributions; however, the 

authors do not explicitly discuss the association between the two variables.  

UCSMP series learning trajectory for two numerical variables.  

Linear fitting. The relationship between NN variables first appears in Chapter 6, 

Slopes and Lines of the Algebra textbook. In Lesson 6-1, Rate of Change, rate of change 
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is introduced as a means to understand how a quantity varies in relation to time Students 

are instructed to use the formula for rate of change to calculate the rate. They calculate 

the rate of change either by hand or using a spreadsheet; graphical display of the 

steepness of the line is used to depict the rate of change, and then to interpret in the 

context of data in situations related to linear modeling. 

In Lesson 6-7, the authors introduce the idea of using a line to describe trends in 

data. Using an example about life expectancy over time in the U.S., they show the 

process of “eyeballing a line of fit” (Brown et al., 2008, p. 368) by writing the equation 

of a line passing two points. Then “the line of best fit, … the most common way of 

finding a line to fit data” (p. 368), is introduced and used for prediction; students are 

prompted to use graphing calculators to find the line of best fit. Deviations are informally 

used to assess the fit of the two models: eyeballed (estimated) line and the line of best fit. 

The authors state the property of the line of best fit: “The sum of the squares of the 

deviations of its values from the actual values is the least of all lines” (p. 370) and 

illustrate the property by providing one specific example.  

A consistent approach for linear fitting was found in Chapter 3, Linear Functions 

and Sequence of the Advanced Algebra book, but within a different context – Navy 

divers. Yet, a slightly new idea is incorporated: using a moveable line on the graphing 

calculator to assess the sum of squares of deviations (SSD) of fitting lines and empirically 

showing that SSD is smallest for the regression line. In the second appearance of linear 

fitting, one instance related to making sense of the correlation coefficient r and how to 

interpret its meaning by examining r in multiple data sets appears (Figure 34).  
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Figure 34.	
  Examining of linear fitting with a moveable line. From The University of 
Chicago School Mathematics Project: Advanced Algebra – Teacher’s Edition by J. 
Flanders, M. Lassak, J, Sech, M. Eggerding, P. J. Karfiol, L. McMullin, N. Weisman, & 
Z. Usiskin R, 2010, Chicago: IL: Wright Group/McGraw-Hill, p.177. Copyright 2010 by 
Wright Group/McGraw-Hill. Reprinted with permission. 
 

Curve fitting. Linear regression is used in Chapter 7, Using Algebra to Describe 

Patterns of Change of Algebra, as a contrast to introduce exponential regression for 

prediction. Specifically, in Lesson 7-4, Modeling Exponential Growth and Decay, the 
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authors ask students to collect data on ball bouncing and provide two functions for 

students to choose to model the set of data: linear and exponential. Graphing calculators 

are used to find the regressions for prediction. By informally observing scatterplots, the 

authors suggest which model to use for that situation. The authors do not formally 

describe exponential regression except that is the equation of the model obtained from the 

graphing calculator. 

A similar approach to regression is used in Lesson 9-4, Quadratics and 

Projectiles of Chapter 9, Quadratic Equations and Functions of Algebra. Through an 

activity asking students to collect data, the authors guide students to use graphing 

calculators to find the quadratic regression and superimpose it on the scatterplot to assess 

the fit of the model.  

Exponential fitting is revisited and expanded in Lesson 9-4, Fitting Exponential 

Models to Data in Chapter 9, Exponential and Logarithmic Functions of Advanced 

Algebra. The authors introduce two ways to find the model: (1) by solving a system of 

two equations, and (2) by using graphing calculators (Figure 35). With the availability of 

three types of models (linear, exponential, and quadratic), the authors prompt students to 

try the various models for a set of data and assess the fit of the models using a scatterplot. 

Revisiting multiple models fitting. Observing a pattern of increase/decrease of a 

quantity in a scatterplot or a table and using informal knowledge to explain the reason for 

the behavior are introduced in Advanced Algebra, Chapter 1, Functions. In Chapter 2, 

Variation and Graph, the authors spend two lessons addressing fitting a model to a set of  
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Figure 35.	
  Two approaches of exponential fitting. From The University of Chicago 
School Mathematics Project: Advanced Algebra – Teacher’s Edition by J. Flanders et al., 
2010, Chicago: IL: Wright Group/McGraw-Hill, p.603. Copyright 2010 by Wright 
Group/McGraw-Hill. Reprinted with permission. 

data. In particular, in Lesson 2-7, Fitting a Model to Data I, direct and inverse variation 

models are introduced in two examples to illustrate the process of fitting an inverse 
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model. By specifying a general model (𝑦 = 𝑎 ∗ 𝑥,𝑦 = 𝑎 ∗ 𝑥!,𝑦 = !
!
,𝑦 = !

!!
) and using 

one pair of data to find the constant a in the model, the authors instruct students to find 

the model and use it to solve the problem in the context of data. Using informal 

knowledge as well as examining the scatterplot, students could specify which type of 

model to use and to find the model for the set of data. This skill is used and expanded in 

Lesson 2-8, Fitting a Model to Data II, to investigate situations involving more than two 

variables.  

Linear, exponential, quadratic, and inverse fittings are revisited and expanded in 

Chapter 2, Functions and Models of Functions, Statistics, and Trigonometry. In 

particular, in Lesson 2-2, Linear Models, the authors build on the content of previous 

chapters and add formal investigations about the goodness of fit. In this lesson, they 

define residual, sum of squared residuals (SSR), which was previously referred to as 

SSD, and show its graphical display. They state:  

The sum of squared residuals is a statistic that measures lack of fit. If you compare 

two lines, the one with the larger sum of squared residuals is not as good a model 

as the one with the smaller sum of squared residuals…The line that gives the 

smallest value provides the best fit to the data. (McConnell et al., 2010, p. 91) 

Using an example about the relationship between the number of televisions per 100 and 

the number of unemployed per 100, the authors guide students to examine when SSR is 

smallest with the aid of a moveable line.  

 Subsequently in Lesson 2-3, Linear Regression and Correlation, the authors 

define the line of best fit, the least squares line or regression line, and state three 

properties of the line: 
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1. It is the line that minimizes the sum of squared residuals, and it is unique. 

There is only one line of best fit for a set of data. 

2. It contains the center of mass of the data, that is, the point (𝑥,𝑦) whose 

coordinates are the mean of the x-values and the mean of the y-values. 

3. Its slope and intercept can be computed directly from the coordinates of the 

given data points. (McConnell et al., 2010, p. 94) 

The authors use an example of finding the line of best fit for a set of data about the 

weight and the price of diamond rings to illustrate the properties (Figure 36). 

The formula for r is first introduced as a statistic to describe the fit of the 

regression line. The range of r and illustrations of direction and strength of the value are 

introduced with multiples scatterplots. The authors recommend that the value could be 

calculated using graphing calculators. Tasks related to examining r when transforming 

data are addressed in the next chapter. Furthermore, a warning to be cautious about 

confusing correlation with causation is made using multiple examples previously 

investigated. In addition, the authors mention influential points impacting the model, 

especially on the slope, intercept, and correlation.  

Contents related to exponential, quadratic, and inverse model fittings in Chapter 2 

of FST are largely identical to the content previous introduced in the Algebra and  
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Figure 36.	
  Properties of the regression line. From The University of Chicago School 
Mathematics Project: Functions, Statistics, and Trigonometry – Teacher’s Edition by J. 
W. McConnell et al., 2010, Chicago: IL: Wright Group/McGraw-Hill, p.95. Copyright 
2010 by Wright Group/McGraw-Hill. Reprinted with permission.	
  

Advanced Algebra books. Nevertheless, residual plots are introduced as a means for 

selecting a good model. The authors use examples of making residual plots for linear, 

exponential, and quadratic models using calculators and attending to the pattern on the 

plots. Finally, they summarize steps to build a model, as follows: (a) build a model from 

theory (if applicable), (b) use a scatterplot to see if the model follows a pattern in the 

data, (c) use residual plots to check the fit of model (d) use r for linear model, and (e) be 

aware of interpolation and extrapolation. 
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 Trigonometric fitting is first addressed in one instance in Chapter 10 of the 

Algebra book by observing a scatterplot and determining why the model is appropriate, 

and then this idea is revisited in Chapter 4 of FST.  In particular, students are asked to 

sketch a curve and choose among the functions to fit the data. They are also required to 

write, without the aid of technology, a trigonometric function that fit the data and use 

calculators to find the regression. Students then compare the calculator-generated 

regression with the model written without the aid of technology and use the models for 

prediction.  

 The authors connect curve fitting to linear fitting, in Lesson 9-7, Linearizing Data 

to Find Models, by introducing modeling with logarithmic functions. They use an 

example of the effect of study time on the ability to recall the meanings of unfamiliar 

words. Showing the data in a scatterplot and recommending a general form of logarithmic 

function, the authors use the data and calculate the line of best fit for the transformed data 

(by taking the logarithm of the independent variable). The authors show examples taking 

logarithm on both variables to find a model. After making the log-log transformation, the 

line of best fit for the transformed data is used to specify the model for prediction. Tasks 

involving finding the logarithm of a dependent variable, which leads to an exponential 

function when transferring back to original variables, to find the linear fitting for the 

transformed data appear in the assignment portion of this lesson, Hence, there are three 

forms of transformations in this chapter (log (x), y) (x, log (y)) and (log (x), log (y)). In 

preparation for selecting models and transformations, scatterplots of power, root, and 

logarithm functions families are shown as a reference. Moreover, the authors urge 
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students to use caution when using nonlinear models to fit data, namely to base decisions 

on both a prior theory and use residual plots to specify the model.  

Summary of the LT for NN combination and its relation to other conceptual 

categories. The progression for relationships between NN variables includes several 

visits. It starts with examining the rate of change and linear fitting. Then exponential, 

quadratic regressions are introduced with graphing calculators. Observing patterns of 

increasing/decreasing on scatterplots is introduced as a preparation for direct and inverse 

fitting. Next, linear, exponential, and quadratic fittings are formally revisited with many 

investigations. Trigonometric fitting is then introduced and the series concludes with 

linearizing data to developed logarithm, exponential, and power fittings and connect with 

linear fitting. Table 11 and Figure 37 summarize the learning trajectories for the 

relationship between NN variables in the UCSMP series. 

Table 11 

Summary of learning trajectories for two numerical variables in the UCSMP series 

Main LEs related 
to association of 
bivariate data 

Brief explanations of how authors introduce/develop 
the main learning expectations column 

Prior knowledge and 
knowledge from other 
conceptual categories 
related to the main LEs 

Rate of change 
 
 
 
 
Eyeballed 
(estimated) line 
Linear regression 

Prompt students to use formulas to calculate rate of 
change (by hand or with a spreadsheet) 
Illustrated rated of change of a line as its steepness and 
meaning as how fast a quantity changes over time. 
Instruct students to write the equation for an eyeballed 
line 
Describe linear regression as the line of best fit, the most 
common way of finding a line to fit data and ask 
students to obtain the regression using calculators 
Introduce deviations 
State the property of the linear regression 

Slope of a line 
 
 
 
 
Write an equation of a line 
passing 2 points 

Exponential 
regression 

Require students to use calculators to find the regression 
and informally use scatterplots to assess the goodness of 
fit 

Know behaviors of 
exponential functions 

Quadratic 
regression 

Prompt students to use calculators to find the regression 
and informally use scatterplot of assess the goodness of 
fit 

Know behaviors of 
quadratic functions 

Pattern on Prompt students to observe patterns of Make a scatterplot 
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scatterplots increasing/decreasing on a scatterplot and use informal 
knowledge to account for the behavior of the 
relationship 

Direct and inverse 
functions fittings 

Guide students to use a general formula and a pair of 
data to find the model 
Prompt students to use both prior theories/common 
knowledge  

 

Linear fitting Prompt students to write the equation for an eyeballed 
line 
Describe linear regression as the line of best fit and 
stated the property of the linear regression illustrated by 
a moveable line and ask students to obtain the regression 
using calculators 
Introduced sum of square deviations (SSD) 
Require students to make sense of r by examining r in 
multiple scatterplots 

Write an equation of a line 
passing 2 points 

Exponential fitting Prompt students to use a general exponential formula 
and substitute two points of data to find the model 
Instruct students to use calculators to find the regression 
Require students to choose among linear, quadratic, and 
exponential functions to fit a set of data 

Solve a system of two 
equations 
 
 
 
Know behaviors of the 
functions 

Linear, 
exponential, and 
quadratic fittings  
 

Define residual, sum of square residuals (SSR) with 
formulas, and stated three properties of the linear 
regression and examined SSR with a moveable line 
Define r with a formula and link to its meaning of 
statistic for the goodness of fit 
Caution about correlation and causation 
Instruct students to use two approaches to find 
exponential and quadratic models and assess the 
goodness of fit of the models using residual plots 
Recommend students to use both informal knowledge 
and data at hand to find a model 

Write an equation of a line 
passing 2 points 
 
 
 
 
Common knowledge about 
relationship between events 

Trigonometric 
fitting 

Prompt students to sketch the curve for relationship and 
find the model by hand or use calculators 

Know behaviors of 
trigonometric functions, the 
formula of trigonometric 
functions and its period and 
altitude 

Logarithmic, 
exponential, power 
fittings 

Instruct students to linearize data using logarithmic 
transformations and fit a linear function for the 
transformed data 
 

Know the logarithmic 
operation/function 
Solve a system of linear 
equations 

 
Through the trajectory for the NN combination, function families such as linear, 

exponential, power, logarithmic, trigonometric, direct and inverse models are used as 

means to fit the data, and the behavior of the function are used to assess the model fit. 

Similarly, knowing how to write an equation for a line passing through two points is a 

prerequisite for learning linear fitting (as it appears in the strategies the authors use to 
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introduce linear fitting). Furthermore, knowing how to solve systems of linear equation is 

required to find exponential fitting for a set of data. Finally, logarithmic transformations 

are used as a prerequisite to transfer exponential, logarithm, and power fitting to linear 

fitting.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. LTs in the textbook series begin at the bold box and end at the dashed box 
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Figure 37.	
  Learning trajectories for the NN association in the UCSMP series. 	
  

Core-Plus Mathematics Project (CPMP) Series. 

 CPMP series learning trajectory for two categorical variables. The relationship 

between CC variables first appears in Unit 8, Probability Distributions of the Course 2 

book. Especially in Investigation 2, Conditional Probability of Lesson 1, Probability 

Models, the authors pose a problem to determine if boys were more likely than girls to 

wear sneakers to school. They ask students to collect data related to the two variables: 

boys/girls and wearing sneakers/not wearing sneakers in classroom, and make a two-way 

table to summarize the data. The authors then require students to use the table to calculate 

probabilities and to examine if the Multiplication Rule holds for these two events. This 

table is used to find conditional probabilities and in turn to determine whether or not the 

two events, wearing sneakers and being a girl, are independent. Independence is 

determined by using the definition that events A and B are independent if knowing 

whether one of the events occurs does not change the probability that other event occurs. 

From this instance to determine the association between boy/girls and wearing sneakers 

to school, the authors lead students to draw the conclusion about conditional probability, 

namely that two events are independent if P(A)=P(A|B) (Figure 38). After this property is 

established, the authors ask students use two-way tables to determine if two events are 

independent.  



	
   141	
  

 

Figure 38.	
  Property of conditional probability of independent events. From Core-Plus 
Mathematics: Course 2 – Teacher’s Guide by C. R. Hirsch, J. T. Fey, E. W. Hart, H. L. 
Schoen, A. E. Watkins, B. E. Ritsema, R. K. Walker, S. Keller, R. Marcus, A. F. 
Coxford, G. Burrill, 2008b, Columbus: OH: Glencoe/McGraw-Hill, p.530. Copyright 
2008 by McGraw-Hill Companies, Inc. Reprinted with permission. 
 	
  

The association between CC variables is revisited in Course 3, Unit 1. The 

comparison of proportions (joint relative frequencies) is used to detect association and to 

determine if the difference in proportions is significant. Randomization Distribution is 

used to test the significance of the difference. Figure 39 shows an example of such an 

instance in which authors provide CC variables and ask students to calculate the 

difference in the proportions and determine whether the test statistic is significant. A 

histogram for the differences of proportion of 195 trials is made, and students are asked 
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to run the experiment five more times to create histogram of 200 samples. Using this 

histogram, students could observe where the difference of proportions in the study lies on 

the histogram to judge if the treatment makes a statistical significance.  

 

Figure 39.	
  Using a randomization test to examine the difference in proportions. From 
Core-Plus Mathematics: Course 3 – Teacher’s Guide by J. T. Fey, C. R. Hirsch, E. W. 
Hart, H. L. Schoen, A. E. Watkins, B. E. Ritsema, R. K. Walker, S. Keller, R. Marcus, A. 
F. Coxford, G. Burrill, 2009, Columbus: OH: Glencoe/McGraw-Hill, p.99. Copyright 
2009 by McGraw-Hill Companies, Inc. Reprinted with permission. 	
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CPMP series learning trajectory for one categorical and one numerical 

variable. The relationship between CN variables is implicitly addressed in Investigation 

1, Shapes of Distributions of Unit 2, Patterns in Data of Course 1. The authors provide 

two dot plots of the length of male and female bears and ask students to compare the 

overall pattern of each distribution—the shapes, centers, and spreads of the two 

distributions. However, the relationship between two variables is not explicitly addressed 

until another instance asks students to determine if silver nitrate is effective in causing 

more rain. Multiple graphical displays including dot plots, back-to-back stem plots, and 

boxplots are used to compare two distributions. Furthermore, by using the five-number 

summary related to a boxplot, students can compare two distributions then draw 

conclusion about the association between two variables. Figure 40 shows an example 

requiring students to compare distributions of exposure/non exposure to lead dust. In this 

case, students use only the boxplot for the difference of means to determine if it is 

significantly different.  

In Investigation 2, By Chance or from Cause? of Unit 1, Reasoning and Proof in 

Course 3, the relationship between CN variables is revisited and expanded. The authors 

provide an investigation to examine if the difference between two treatments is 

significant. The investigation begins with a simple, but well-designed, experiment to 

determine “whether a calculator helps students perform better, on average, on a test about 

factoring numbers into primes” (Fey et al., 2009, p. 81). The authors prompt students 

through several steps: dividing class randomly into two equal groups, using treatment 

assigned to each group (use calculator vs. by hand), answering the question, and grading 

the tests.  The test is designed such that there was predictably not any difference between  
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Figure 40.	
  Comparing distributions. From Core-Plus Mathematics: Course 1 – Teacher’s 
Guide by C. R. Hirsch et al., 2008a, Columbus: OH: Glencoe/McGraw-Hill, p.112. 
Copyright 2008 by McGraw-Hill Companies, Inc. Reprinted with permission. 
 
the two groups (students are told to guess when answering questions); however, the mean 

difference of the two groups might still be different from 0. Then students are required to 
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do the similar experiment 50 times and record the difference in a histogram. They are 

guided to observe whether the original difference was rare; stated differently, if the 

probability of the event was less than 5%. Consequently, students could conclude that the 

mean difference is relatively small and there is no significant difference of students’ 

performance in the two groups, using calculators vs. by hand. A similar activity, if please 

aromas enhance task completion, is introduced related to chance and cause learning 

expectation. This time, the authors prompt students to use the Randomization 

Distribution feature of CPMP-Tools (designed by the groups of authors) to make a 

histogram in a large numbers of trials (100 times), to determine if the difference is 

significantly different. In two other situations: penny stack with left-handed and right-

handed groups and stem and flower length of plants in Florida, the differences are 

assessed using the Randomization Distribution tool to gauge whether or not the mean 

differences in each situation are statistically significant. In addition, graphical displays 

such as two dot plots and boxplots are used to illustrate the differences.  

Types of studies. Content related to types of studies first appear in Course 2, Unit 

4. In the investigation about association and causation, the authors provide instances that 

attend to lurking variables and show multiple ways that two variables are related to a 

third variable. Lurking variable is specified using informal knowledge about the 

relationship between variables. Then, the authors describe how to draw conclusion about 

causation, “the only way to find out for sure [whether an association means that one 

variable causes the other or whether there is a lurking variable that causes both] is to 

conduct an experiment” (Hirsch, 2008b, p. 303). The authors then introduce random 

assigned and treatments in related to an experiment illustrated in the example about the 
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influence of a cup of tea on headache pain reduction. Students are asked to design an 

experiment to examine the causation in other contexts such as effect of mind games on 

the brain.  

Types of studies are formally developed in Investigation 1, Design of Experiments 

of Lesson 4, Statistical Reasoning of Unit 1 of Course 3. In a specific example about 

mung beans, the authors ask students to specify treatment and response variables and 

provide multiple situations to determine if a conclusion about causation could be made 

from the design of the study. After showing these examples, the authors ask students to 

design an experiment to determine whether zapping mung bean seeds in a microwave 

makes them sprout faster (Figure 41).  They then provide a formal description of three 

characteristics of a well-designed experiment: random assignment, sufficient number of 

subjects, and comparison group or control group. The authors ask students to use these 

definitions and link back to the aforementioned situations to specify if the design meets 

one or more of the characteristics. Furthermore, in the context of testing a polio vaccine 

by Jonas Salk, the authors introduce terminologies, placebo effect, subject blind, 

evaluator blind, and double blind. They formally introduce lurking variable to explain 

the difference between association and causation. In order to illustrate the difference, the 

authors use specific situations such as the study the effect of bacteria resistance to 

antibiotics. Informal knowledge is involved to identify lurking variables.  Simulations are 

used to help determine if the difference in the treatments happened by chance or cause in 

a series of activities. 
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Figure 41.	
  Experimental studies. From Core-Plus Mathematics: Course 3 – Teacher’s 
Guide by J. T. Fey et al., 2009, Columbus: OH: Glencoe/McGraw-Hill, p.76. Copyright 
2009 by McGraw-Hill Companies, Inc. Reprinted with permission. 

 
After addressing experimental study, three types of studies are investigated in 

Investigation 3, Statistical Studies. The authors describe three studies as follows: 

sample survey or poll: you observe a random sample in order to estimate a 

characteristic of the larger population from which the sample were taken. Getting 



	
   148	
  

a random sample of size n is equivalent to writing the name of every member of 

the population on a card, mixing the cards well, and drawing n cards. 

experiment: You randomly assign two (or more) treatments to the available 

subjects in order to see which treatment is the most effective  

observational study: The conditions you want to compare come already built into 

the subjects that are observed. Typically, no randomization is involved. (Fey et 

al., 2009, p. 89) 

Then the authors set up one problem: the effects of exercise on the blood pressure and of 

students in your school. They provide three different designs and asked students to 

categorize the type of the study to each one. The authors then asked students to draw 

conclusions from the study designs focusing on association and generalization. Several 

other studies are provided and students are required to classify the types of studies. A 

connection between types of studies and conclusions is made to clarify the characteristics 

of each type study.   

Summary of the LT for CC and CN combinations and their relation to other 

conceptual categories. The progression for association between CC variables is as 

follows: (a) assess the independence of two events using descriptions about the 

relationship and link the independence to conditional probabilities, (b) use two-way 

tables to calculate probabilities and assess the independence, and  (c) examine the 

difference of two proportions using simulation.  
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The progression for the CN includes: (a) compare distributions using graphical 

displays and/or numerical statistics and (b) decide if the difference between the means of 

two groups is statistically significant using simulation with technology. Figure 42 

summarizes the trajectories for the CC and CN combinations in the CPMP series. 

Because content related to distinguishing types of studies involved both types of 

combinations—CC and CN—two learning trajectories are synthesized in one figure.  

 

 
 

 

 

 

	
  

	
  
	
  
Note. 

 
 

 

Figure 42.	
  Learning trajectories for the CC and CN associations in the CPMP series.  
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In the CN combination, understanding that empirical probability, in a large 

number of trials, approaches theoretical probability helps students make sense of the 

significance of the test. Furthermore, using histograms to express and understand the 

probability of an event helps students determine if the test statistic is significant. 

Graphical displays such as histograms, dot plots, stem plots, boxplots, and numerical 

statistics are used as tools to compare groups. By comparing how one attribute differs in 

groups, the association between two variables: the aforementioned attribute and the group 

attribute (e.g., gender) reveals. Vice versa, solving a problem related to the association 

provides a context for the numerical and graphical displays of univariate data to appear.  

CPMP series learning trajectory for two numerical variables.  

Observing pattern in plots. The relationship between NN variables begins in 

Lesson 1 Unit 1 of Course 1. Students are asked to collect data related to the stretch of a 

bungee cord in relation to attached weights. They make a scatterplot, observe a pattern, 

and made a prediction. Students are also required to collect data for “a hands-on 

experiment that leads to a random walk pattern, foreshadowing probability ideas like the 

Law of Large Numbers and expected value” (Hirsch et al., 2008a, p. T8). Using a 

scatterplot, students can informally observe the pattern of change – a pattern in a large 

number of trials. This content is revisited in Unit 8 – Pattern in Chance when students 

are required to do a simulation – flipping a coin and observe cumulative proportion of 

heads in a large number of trials (Figure 43). 

Observing patterns over time is revisited in Course 3, Lesson 3 of Unit 4, 

Statistical Process Control. The authors use a plot over time, which is referred as a run  
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 Figure 43.	
  Pattern of chance. From Core-Plus Mathematics: Course 1 – Teacher’s Guide 
by C. R. Hirsch et al., 2008a, Columbus: OH: Glencoe/McGraw-Hill, p.555. Copyright 
2008 by McGraw-Hill Companies, Inc. Reprinted with permission.  

chart, to highlight how one attribute varies along a period. By observing the plot-over-

time, students can detect when the mean and standard deviation (SD) change. In 

Investigation 1, Out of Control Signals, the authors show run charts depicting a 

series of containers filling with milk and ask students to detect which run chart is far 

away from the line of mean and SD. Then the authors introduce the three-standard-

deviation rule, “a process out of control when a single value is more than three standard 

deviations from the mean” (Fey et al., 2009, p. 287), to detect the out-of-control points. 

In addition, they illustrate several other characteristics of an out-of-control process such 

as too many points in a row above or below the mean. They also provide eight tests of the 

out-of control process illustrated in graphs and use them to detect other situations either 

providing a run chart or asking students to make a run chart from data provided. 
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Observing scatterplots attending to the zone around the mean lines provided a means to 

assess the statistical process control.  

 Linear fitting. In order to quantify a pattern, in Investigation 3, Fitting Lines of 

Lesson 1, Modeling Linear Relationships in Unit 3, Linear Functions, Course 1 the 

authors require students to write a function to model a set of data. Using a situation about 

the relationship between flag height and shadow location, the authors ask students to 

eyeball (estimate) a line and write a rule for a linear function and use it to make 

predictions. A similar process is required for other situations such as airplane flight 

distance and time, altitude and temperature.  When fitting a line to a set of data, students 

are asked to interpret rate of change, the slope and coefficient of the model in terms of the 

context.  

After learning how to estimate a line of fit, students are required to perform a 

linear regression using calculators or computers and use the model for prediction. The 

authors also ask students to superimpose the model on the set of data and informally 

assess the fit of the model by observing if the model “closely matches the pattern in the 

data” (Hirsch et al., 2008a, p. 165). When performing a linear regression, it is informally 

shown that the linear regression procedure works best when data closely resembles a 

linear pattern. The authors do not include a formal description about linear regression to 

this point with the exception of the statement: “Linear regression is a branch of statistics 

that helps in studying relationship between variables” (Hirsch et al., 2008a, p. 166). The 

two approaches of fitting, line eyeballing and linear regression, are used interchangeably 

throughout the lesson. 
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 Curve fitting. Following linear modeling, in Investigation 4, Modeling Data 

Patterns, Lesson 1, Exponential Growth in Unit 5, Exponential Functions, students deal 

with exponential regression. In particular, they are required to make a scatterplot for 

Midwest wolves over time since 1990, use calculators to experiment with linear and 

exponential regression, decide which model is a better fit for the data, and then use the 

model for prediction. The authors describe exponential regression for the first time in this 

lesson. Similarly, in Lesson 2, Exponential Decay, the authors ask students to collect 

data, make a scatterplot, and observe and write a functional rule to fit the set of data. In 

particular, students are required to collect data about dropping 100 coins on the table and 

removing all coins that landed heads up. Students are instructed to, then, roll a six-sided 

die and remove the number of coins equal to the number on the top face of the die.  

 As another type of modeling, in Lesson 1, Direct and Inverse Variation of Unit 1 

– Functions, Equations, and Systems of Course 2, students are asked to do an experiment 

related to ramp length, platform height, and time for a ball to roll down a ramp. By 

making a scatterplot, students could detect the pattern of decrease/increase of the 

quantity. Then, students are asked to find a functional rule to model the set of data either 

with direct or inverse functions. For other functions including the inverse of root 

functions and power functions, calculators are used to find the model to fit a set of data.  

In Lesson 3, Rational Function Models and Operations, Unit 3, Algebraic 

Functions and Equations of Course 4, rational function is visited and developed. Students 

study the relationship between the number of drops it takes to break a whelk and drop 

height by observing a scatterplot. They then validate the reason(s) quadratic and 

exponential models are not appropriate for the data while the inverse variation was 
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appropriate.  Up to this lesson, three types of regressions: linear, exponential, and power 

are used to examine which model fits a set of data. 

 Expansion of linear fitting. Formal and explicit bivariate relationships are 

revisited and expanded in Unit 4 – Regression and Correlation of Course 2. In particular, 

in Lesson 1, Bivariate Relationships, the authors start with Investigation 1, Rank 

Correlation. Students are asked to rank eight different types of music (ties were not 

allowed) and to display the ranks in pairs in a scatterplot. They then are required to 

observe the pattern of the scatterplot to highlight any strong positive, strong negative 

associations, weak and no associations, and decide which scatterplot could be used to 

predict the ranks of one person using the other ranks. Students are then asked to 

brainstorm ways to assign a number to each scatterplot and recommended to use extreme 

cases of “perfect positive/negative association” to test their method. Furthermore, they 

are prompted to determine whether their methods are applicable to describing the 

direction and strength of the association with an entirely new set of data. The authors 

introduce the formula of Spearman’s rank correlation (rs) and require students to 

calculate it by hand or by using a spreadsheet. The link between rs and scatterplots is also 

addressed in this lesson. In one instance of the assignment portion, the authors introduce 

Kendall’s rank correlation (rk) providing the formula and illustrating it with a set of four 

items. They then ask students to find the rank correlation for multiple previous sets of 

data and compare rk and rs to determine if they are equivalent (Figure 44). 

In the next Investigation, Shapes of Clouds of Points, the authors described a good 

linear fit for a set of data “if they [data] form an oval or elliptical cloud” (Hirsch et al., 

2008b, p. 264) illustrated with scatterplots. Students are then asked to describe the  
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Figure 44.	
  Spearman’s and Kendall’s rank correlations. From Core-Plus Mathematics: 
Course 2 – Teacher’s Guide by C. R. Hirsch et al., 2008b, Columbus: OH: 
Glencoe/McGraw-Hill, p.277. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission. 
 
direction and strength of the relationships in various scatterplots (linear, curved, varying 

in strength) (Figure 45). They informally describe outliers using a scatterplot. 

In Lesson 2, Least Squares Regression and Correlation, linear regression is revisited and 

fully developed. In an instance examining the relationship between car weight and 

highway mileage, the regression line gotten by calculators is used to find the model for  

the data. Error in prediction and residuals are defined and students are asked to calculate 

the error for the above model and assess the position of a data point corresponding with 

the value of the residual. After that, sum of squared residuals (SSR) is introduced in a set  
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Figure 45.	
  Different types of bivariate relationships. From Core-Plus Mathematics: 
Course 2 – Teacher’s Guide by C. R. Hirsch et al., 2008b, Columbus: OH: 
Glencoe/McGraw-Hill, pp. 264-265. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission. 
 
of three data points for different models and compared to determine which model yielded 

the least SSR to lead to the conclusion about linear regression: “The regression line or 

least squares regression line is the line that has a smaller sum of squared errors 

(residuals), or SSE, than any other line” (Hirsch et al., 2008, p. 284).  

In Investigation 2, Behavior of the Regression Line, the authors define centroid 

and prompt students to prove that the regression line passes through the centroid with a 

set of three data points. Influential points, which are initially considered as outlier data 

points, are introduced. With the aid of software, the authors prompt students to remove 

influential points and observe the change of slope, y-intercept of regression line. Multiple 
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situations such as relationships between horse height and hip angle while running, and 

season and World Series batting averages are the contexts in which students investigate 

the influential points.  

 In Investigation 3, How Strong Is the Association?, the authors introduce 

Pearson’s r in a formula and guided students to calculate it with a set of three data points. 

A geometric display dividing the scatterplot into four quadrants with two lines parallel to 

the coordinate axes and passing through the centroid is used to help students understand 

the direction of the scatterplot and sign (+ or –) of r-value. Estimating the value of r from 

a scatterplot is also addressed. Influential points are also visited in relation to r. The 

authors use multiple situations to introduce students to the idea that the value of r can be 

high even though the relationship is not linear. They note that caution should be exercised 

when interpreting r because correlation is only good for interpreting linear models. In 

addition students should consider “scatterplot before deciding what summary statistics 

are appropriate and how to interpret them” (Hirsch et al., 2008b, p. T297). Correlation is 

then revisited in the context of distinguishing between association and causation with the 

introduction of lurking variable, to account for the relationship between two variables. In 

addition, tasks asking students to examine the relationship between slope and SSE are 

found in the assignment portion of the lesson.  

 Expansion of curve fittings. Model fittings are revisited in the Course 4 book. In 

Unit 1, Families of Functions, data transformations such as translations and reflections 

are made before calculating exponential regression. Tasks include asking students to add 

a constant to one variable and use curve fitting for the transformed data of cooling time as 

a function of temperature and to do a reflection and vertical translation before finding the 
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exponential regression for the warming time as a function of temperature. In this lesson, 

the goodness of fit of the models is assessed using a scatterplot.  

 In Unit 5, Exponential Functions, Logarithms, and Data Modeling, Lesson 2, 

Linearization and Data Modeling, the authors introduce residual plots. They use a 

problem predicting population over time in Investigation 1, Assessing the Fit of a Linear 

Model, in which they ask students to make a residual plot, a plot of independent variable 

on the x-axis and the difference between the actual and predicted values in the y-axis and 

observe the plot to determine if a linear function is an appropriate model for the data. A 

similar process is applied for other situations such as cost of land fertilizing and radius of 

the land. The authors use a logarithmic transformation in Investigation 2, Log 

Transformations to linearize data and carry out the concurrent process for the 

transformed data. In Investigation 3, Log-Log Transformations, the authors introduce 

taking the logarithm of two variables and find model fitting did for the transformed data. 

After all three models are introduced, and several instances ask students to find an 

appropriate model for the data. Figure 46 shows an example of experimenting with 

different models to fit a set of data. 
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Figure 46.	
  Linearization of data. From Core-Plus Mathematics: Course 4 – Teacher’s 
Guide by C. R. Hirsch, J. T. Fey, E. W. Hart, H. L. Schoen, A. E. Watkins, B. E. 
Ritsema, R. K. Walker, S. Keller, R. Marcus, A. F. Coxford, G. Burrill, 2008b, 
Columbus: OH: Glencoe/McGraw-Hill, p.404. Copyright 2008 by McGraw-Hill 
Companies, Inc. Reprinted with permission. 
 
 Quantification of rate of change. Instantaneous rate of change is introduced with 

specific data as a preparation to learn the derivative in Unit 7, Concepts of Calculus. 

Students are asked to observe a pattern in a table, and use the table to estimate a jumper’s 

velocity at one time point; the authors define that as instantaneous velocity. This concept 

is used to assess the relationship between two variables and for learning the concept of 

derivative. 

Summary of the LT for NN combination and its relation to other conceptual 

categories. The learning progression for the NN association includes several times of 

content appearing. It starts with observing a pattern of increasing/decreasing in a 



	
   160	
  

scatterplot, then moves to linear fitting, exponential regression, direct and inverse 

modeling and power regression. Exponential regression is revisited and expanded with 

the adding on of data transformations. Further, linearizing data is introduced to link 

multiple model fittings with linear fitting and residual plots are used to assess the 

goodness of fit. Patterns of change of a quantity over time are introduced in the pattern in 

chance and statistical process control. The LT ends with instantaneous rate of change as a 

value to measure how a quantity varies over time. Table 12 and Figure 47 summarize the 

CPMP series’ learning trajectory for NN combination. 

Table 12 

Summary of learning trajectories for two numerical variables in the CPMP series 

LEs related to 
association of 
bivariate data 

Brief explanations of how authors introduce/develop 
the LEs column 

Prior knowledge and 
knowledge from other 
conceptual categories 
related to the LEs  

Pattern on 
scatterplots 

Prompt students to observe patterns of 
increasing/decreasing on a scatterplot  

Make a scatterplot 

Eyeballed line 
Linear regression 

Require students to write the equation for an eyeballed 
line 
Require students to obtain the regression using 
calculators without formal descriptions about the 
regression  
Informally assess the goodness of fit using scatterplots 
Introduced deviations 
State the property of the linear regression 

Slope of a line 
 
 
 
Write an equation of a line 
passing 2 points 

Exponential 
regression 

Prompt students to use calculators to find the regression 
and informally use scatterplot of assess the goodness of 
fit 

Know behaviors of 
exponential functions 

Pattern of chance Prompt students to observe a pattern of data in a large 
number of trials  

Make a scatterplot 

Direct and inverse 
functions fittings 
Power regression 

Guide students to use a general formula and a pair of 
data to find the model and superimpose the model on 
data 
Asked students to use calculators to find regressions  

Know behaviors of direct 
and inverse functions 

Linear regression Develop and define rank correlations (Spearman’s and 
Kendall’s) as a measure to quantify association 
Illustrate the ideal scatterplots for a linear fitting and 
showed various types of association with scatterplots 
Define SSR and property of the linear regression in 
terms of minimizing SSR, passing through the centroid 
Introduce and investigate influential points with 
technology 
Define Pearson’ correlation and ask students to 

Common knowledge 
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calculate, estimate r from a scatterplot, and interpret its 
meaning 
Distinguish association and causation 

Statistical process 
control 

Ask students to make/use run charts to detect deviation 
from the mean and SD 
Show eight types of out-of-control process and asked 
students to categorize specific situations into the types 

Make a run chart, read 
mean and SD from the 
chart 

Exponential 
Regression with 
transformed data 

Translate and/or reflect data and fit an exponential 
function to the transformed data 

Know translation and 
reflection 

Rational functions 
fitting 

Require students to use a general formula and a pair of 
data to find the model and superimpose the model on 
data 
 

Know behaviors of the 
functions 

Exponential, 
power regressions 

Introduce residual plots and how to make them to assess 
the goodness of fit of a model 
Prompt students to linearize data using logarithmic 
transformations and fit a linear function for the 
transformed data 
Guide students to try multiple models and use 
scatterplots to help specify the model 

Make scatterplots 

Instantaneous rate 
of change 

Define the instantaneous rate of change and its meaning Concept of derivatives and 
rate of change 

Trigonometric 
fitting 

Ask students to sketch the curve for relationship and 
find the model by hand or use calculators 

Know behavior of 
trigonometric functions, 
know the formula of 
trigonometric functions 
and its period and altitude 

Linearizing data Instruct students to linearize data using logarithmic 
transformations and fit a linear function for the 
transformed data 
 

Know the logarithmic 
operation/function 
Solve a system of linear 
equations 

 
In NN combination, functional relationships are used as means to model data. 

Specifically, family of functions is used as a resource to find an appropriate model for a 

set of data.  In addition, transformations such as translations and reflections and 

logarithmic transformations are used to help find an appropriate model for a set of data 

by finding linear model for the transformed data. For linear modeling, several concepts of 

linear models such as slope, rate of change, and intercept are used in the context of data 

in addressing the relationship between two numerical variables. With regard to examining 

patterns over time, the empirical approach of probability is supported. That is, students 

get to understand that in a large number of trials, empirical probability reaches theoretical 
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probability by observing plots over time. Finally, the context of data sets the stage to 

prepare for learning derivative.  

	
  

 

 

 

 

 

 

 

 

 

 

 

Note. LTs in the textbook series begin at the bold box and end at the dashed box 

 

 

 

Figure 47.	
  Learning trajectories for the NN association in the CPMP series.  	
  

Comparison of Textbook Series Learning Trajectories with Common Core State 
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In this section, I describe the extent to which the learning expectations in each of 

the analyzed textbook series align with the CCSSM. Following the narrative discussion, 
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Table 13  

Frequency of instances addressing CCSSM LEs related to bivariate data across the three series 

CCSSM 
Code 

CCSSM Learning Expectations 
 

HML: 
Number of 
instances 

addressing 
the LEs 

UCSMP: 
Number of 
instances 

addressing 
the LEs  

CPMP: 
Number of 
instances 

addressing 
the LEs 

S-ID.2 
Use statistics appropriate to the shape of the data distribution to compare center 
(median, mean) and spread (interquartile range, standard deviation) of two or 
more different data sets 

4 5 10 

S-ID.5 

Summarize categorical data for two categories in two-way frequency 
tables.  5 0 3 

Interpret relative frequencies in the context of the data (including joint, marginal, 
and conditional relative frequencies). 

2 
 5 3 

Recognize possible associations and trends in the data. 2 6 10 

S-ID.6 

Represent data on two quantitative variables on a scatter plot. Describe how the 
variables are related. 27 33 48 

Fit a function to the data (emphasize linear models). 36 60 53 
Fit a function to the data (emphasize quadratic models). 2 28 5 
Fit a function to the data (emphasize exponential models). 11 39 31 
Use functions fitted to data to solve problems in the context of the data. 30 39 35 
Use given functions or choose a function suggested by the 
context. 16 40 22 

Informally assess the fit of a function by plotting. 5 37 54 
Informally assess the fit of a function by analyzing residuals. 4 20 21 

S-ID.7 
Interpret the slope (rate of change) of a linear model in the context of the 
data. 1 5 19 

Interpret the intercept (constant term) of a linear model in the context of the data. 1 0 5 

S-ID.8 
Compute (using technology) the correlation coefficient of a linear fit. 2 6 9 
Interpret the correlation coefficient of a linear fit. 2 4 7 

S-ID.9  Distinguish between correlation and causation. 2 3 17 
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CCSSM 
Code 

CCSSM Learning Expectations 
 

HML: 
Number of 
instances 

addressing 
the LEs 

UCSMP: 
Number of 
instances 

addressing 
the LEs  

CPMP: 
Number of 
instances 

addressing 
the LEs 

S-IC.3 
Recognize the purposes of and differences among sample surveys, experiments, 
and observational studies. 12 0 25 

Explain how randomization relates to each [type of the studies]. 6 0 18 

S-IC.5 

Use data from a randomized experiment to compare two 
treatments. 1 0 23 

Use simulations to decide if differences between parameters are 
significant. 1* 0 15 

 
* Bold is added to emphasize the LEs appeared in fewer than 3 instances 
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addressed in each of the three textbook series.  Note that the CCSSM LEs appear in 

italics throughout the discussion of LEs and textbook series’ foci. 

Holt McDougal Larson series (HML). All the CCSSM LEs were found in this 

series (Table 13). However, the emphases given to each LE varied considerably in terms 

of the number of to-be-solved (TBS) instances. Only a relative few instances  (ranging 

from 2 to 5) addressed the associations between CC and CN combinations. In particular, 

the LEs, Use data from a randomized experiment to compare two treatments (S-IC.5) and 

Use simulations to decide if differences between parameters are significant (S-IC.5), 

appeared only once in terms of TBS instances addressing them. More emphasis was put 

in fitting a function to a set of data. The focus on types of functions varied with more 

focus was placed on linear (36 instances) and exponential functions (11 instances) and 

less on quadratic functions (2 instances). Furthermore, a large number of instances (16) 

asked students to fit other functions such as inverse and trigonometry functions. 

However, relatively few instances asked students to determine if the model was a good fit 

for the data by using scatterplots (5 instances) or residual plots (4 instances). 

At the high end in the HML series, there were 43 instances addressing the LE, Fit 

a function to the data (emphasizing linear models) (S-ID.6); however, other LEs related 

to linear fitting such as correlation coefficient and goodness of fit did not get much 

emphasis (ranging from 1 to 2 instances). These included: Interpret the slope (rate of 

change) of a linear model in the context of the data (S-ID.7); Interpret the intercept 

(constant term) of a linear model in the context of the data (S-ID.7); Compute (using 

technology) the correlation coefficient of a linear fit (S-ID.8); Interpret the correlation 
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coefficient of a linear fit (S-ID.8); and Distinguish between correlation and causation (S-

ID.9). 

The University of Chicago School Mathematics Project series (UCSMP).  

Similar to the HML series, a lesser focus was put on CC and CN combinations. In 

contrast, UCSMP put a focus on the relationship between NN variables, which was 

related to model fittings. Across all three combinations, there were six LEs for which no 

instance was found in the UCSMP series: Summarize categorical data for two categories 

in two-way frequency tables (S-ID.5); Interpret the intercept (constant term) of a linear 

model in the context of the data (S-ID.7); Recognize the purposes of and differences 

among sample surveys, experiments, and observational studies (S-IC.3); Explain how 

randomization relates to each [type of study] (S-IC.3); Use data from a randomized 

experiment to compare two treatments (S-IC.5); and Use simulations to decide if 

differences between parameters are significant (S-IC.5). 

The UCSMP series put a focus on fitting a function to a set of data. As in the 

HML series, linear modeling received the most emphasis (60 instances). The UCSMP 

authors also placed a more balanced emphasis on other types of functions including 

quadratic (28 instances), exponential (39 instances), and inverse functions (40). 

Assessing the fit of a function to data either by using scatterplots or residual plots 

received more emphasis in UCSMP compared with 37 and 20 instances of using 

scatterplots and residual plots, respectively, compared to 5 and 4, respectively in the 

HML series. 

For linear modeling, a few instances addressed the slope of a linear model, 

correlation and distinguishing between correlation and causation. In particular, 5 
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instances asked students to Interpret the slope (rate of change) of a linear model in the 

context of the data (S-ID.7) but no instances asked students to interpret the intercept of 

the model. Computing and interpreting correlation received more emphasis in the 

UCSMP series with 6 and 4 instances, respectively, compared to 2 and 2, respectively in 

the HML series. 

Core-plus Mathematics Project series (CPMP): The CPMP series included all 

LEs from the CCSSM and each of them received a more balanced emphasis. The LEs, 

Summarize categorical data for two categories in two-way frequency tables and Interpret 

relative frequencies in the context of the data (including joint, marginal, and conditional 

relative frequencies) (S-ID.5) received the least emphasis (3 instances for each). All other 

LEs appeared in at least 5 instances; specifically, LEs that addressed linear fitting and 

assessing the fit of a model using plots were most emphasized with more than 50 

instances. 

Based on the examination of the learning trajectories for bivariate data in the three 

series, several learning expectations related to bivariate data appeared in the series but 

were not addressed in the CCSSM standards. Table 14 provides the list of LEs that 

appeared in the three textbook series, but not in the CCSSM. On this list, three LEs were 

common in the three series and those are the first three LEs that were included in the 

HML series. The HML and UCSMP series share the same LE, Fit a trigonometric model 

for a set of data, which was not found in the CCSSM. The UCSMP and CPMP series 

shared four more LEs not in the CCSSM including: (1) Properties of regression line, (2) 

Sum of square residuals; (3) Use common knowledge or prior theory to judge/build a 

model; and (4) Estimate correlation using scatterplots. One LE that was found only in  
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Table 14 

List of Learning Expectations found across the three series but not included in the CCSSM 

HML Series UCSMP Series CPMP Series 
• Calculate and use rate of change in the 

context of data 
• Fit an inverse model for a set of data 
• Linearize a set of data (using log, log-

log transformations) and fit a linear 
model for the transformed data  

• Fit a trigonometric model for a set of 
data  

 

• Calculate and use rate of change in the 
context of data 

• Fit an inverse model for a set of data 
• Linearize a set of data (using log, log-

log transformations) and fit a linear 
model for the transformed data 

• Fit a trigonometric model for a set of 
data  

• Properties of regression line 
• Sum of square residuals 
• Use common knowledge or prior theory 

to judge/build a model	
  
• Estimate correlation using scatterplots 
• Chi-square tests 
	
  

• Calculate and use rate of change in the 
context of data,  

• Fit a rational (including inverse) 
function to a set of data 

• Linearize a set of data (using log, log-
log transformations) and fit a linear 
model for the transformed data 

• Properties of regression line 
• Sum of square residuals 
• Use common knowledge or prior theory 

to judge/build model 
• Estimate correlation using scatterplots 
• Rank correlations: Spearman’s and 

Kendall’s correlation 
• Outlier and Influential points 
• Instantaneous rate of change 
• Transform data and fit a model 
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the UCSMP series is: Chi-square test. Four LEs appeared in CPMP but not in the 

CCSSM and UCSMP are: Transform data and fit a model; Rank correlations: 

Spearman’s and Kendall’s correlation; Outlier and Influential points, and Instantaneous 

rate of change. Across three textbook series, there were a total of 13 LEs not found in the 

CCSSM for bivariate data. 

Comparison of Learning Trajectories with the Guidelines for Assessment and 

Instruction in Statistics Education (GAISE) Framework 

The GAISE Framework, sanctioned by the American Statistical Association in 

2007, provides a guide for the development of statistical literacy, beginning with young 

children. The framework is comprised of three developmental levels of statistical 

maturity: Level A, Level B and Level C. While it is considered a developmental 

framework, it is neither age nor grade-level bound; rather, it articulates a developmental 

sequence for the learning of increasingly complex statistical concepts and processes. 

Applying the GAISE Framework to the Holt McDougal Larson (HML) 

series. 

 Two categorical variables. In the HML series, Level B of understanding the CC 

association was addressed but only slightly in three chapters of the HML series including 

Chapter 10 and 11 of Algebra, and Chapter 12 of Geometry.  In addition, there were no 

instances regarding CC variables that moved to Level C of the GAISE developmental 

progression. Although tasks involving two-way tables were found, learning expectation 

about the association between two variables was not explicitly stated in the HML 

textbook series. Similarly, relative frequencies (conditional probabilities) were 

considered, but they served the purpose of calculating the probabilities not for detecting 
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association. No measures for quantifying the strength of an association (e.g., ADR, QCR) 

were considered in this series. Figure 48 summarizes the developmental levels of the CC 

combination in the HML series. Each block represents the developmental levels involved 

in one chapter and this display holds for Figures 48 to 56. 

Algebra 1 
Chapter 10 

 
Level B 

Algebra 1 
Chapter 11 

 
Level B 

Geometry 
Chapter 12 

 
Level B 

 
Figure 48.	
  Learning trajectory of the CC association in terms of the GAISE Framework 
in the HML series. 

One categorical and one numerical variable.  In the HML series, all Levels A, B, 

and C were evident.  Specifically, in Chapter 10 of Algebra 1, several instances asked 

students to compare the distributions of groups, but not to detect association between two 

variables. At Level A of the GAISE Framework, stem plots as tools to compare groups 

and students might estimate mean for detecting the difference of groups were used. In the 

same chapter, at Level B of the GAISE Framework, boxplots and five measures to 

compare distributions was addressed. However, the nature of the examples focused on the 

distribution of univariate data, and did not seek to address the association between two 

variables. Level C was evident in one instance in Chapter 6 of Algebra 2, when an 

activity of simulation appeared showing the statistical significance of the difference.  

However, no instances related to this expectation were found after this initial simulation 

activity. Furthermore, neither a test to identify outliers nor a formal test of statistical 

significance was found in any textbooks comprising the HML series. Figure 49 

summarizes the developmental levels of association of CN variables in the HML series. 
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Algebra 1 
Chapter 10 

 
Levels A, B 

Algebra 2 
Chapter 6 

 
Level C 

 
Figure 49. Learning trajectory of the CN association in terms of the GAISE Framework 
in the HML series.	
  

Different types of studies were addressed in this series including an introduction 

to characteristics of well-designed studies. Students were expected to learn the 

fundamentals of distinguishing between observational and experimental studies, 

correlation and causation (Level C) in Chapter 6 of Algebra 2. However, in HML there is 

no preparation for doing experiments at Levels A and B of the GAISE Framework and 

so, in this sense, there is no evidence of a progression across developmental levels. 

Two numerical variables. The HML series addressed all three levels of the 

GAISE Framework in regard to the NN combination of bivariate data.  Nevertheless, not 

all components suggested in the framework were fully considered. Level A of the GAISE 

Framework was addressed in two chapters (1 and 3) of Algebra 1 when the authors 

introduced contents related to observing pattern in data displayed in a scatterplot and rate 

of change. These contents appeared again in Chapters 2 and 3 of Geometry. Then, in 

Chapter 4 of the same book, both levels B and C were addressed in relation to linear 

fitting including eyeballed line and linear regression. Linear modeling appeared again in 

Chapter 9 of Algebra 1 to serve as a contrast to introduce quadratic and exponential 

regression. At level B, the sign of correlation (positive and negative) was introduced; 

nevertheless, the QCR did not appear. At Level C, there was no opportunity for students 

to quantify the goodness of fit of a model even though the authors introduced r as a 

“black-box number” gotten from calculator. No formal formula for r was introduced even 

though the authors mentioned the strength and direction of r in relation to scatterplots. In 
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addition, no formal definitions of the regression line were described; learning expectation 

related to the Sum of Square Residuals (SSR) were not found in the series. Out of the 

suggestions in the GAISE Framework, linearization of data and other model fittings 

including exponential, power, inverse, rational, and trigonometric models appeared in the 

series. Figure 50 summarizes the developmental levels of NN variables in the HML 

series. 

Algebra 1 
Chapter 1 

 
Level A 

Algebra 1 
Chapter 3 

 
Level A 

Algebra 1 
Chapter 4 

 
Levels B, C 

Algebra 1 
Chapter 9 

 
Levels B, C 

Geometry 
Chapter 2 

 
Level A 

Geometry 
Chapter 5 

 
Level A 

 
Figure 50.	
  Learning trajectory of the NN association in terms of the GAISE Framework 
in the HML series. 

Applying the GAISE Framework to the University of Chicago School 

Mathematics Project (UCSMP) series. 

 Two categorical variables. The UCSMP series begins with instances related to 

the CC combination at the highest level of the GAISE Framework, Level C, using a Chi-

square test to assess the association between two variables in Chapter 11 of Algebra. The 

authors introduced the processes for using the test and for reading a table of critical 

values to determine whether the expected and observed values are significantly different. 

This Level was revisited in Chapter 6 of the FST book with the addition of simulation as 

another tool to check for significance. In this chapter, there were a few instances that 

asked students to use two-way tables for calculating percent and to informally address the 

association (GAISE Framework Level B). The authors have included tasks addressing 

Simpson’s Paradox (Level C). Other measures quantifying the strength of association of 

two variables at Level B such as ADR and QCR were not addressed in this series. Figure 

51 summarizes the developmental levels of the CC combination in the UCSMP series. 
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Algebra 
Chapter 11 

 
Level C 

FST 
Chapter 6 

 
Levels B, C 

 
Figure 51.	
  Learning trajectory of the CC association in terms of the GAISE Framework 
in the UCSMP series. 

One categorical variable and one numerical variable. The UCSMP series started 

and stopped at Level B for this combination of bivariate data in Chapter 1 of FST. 

Specifically, box-plots, a five-number summary and two histograms were used to 

compare two distributions. The nature of the examples focused on univariate data to 

address the distribution of data, and did not seek to address the association between two 

variables (bivariate data). Levels A and C of the GAISE Framework were not addressed 

in this series. Figure 52 summarizes the developmental levels of the CN combination in 

the UCSMP series. 

FST 
Chapter 1 

 
Level B 

 
Figure 52.	
  Learning trajectory of the CN association in terms of the GAISE Framework 
in the UCSMP series. 

The study of different types of studies was not investigated in the UCSMP series. 

However, the difference between correlation and causation (Level C) was addressed in 

the textbooks series in Chapter 2 of FST.  

Two numerical variables. All three developmental levels of the GAISE 

Framework were addressed in the UCSMP series. In this series, tasks at Level B and C of 

the Framework started in the Chapter 6 of Algebra.  At Level B, students were required to 

find a line of fit with eyeballed line. However, at Level C, the linear regression was first 

derived using graphing calculators and described as the line of best fit. Then these two 
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levels were addressed in Chapter 7 of the same book in which the authors use linear 

models to contrast with exponential regression. Then, tasks returned to Level A in 

Chapter 2 of Advanced Algebra when students were instructed to observe the pattern of 

association in a scatterplot. In Chapter 3 of Advanced Algebra, Levels B and C of the 

GAISE Framework were re-addressed.  In this chapter, the authors added a moveable line 

to illustrate and define Sum of Square Residuals (SSR) and informally investigate r 

(Level C). Subsequently, Levels B and C were revisited in Chapter 2 of FST. In this 

chapter, SSR was formally introduced and the properties of linear regression was stated 

and empirically proved. Furthermore, residual plots were used as tools to assess the 

goodness of fit. Quadrant Count Ratio measure for the strength of association (Level B) 

was not found. The element of error when interpreting data at Level C was not found in 

the UCSMP series. At Level C tasks, the authors addressed the difference between 

correlation and causation with specific examples. Not explicitly stated in the GAISE 

Framework, linearization of data was also found and other types of regressions: 

exponential and power, rational, trigonometric modeling were addressed in the UCSMP 

series. Figure 53 summarizes the developmental levels of the NN combination in the 

UCSMP series. 

Algebra  
Chapter 6 

 
 

Levels B, C 

Algebra  
Chapter 7 

 
 

Levels B, C 

Advanced 
Algebra 

Chapter 2 
 

Level A 

Advanced 
Algebra 

Chapter 3 
 

Level B, C 

FST 
Chapter 2 

 
 

Levels B, C 
 
Figure 53.	
  Learning trajectory of the NN association in terms of the GAISE Framework 
in the UCSMP series.	
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Applying the GAISE Framework the Core-plus Mathematics Project 

(CPMP) series. 

Two categorical variables. Two levels, B and C, of the GAISE Framework were 

addressed in the CPMP series regarding CC variables. In particular, the authors started 

with Level B tasks using conditional probabilities to address the CC association in Unit 8 

of Course 2. At Level B, Two-way tables were used as a tool to assess the association of 

two variables by comparing relative frequencies of the cells. However, ADR and QCR 

measures were not found in the series. Moving to Level C, the authors introduced 

simulation as a way to determine whether the difference of proportions is significant in 

Unit 1 of Course 3. Phi measure (Level C) was not found in the texts. In addition, no task 

addressing Simpson’s Paradox was found in the series. Figure 54 summarizes the 

developmental levels of the CC combination in the CPMP series. 

Course 2 
Unit 8 

 
Level B 

Course 3 
Unit 1 

 
Level C 

 
Figure 54.	
  Learning trajectory of the CC association in terms of the GAISE Framework 
in the CPMP series. 

 One categorical variable and one numerical variable. Two developmental 

levels, A and B of the GAISE Framework, were addressed in Unit 2 of Course 1 in the 

CPMP series. In particular, at Level A, dot plots and back-to-back stem plots were used 

to compare two groups and at Level B, side-by-side boxplots and a five-number summary 

were introduced to compare distributions. The authors did explicitly link the association 

between CN variables to comparing groups. Later, in Unit 1 of Course 3, Level C of the 

GAISE Framework was addressed when the CPMP-tools were used to aid in doing a 

simulation to determine if the mean difference between two groups was significant. 
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Figure 55 summarizes the developmental levels of the CN combination in the CPMP 

series. 

Course 1 
Unit 2 

 
Levels A, B 

Course 3 
Unit 1 

 
Level C 

 
Figure 55.	
  Learning trajectory of the CN association in terms of the GAISE Framework 
in the CPMP series. 

Different types of studies were also addressed in this series in Unit 4 of Course 2. 

In particular, characteristics of well-designed studies (Level C) were introduced and 

addressed in the textbooks. Students began with the basic task of learning to distinguish 

between observational studies and experimental studies and moved to the more complex 

tasks of correlation and causation (Level C). No preparation for doing experiments at 

Levels A and B of the GAISE Framework was found in the learning trajectories. 

Two numerical variables. The CPMP series addressed the order of the three 

developmental levels of the GAISE Framework, beginning by observing patterns at Level 

A, using an eyeballed line to fit data at Level B, and finding linear regression at the 

highest level of statistical maturity, Level C. In Unit 1 of Course 1, students were 

required to make a scatterplot and observe the pattern in data displayed in the plot for 

predictions (Level A). Then, Levels B and C were addressed in Unit 3 of the same book. 

Eyeballed line was first used (Level B) and then linear regression (Level C) was 

introduced to find a model for a set of data and use the model for predictions. However, 

the graphing calculator was used to find linear regression and no formal descriptions 

about the regression were provided. At Level A of the GAISE Framework, observing 

pattern in a scatterplot was addressed again in Unit 8 of Course 1 when the authors 

introduced pattern in chance. Linear modeling (Levels B and C) was formally revisited in 
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Unit 4 of Course 2. In this chapter, at Level C, correlation coefficient, r and SSR were 

formally introduced and used to assess the goodness of fit for a linear model. The relation 

between correlation and causation was addressed after learning about correlation and was 

expanded to association and causation in conjunction with types of studies. The 

properties of linear regression, specifically in relation to minimize SSR, were shown and 

examined in specific examples. In Unit 4 of Course 3, observing pattern in scatterplot 

(Level A) appeared again with the introduction of run chart for statistical process control. 

Residual plots (Level C), as a tool to examine the goodness of fit, appeared in Unit 5 of 

Course 4.  

With respect to measures quantifying the strength of association, the authors did 

attend to QCR (Level B) but not explicitly. Instead, they included two other correlations, 

Spearman’s and Kendall’s rank correlation appearing in Unit 4 of Course 2, before 

formal investigation of the correlation, r. Furthermore, geometric transformations such as 

reflections and translations were introduced in Unit 1 of Course 1 as a preparation step to 

finding the model for data. Other types of regression such as exponential, power and 

rational were found in the CPMP series. As the two previous series, the linearization of 

data was addressed providing another approach for fitting (Unit 5 of Course 4). In 

addition, the topics of statistical process control (Unit 4 of Course 3) and instantaneous 

rate of change (Unit 7 of Course 4) were also addressed in the CPMP series; these topics 

were not suggested in the GAISE Framework. Figure 56 summarizes the developmental 

levels of NN combination in the CPMP series. 

Course 1 
Unit 1 

 
Level A 

Course 1 
Unit 3 

 
Level B, C 

Course 1 
Unit 8 

 
Level A 

Course 2 
Unit 4 

 
Levels B, C 

Course 3 
Unit 4 

 
Level A 

Course 4 
Unit 5 

 
Level C 
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Figure 56.	
  Learning trajectory of the NN association in terms of the GAISE Framework 
in the CPMP series.	
  

Summary of Learning Trajectories for Bivariate Data 

 Generally, all three series address three combinations of variables: CC, CN, and 

NN variables. However, the sequence of each combination differed across the series. The 

treatments of CN variables in the three series were quite similar, namely using graphical 

displays and numerical statistics to compare groups. However, the relationships between 

CN variables were quite different for the three series in terms of tools used to determine 

the relationship between the variables. Particularly, the Chi-square test was used in the 

UCSMP series to determine the significance of the difference between expected and 

observed values. For NN combination the trajectories were much different for the three 

series. The HML series addressed linear fitting once using calculators, without going into 

in-depth investigation when the UCSMP series included the topic of linear fitting several 

times and gradually developed depth when revisiting the same topic a second and third 

time. The CPMP series placed great emphasis on introducing and developing linear 

fitting through several times of content appearing. 

 The HML and CPMP series addressed all LEs related to bivariate data in the 

CCSSM but the level of emphasis in terms of number of instances differed markedly 

across the two series. Six LEs were not found in the UCSMP series. Moreover, there 

were three LEs common to the three series that included in the CCSSM.  

 In terms of the alignment to the GAISE Framework, the sequences in terms of 

developmental levels varied regarding the combinations of variables across the three 

series. In particular, the CPMP series seems to follow the developmental order suggested 

by the GAISE Framework for the three combinations. In contrast, the UCSMP series 
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frequently deviated from the GAISE prescribed order of development and this was true 

for all three variable combinations.  

Task Features 

This section is presented into five sub-sections: (1) Level of Mathematical 

Complexity, (2) The Guidelines for Assessment and Instruction in Statistics Education 

(GAISE) Framework Coding, (3) Association Between Levels of Mathematical 

Complexity and the GAISE Frameworks, (4) Purpose and Utility Framework Coding, 

and (5) The Common Core State Standards-Mathematics (CCSSM): Mathematical 

Practices Coding 

Level of Mathematical Complexity  

In the following paragraphs, I describe the distributions of the levels of 

mathematical complexity in each of the textbook series reviewed and provide examples 

of problems involving the individual levels of complexity.  

 Distribution of levels of mathematical complexity across the three series. 

The distributions of mathematical complexity levels for the HML and UCSMP 

series are quite similar: about 30% of the instances were low level, 65% were moderate 

level and about 5% were high level. The CPMP series’ distribution was different in that 

only about 5% of the instances were at the low-level of mathematical complexity. The 

highest percentage of high-level instances appeared in the CPMP series (about 15%), 

which is nearly three times higher than that of each of the two other series (Figure 57). 

Across the three series, the majority of instances required a moderate level of 

mathematical complexity and ranged from 65% to 80% of instances. 
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Figure 57.	
  Proportions of levels of mathematical complexity across the three series. 

By denoting a numeric code for each level (low = 1, moderate = 2, high = 3) the 

average of the mathematical complexity for each of the three series can be computed. 

Table 15 summarizes the means and standard deviations of mathematical complexity for 

each of the three series. On average, CPMP instances require highest mathematical 

complexity among the three series.  

Table 15 

Means (SDs) of mathematical complexity across the three series 

Series Number of instances 
related to bivariate data 

Mean level of 
complexity 

(SD) 
HML 122 1.75 

(.539) 
UCSMP 214 1.75 

(.532) 
CPMP 246 2.1 

(.455) 
 
 Examples of instances for the three levels of mathematical complexity. 

About 30% of instances in the HML and UCSMP series were at a low-level 

mathematical complexity. Generally, these instances asked students to recall a fact or to 
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carry out steps without having to make decisions based on data. Figures 58, 59, and 60 

are examples of such instances. In Figure 58, an instance taken from the HML series, 

students were required to use a calculator to find a function for the data by inputting the 

data into the calculator and using the trigonometric regression utility of the calculator. In 

Figure 59, an instance taken from the UCSMP series, students were required to determine 

if the data points scatter around a line and specify the direction of the lines to match with 

provided terms. In Figure 60, an instance taken from the CPMP series, students were 

required to carry out the steps such as make a scatterplot, draw the line, and make squares 

without much decision-making.

 

Figure 58.	
  Low-level mathematical complexity instance. From Holt McDougal Larson 
Algebra 2 – Teacher’s Edition, by R. Larson et al., 2012c, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.650. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission. 
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Figure 59. Low-level mathematical complexity instance. From The University of Chicago 
School Mathematics Project: Functions, Statistics, and Trigonometry – Teacher’s Edition 
by J. W. McConnell et al., 2010, Chicago: IL: Wright Group/McGraw-Hill, p.98. 
Copyright 2010 by Wright Group/McGraw-Hill. Reprinted with permission. 
 

 
 

Figure 60. Low-level mathematical complexity instances. From Core-Plus Mathematics: 
Course 2 – Teacher’s Guide by C. R. Hirsch et al., 2008b, Columbus: OH: 
Glencoe/McGraw-Hill, p.313. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission. 

 
The instances at the moderate level of mathematical complexity generally asked 

students to carry out multiple steps with some level of data-based decision-making. 

Figures 61, 62, and 63, taken from the HML, UCSMP, and CPMP respectively, show 
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examples of such instances. All three instances provided a data set in a table and asked 

students to write a linear model for the set of data and use it for prediction. To 

accomplish these tasks, students had to make a scatterplot, specify a line that closely fit 

the data, choose two points and write an equation for the line passing through two points, 

and then use the equation to substitute for prediction. 

 

Figure 61.	
  Moderate-level mathematical complexity instance. From Holt McDougal 
Larson Algebra 1 – Teacher’s Edition, by R. Larson et al., 2012, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.269. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission.  

 
 
Figure 62.	
  Moderate-level mathematical complexity instance. From The University of 
Chicago School Mathematics Project: Algebra – Teacher’s Edition by S. S. Brown et al., 
2008, Chicago: IL: Wright Group/McGraw-Hill, p.371. Copyright 2008 by Wright 
Group/McGraw-Hill. Reprinted with permission.  
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Figure 63. Moderate-level mathematical complexity instance. From Core-Plus 
Mathematics: Course 1 – Teacher’s Guide by C. R. Hirsch et al., 2008a, Columbus: OH: 
Glencoe/McGraw-Hill, pp. 14-15. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission. 
  
 Instances at the high level of mathematical complexity level require heavy 

cognitive demands on students, including more creative thought, analysis, and planning. 

For example, in Figure 64, taken from the HML series, students consider real-life 

constraints such as ethical issues when planning the study and also need to be aware of 

the properties of well-designed studies to accomplish the tasks. In Project 5 from the 

UCSMP series (Figure 65), students are required to complete the entire statistical 

process: formulate a question, collect data, analyze data, and interpret results. They had 
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to do careful planning and work through multiple decision points when doing the task. In 

the instance from the CPMP series (Figure 66), students were required to come up with a 

new approach to solve the problem: find a numerical statistics to represent the correlation 

and then check their method(s) using data at hand.

 

Figure 64. High-level mathematical complexity instance. From Holt McDougal Larson 
Algebra 2 – Teacher’s Edition, by R. Larson et al., 2012b, Orlando, FL: Houghton 
Mifflin Harcourt Publishing Company, p.419. Copyright 2012 by Houghton Mifflin 
Harcourt Publishing Company. Reprinted with permission. 
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Figure 65. High-level mathematical complexity instance. From The University of 
Chicago School Mathematics Project: Functions, Statistics, and Trigonometry – 
Teacher’s Edition by J. W. McConnell et al, 2010, Chicago: IL: Wright Group/McGraw-
Hill, p.68. Copyright 2010 by Wright Group/McGraw-Hill. Reprinted with permission. 
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Figure 66. High-level mathematical complexity instance. From Core-Plus Mathematics: 
Course 2 – Teacher’s Guide by C. R. Hirsch et al., 2008b, Columbus: OH: 
Glencoe/McGraw-Hill, p. 260-261. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission.  
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The Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

Framework Coding 

In this section, I describe how the components of doing statistics are addressed in 

the three textbook series. Several examples are shown to illustrate the framework. These 

examples supplement the aforementioned description of progression of the GAISE 

Framework. 

Four components of doing statistics.  

Table 16 summarizes the percentages of instances that address zero to four 

components of doing statistics for each of the three series. Across thee series, very few 

instances address zero or four components of doing statistics (less than 8% for all three 

series). In contrast, about 35% or more of the instances address two components. 

Table 16 

Percentages of instances address no to four components of doing statistics 

Number of 
components 

HML (%) UCSMP (%) CPMP (%) 

0 4.2 1.6 1.2 
1 17.8 36.9 13.8 
2 50.0 38.5 41.9 
3 20.1 18.9 35.4 
4 7.9 4.1 7.7 

 
Table 17 shows the percentage of instances related to bivariate data that addressed 

each component of doing statistics for each series. Generally across the three series, the 

lowest percentage (4.9% to 12.1%) of the instances addressed the Collect Data (CD) 

component. The second lowest percentage of instances addressed Formulate Questions 

(FQ) (27.1% for UCSMP to 45.5% for CPMP). On average, 91.6% of all instances 
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related to bivariate data addressed Analyze Data (AD). The majority of the instances 

across the three series (63.1% to 87.7%) addressed Interpret Results (IR).  

Table 17 

Percentages of instances addressing the components of doing statistics in each of the 
three series 
 
 HML (%) UCSMP (%) CPMP (%) 
Formulate questions 30.3 27.1 45.5 
Collect Data 4.9 12.1 11.9 
Analyze Data 88.5 95.3 91 
Interpret Results 63.1 75.2 87.7 
  

For the Formulate Question component, in all the instances, students were not 

required to generate their own statistical questions for a given problem context; in other 

words, the statistical question was always provided for them. As a result, all such 

instances were coded at developmental Level A of the GAISE Framework. Most of the 

instances provided questions. 

In some cases, a statistical question was stated, for example: “How is the stretch 

of bungee cord related to the weight of the bungee jumper?” (Hirsch et al., 2008a, p.4). 

There is a need to collect data to answer this question. In other cases, a statistical question 

was not present, but the description provided a context for a statistical investigation: “In 

the Activity below, exponential regression models how high a ball bounces” (Brown et 

al., 2008, p. 419). After this statement, students engage in the entire process of doing 

statistics. In other cases, data were available to students, but the statement or the question 

provided a context for statistical investigation. For example, “Use the data in 

Applications Task 2 to study the relationship between price per bungee jump and income 

from one day’s operation at the five parks that were visited.” (Hirsch et al., 2008a, p. 15).  
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More often in the textbooks, questions were available, but they were questions 

leading to data analysis; that is, a graphical display or numerical statistics were already 

present. For example, Figure 67 shows an example of two questions that were asked but 

were not coded as Formulate (statistical) Questions. 

 

Figure 67.	
  Questions for data analysis. From Holt McDougal Larson Algebra 1 – 
Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: Houghton Mifflin Harcourt 
Publishing Company, p.54. Copyright 2012 by Houghton Mifflin Harcourt Publishing 
Company. Reprinted with permission.  

Situations that provided students opportunities to Collect Data did not include 

“design for difference” (Franklin et al., 2007, p. 14) meaning that students need to plan to 

collect data representing different groups. Instead students were required to conduct a 

simple experiment or compile a census of classroom, which were coded as Level A. 

Generally, the Collect Data instances dealt with an in-class experiment (Figure 68), doing 

a census survey of their classmates, or an extended project outside the classroom (in the 

UCSMP series). In only a few situations (one in the UCSMP series and three in the 

CPMP series) were students required to begin awareness of design for differences and 

use random selection, which were coded at Level B of the GAISE Framework. The 

following example, taken from the project, taken from UCSMP Algebra book, illustrates 

an instance coded at Level B. 

Testing Astrology 
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From a book (like Who’s Who) or online source, find at least 100 famous 

people in a field and note their birthdays. Identify the astrological sign of 

each person. Then tabulate the number of people with each sign. Do these 

data lead you to believe that certain birth signs are more likely to produce 

famous people? Use a chi-square statistics assuming a random distribution 

of the birthdays among the 12 astrological signs is expected. Although n – 1 

= 11 here, refer to row 10 from the chi-square table on page 699. (Brown et 

al., 2008, p. 704)   
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Figure 68.	
  A full statistical investigation process. From Holt McDougal Larson Algebra 1 
– Teacher’s Edition, by R. Larson et al., 2012a, Orlando, FL: Houghton Mifflin Harcourt 
Publishing Company, p.48. Copyright 2012 by Houghton Mifflin Harcourt Publishing 
Company. Reprinted with permission.  

No instance requiring Level C of the GAISE Framework for Collect Data was found in 

any of the three series. 

Developmental levels of the GAISE Framework. 

For the Analyze Data and Interpret Results, Figures 69 and 70 show the 

percentages of the GAISE developmental levels that appeared in the instances found in 

the three series. Generally, most instances were at Level B of the GAISE Framework for 

both Analyze Data (ranging from 45.9 to 73.1%) and Interpret Results (ranging from 61 

to 78.9%). On average, the least percentage of instances was coded at Level A across the 

three series for Analyze Data. In contrast, for Interpret Results, the lowest percentage of 

instances was at Level C.  

 

Figure 69.	
  Percentages of Analyze Data instances across the three series. 
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Figure 70. Percentages of Interpret Results across the three series.  

 
In order to compare distributions of the statistical components, an approach 

similar to assigning numerical values to the Levels of Mathematical Complexity was 

applied to the developmental levels of the GAISE Framework (Level A = 1, Level B = 2, 

Level C = 3).  Few instances were coded for Collect Data and Formulate Question and 

most were at Level A of the GAISE Framework; therefore, I only compared the 

distributions of Analyze Data and Interpret Results for the three series. Tables 18 and 19 

show the number of instances that were coded for each statistical component, the means 

and standard deviations of the codes across the three series. As observed from the tables, 

on average, the CPMP series has the highest value, followed by the UCSMP series, and 

then the HML series for both components: Analyze Data and Interpret Results.  

Table 18 

Means (SDs) of Analyze Data across the three series 

Series Number of bivariate 
data instances  

Mean of GAISE Developmental Levels 
(S.D) 

HML 108  1.84 
(.496) 

UCSMP 204  2.12 
(.651) 

CPMP 222 2.2 
(.710) 
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Table 19 

Means (SDs) of Interpret Results across the three series 

Series Number of instances 
related to bivariate data 

Mean of GAISE 
Developmental Levels 

(S.D) 
HML 77  1.92 

(.623) 
UCSMP 161  1.94 

(.457) 
CPMP 214 2.09 

(.602) 
   

It should be noted that Analyze Data and Interpret Data codes were not always the 

same for a specific instance. For example, Figure 68 shows an example of an instance 

that was coded at GAISE Level A for both Analyze Data and Interpret Results (observe 

association between two variables). In another case, Figure 58 shows an instance that was 

coded at Level C for Analyze Data (use trigonometric regression in analyzing data) but 

was not coded for Interpret Results because there was no requirement for students to 

connect back to the context. Similarly, Figure 64 shows an example of an instance that 

was coded at GAISE Level C for Interpret Results (Understand the difference between 

observational studies and experiments), but was not coded for Analyze Data because no 

data was involved in this instance.  

One question of interest naturally arises: Are the two coding components, Analyze 

Data and Interpret Results, associated? To explore this question, I applied the Goodman 

and Kruskal ’s Gamma test to determine whether there is a significant association among 

ordinal categorical variables. Even though several instances were coded as high for 

Analyze Data and a lower code for Interpret Result and vice versa, Table 20 shows that 

the two codes are statistically accordant, 𝛾 = .993  ,𝑝 = .000,𝑁 = 421 meaning that 
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increasing codes in Analyze Data were associated with increasing codes in Interpret 

Results. 

Table 20 

Association between Analyze Data and Interpret Results 

 
 Interpret Results (IR) Total 

1 2 3 

Analyze 
Data (AD) 

1 
Count 65 5 0 70 
% within AD 92.9% 7.1% 0.0% 100.0% 
% within IR 92.9% 1.7% 0.0% 16.6% 

2 
Count 5 236 2 243 
% within AD 2.1% 97.1% 0.8% 100.0% 
% within IR 7.1% 80.8% 3.4% 57.7% 

3 
Count 0 51 57 108 
% within AD 0.0% 47.2% 52.8% 100.0% 
% within IR 0.0% 17.5% 96.6% 25.7% 

Total 

Count 70 292 59 421 
% within AD 16.6% 69.4% 14.0% 100.0% 

% within IR 100.0% 100.0% 100.0% 100.0% 

 
Association Between Levels of Mathematical Complexity and the GAISE 

Frameworks 

Two frameworks, the NAEP levels of mathematical complexity and the GAISE 

Framework, were used to code the same set of instances. Because both frameworks 

essentially address levels of sophistication of tasks, I explored whether there is a 

concordance of the sets of two codes. That is, does an instance of getting a high code in 

one framework tend to get a high code in the other framework? Because only a few 

instances address Formulate Questions and Collect Data, and the lowest developmental 

levels of the components were addressed, I sought to examine the association between the 

coding of two other components of the GAISE Framework, Analyze Data and Interpret 

Results, and the mathematical complexity levels. 
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In Figures 71 and 72, a large portion of instances were coded at the middle level 

for both frameworks, no instance was coded at the highest level for mathematical 

complexity and at the lowest level for Analyze Data; few instances received a low level 

code for Analyze Data and a high level code for mathematical complexity. Similarly, few 

instances received a high level code for Interpret Results and a low level code for 

mathematical complexity and vice versa. 

 

Figure 71.	
  Association between mathematical complexity and Analyze Data. 

 

Figure 72. Association between mathematical complexity and Interpret Results. 
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As a formal approach, I used the Goodman and Kruskal ’s Gamma to examine the 

association, and results showed that there was positive accordance between levels of 

mathematical complexity and both components of Analyze Data and Interpret Results of 

the GAISE Framework, 𝛾 = .566,𝑝 = .000,𝑁 = 534 and 𝛾 = .721,𝑝 = .000,𝑁 = 452  

Table 21 

Association between mathematical complexity and Analyze Data 

 Analyze Data (AD) Total 
1 2 3 

Mathematical 
Complexity 
(MC) 

Low Count 47 40 13 100 
% within MC 47.0% 40.0% 13.0% 100.0% 
% within AD 50.5% 13.5% 9.0% 18.7% 

Moder
ate 

Count 44 235 107 386 
% within MC 11.4% 60.9% 27.7% 100.0% 
% within AD 47.3% 79.4% 73.8% 72.3% 

High Count 2 21 25 48 
% within MC 4.2% 43.8% 52.1% 100.0% 
% within AD 2.2% 7.1% 17.2% 9.0% 

Total Count 93 296 145 534 
% within MC 17.4% 55.4% 27.2% 100.0% 
% within AD 100.0% 100.0% 100.0% 100.0% 

Table 22  

Association between mathematical complexity and Interpret Results 

 
 Interpret Results (IR) Total 

1 2 3 
Mathematical 
Complexity 
(MC) 

Low Count 29 25 2 56 
% within MC 51.8% 44.6% 3.6% 100.0% 
% within IR 41.4% 8.1% 2.7% 12.4% 

Moder
ate 

Count 40 261 50 351 
% within MC 11.4% 74.4% 14.2% 100.0% 
% within IR 57.1% 84.5% 68.5% 77.7% 

High Count 1 23 21 45 
% within MC 2.2% 51.1% 46.7% 100.0% 
% within IR 1.4% 7.4% 28.8% 10.0% 

Total Count 70 309 73 452 
% within MC 15.5% 68.4% 16.2% 100.0% 
% within IR 100.0% 100.0% 100.0% 100.0% 

 
Purpose and Utility Framework Coding 

 In this section, I highlight the task features in relation to the Purpose and Utility 

Framework (Ainley et al. 2006). In addition to highlighting the purpose and utility of 
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learning tasks, I provide examples of instances addressing the features. Figures 73 and 74 

show the percentages of instances that address each feature of the Purpose and Utility 

Framework. As illustrated in the figures, across the three series, half of the instances in 

the HML series and more than 60% of the instances in the UCSMP and CPMP series 

addressed the purpose feature of the framework. That is, when solving the problems 

presented in these instances, students see a virtual or actual product after accomplishing 

the tasks. More than 95% of instances related to bivariate data address the utility feature 

(for all series). This means that most of the instances provided a context for students to 

see when, how, and why the mathematical ideas were used.  

	
   

Figure 73.	
  Percentages of instances that address the purpose feature across the three 
series. 
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Figure 74.	
   Percentages of instances that address the utility feature across the three series.	
  

 Tables 23, 24, 25 show the number of instances that address zero, one, and two 

features. Across the three series, most instances addressed both features (ranging from 

50% to 65.3%). In contrast, very rare instances (only one across three series) addressed 

purpose but not utility feature. A smaller amount of instances did not address any feature 

(ranging from 3.3% to 6.5%). Finally, about 29% (for CPMP) to 46.7% (for HML) 

addressed utility but not purpose feature. 

Table 23 

Number of instances address across purpose and utility features in HML (N=122)  
 

 Utility 
Purpose  No Yes 

No 4 57 
Yes 0 61 

Table 24 

Number of instances address across purpose and utility features in UCSMP (N=216)  
 

 Utility 
Purpose  No Yes 

No 14 69 
Yes 0 131 
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Table 25 

Number of instances address across purpose and utility features in CPMP (N=246)  
 

 Utility 
Purpose  No Yes 

No 14 71 
Yes 1 160 

 

Following are examples of instances that (a) address purpose and utility features, 

(b) address purpose but not utility feature, (c) address utility but not purpose feature, and 

(d) do not address either feature. 

Figure 50 shows an example of an instance that addresses both purpose and utility 

features. That is, when solving this task, students could see when, how, and why 

scatterplots, linear fitting are used in daily life (utility of mathematics processes) and 

when doing the prediction, they see the purpose of solving this problem: make a model 

for prediction. 

Only one instance across the three series was categorized as addressing purpose 

but not utility features. Generally, if purpose was addressed, utility was addressed also. 

Figure 75 shows an example of such instance. In this instance, after solving this task, 

students know “why the regression line is sometimes called the ‘line of averages’” 

(Hirsch et al., 2008b, p. 318), but they do not see why, when and how mathematical ideas 

such as linear regression are used. 
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Figure 75. An instance that addresses the purpose but not utility feature. From Core-Plus 
Mathematics: Course 2 – Teacher’s Guide by C. R. Hirsch et al., 2008b, Columbus: OH: 
Glencoe/McGraw-Hill, p.318. Copyright 2008 by McGraw-Hill Companies, Inc. 
Reprinted with permission.  

The example “Collect data on the number of cases reported for some disease in 

recent years for your city and state. Which type of function (linear, exponential, power, or 

logarithm) best models the data over time” (McConnell, 2010d, p. 606) shows an instance 

that addresses the utility but not the purpose feature. When doing this task, students see 

how scatterplots and functional models are used. However, they did not get to see the 

purpose of solving the problem because accomplishing the task did not yield such a 

product. 
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Figure 76 shows an example of an instance in which neither the purpose nor 

utility feature was addressed. Students were asked to make a scatterplot, draw a line of fit, 

and write an equation of the line. They were not given an opportunity to understand why 

and when to use the mathematical concepts and no product resulted from accomplishing 

the task. 

 

Figure 76. An instance that addressed neither the purpose nor the utility feature. From 
Holt McDougal Larson Algebra 1 – Teacher’s Edition, by R. Larson, L. Boswell, T. D. 
Kanold, & L. Stiff, 2012a, Orlando, FL: Houghton Mifflin Harcourt Publishing 
Company, p.291. Copyright 2012 by Houghton Mifflin Harcourt Publishing Company. 
Reprinted with permission.  

The Common Core State Standards-Mathematics: Mathematical Practices Coding 

Developing students’ awareness and utilization of the eight mathematics practices 

provides a set of skills that are important to develop mathematics proficiency. The 

Mathematical Practice Standards are: 

MP1: Make sense of problems and persevere in solving them. 

MP2: Reason abstractly and quantitatively. 

MP3: Construct viable arguments and critique the reasoning of others. 

MP4: Model with mathematics. 

MP5: Use appropriate tools strategically. 

MP6: Attend to precision. 

MP7: Look for and make use of structure. 

MP8: Look for and express regularity in repeated reasoning.  
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Table 26 summarizes the percentages of instances that address zero to eight 

mathematical practices for each series. Generally, across three series, no instances 

addressed all eight practices; rarely did instances address seven practices (ranging from 

0% to 6.5%) and none of the practices (ranging from 0.4% to 4.0%). In contrast, about 

11.4% (for CPMP) to 19.6% (for HML) of the instances addressed three practices, about 

20% (for CPMP) to 37.9% (for UCSMP) addressed four practices, and about 22.4% (for 

UCSMP) to 26.1% (for CPMP) addressed five practices. 

Table 26 

Percentages of instances address zero to eight MPs for each series 

 Zero 
MPs 

One 
MP 

Two 
MPs 

Three 
MPs 

Four 
MPs 

Five 
MPs 

Six 
MPs 

Seven 
MPs 

Eight 
MPs 

HML 4.0 13.9 13.1 19.6 24.6 23.0 1.6 0.0 0.0 
UCSMP 3.7 6.5 4.7 14.0 37.9 22.4 10.3 0.5 0.0 
CPMP 0.4 2.0 8.2 11.4 20.0 26.1 25.3 6.5 0.0* 

 
*The percentages do not sum to 100 due to rounding  

Figure 77 summarizes the percentages of instances that address the CCSSM 

mathematical practices across the three series. Generally, most instances related to 

bivariate data addressed MP4 Model with mathematics (ranging from 76.3% to 89%) and 

MP6 Attend to precision (81.1% to 87.8%). These instances often involved data and 

building a mathematical model to understand the situations or to solve real-life problems 

(addressing MP4). Furthermore, they often involved measuring, calculating, and making 

scaled graphing, which were coded as MP6. More than half of the instances offer 

potential to apply MP2 Reason abstractly and quantitatively (ranging from 57.4% to 

82.4%) because most of those instances include data and students needed an 

understanding of the quantity and to be able to find the relationship between two 

quantities. Only a few instances addressed MP1 Make sense of problems and persevere in 
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solving them (3.3% to 10.6%) and MP8 Look for and express regularity in repeated 

reasoning (0% to 7.8%); in fact, no instance was found to address MP8 in the HML 

series.  

 

Figure 77.	
  Percentages of instances that address the SMP in each of the three series. 

 By series, generally, the percentages were highest for the CPMP series for all 

practices except MP5 Use appropriate tools strategically. In contrast, the percentages of 

opportunities for students to apply the mathematical practices were lowest for the HML 

series with the exception of MP3 Construct viable arguments and critique the reasoning 

of others. The HML series offered very few opportunities for students to access MP7 

Look for and make use of structure (12.3%) and a fair portion of instances were found to 

address MP5 (37.7%). Less than half of the instances in the UCSMP series addressed 

MP3 (43%) or MP7 (36%). The CPMP consisted of a large portion of instances that 

addressed all mathematical practices except MP1 (10.6%) and MP8 (7.8%). 

Examples of the practices are shown below. Figure 78 shows an example of 

instance that addressed MP1 Make sense of problems and persevere in solving them. 
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Students use different approaches when solving the problem: predict and compare with 

data at hand as a way of triangulation. Further, this instance addressed other 

mathematical practices, including MP2 Reason abstractly and quantitatively – students 

need to examine the relationship between quantities; MP3 Construct viable arguments 

and critique the reasoning of others – students need to “be prepared to explain [their] 

choice”; MP4 Model with mathematics – students are building a mathematical model for 

the situation; MP6 Attend to precision – students need to be precise when collecting data 

and making a scatterplot, and MP7 Look for and make use of structure – students need to 

look for a pattern for the set of data. 

 

Figure 78. An instance that addressed MP1, MP2, MP3, MP4, MP6, and MP7. From 
Core-Plus Mathematics: Course 1 – Teacher’s Guide by C. R. Hirsch et al., 2008a, 
Columbus: OH: Glencoe/McGraw-Hill, p.330. Copyright 2008 by McGraw-Hill 
Companies, Inc. Reprinted with permission.   
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As mentioned in chapter 3 of this study, students can approach most tasks by 

using paper and pencil or technology. For the reason MP5 Use appropriate tools 

strategically was coded using the guidelines from the teacher’s edition of the three series. 

Figure 79 shows examples of tasks that address MP5 because the textbook authors noted 

about the use of technology as a signal for teachers to attend to when implementing the 

task in classroom. 

 

Figure 79. An instance that addressed MP5. From Core-Plus Mathematics: Course 4 – 
Teacher’s Guide by C. R. Hirsch et al., 2010, Columbus: OH: Glencoe/McGraw-Hill, 
p.T30. Copyright 2010 by McGraw-Hill Companies, Inc. Reprinted with permission. 

Most instances (more than 80%) were coded to allow students to apply MP6 

Attend to precision because generally, they required students to collect data, measure, 

make a scaled graph, and/or calculate. Still another case, students need to use specialized 

terms for communication when solving tasks, such tasks were also coded to for MP6  

(Figure 66). 

Many instances asked students to find a model for a set of data; however, these 

were coded for MP7 if students were to decide what pattern to look for and use it. Figure 

80 shows an example of an instance that asks students to find a line of best fit for 
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predicting, which was coded to meet MP8 but not MP7 because students were not 

looking for a pattern, instead they were told to use the linear model for prediction. This 

instance offered the potential for students to look for a shortcut to realize the invariance 

of quantities when changing scale.  

 

Figure 80. An instance that addressed MP8. From The University of Chicago School 
Mathematics Project: Functions, Statistics, and Trigonometry – Teacher’s Edition by J. 
W. McConnell et al., 2010, Chicago: IL: Wright Group/McGraw-Hill, p.191. Copyright 
2010 by Wright Group/McGraw-Hill. Reprinted with permission.  

Summary of Task Features for Bivariate Data 

 Generally, the distributions of mathematical complexity were similar for the HML 

and UCSMP series, but they were different from that of the CPMP series. On average, the 

level of mathematical complexity was highest for the CPMP series.  All three series 

include a majority of instances coded at the moderate level and only few of instances at 

the high level of complexity.  

 For the GAISE Framework, few instances address Formulate Questions and 

Collect Data components. When the two components were addressed, the instances were 
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not at the most sophisticated developmental level, Level C. Most instances include 

Analyze Data at all three GAISE developmental levels. However, the distributions of the 

GAISE developmental levels were different across the three series, Similar for Interpret 

Results, all developmental levels were addressed in all three series.  However, the 

distributions of the developmental levels were different: the average of GAISE 

developmental levels of the CPMP series was highest, followed by those of UCSMP and 

then HML series.  

 Tests of association for ordinal categorical data showed that two components of 

the GAISE Framework, Analyze Data and Interpret Results are concordant. Similarly, 

NAEP mathematical complexity levels and Analyze Data are concordant. Finally, 

mathematical complexity codes and Interpret Results are also concordant, meaning one 

code tends to increase as the other one increases. 

The majority of the instances of bivariate data addressed the utility feature and a 

smaller proportion of instances address the purpose feature. Although all four 

combinations of utility and purpose features (purpose and utility, purpose not utility, 

utility not purpose, not purpose and not utility) were found across the three series, only 

one instance was found to address the purpose but not utility feature. 

Finally, the potential for accessing and applying mathematical practices was 

evident in all three series. Across three series, most instances address three to five MPs 

often including MP4 and MP6. Generally, the percentages of instances that addressed the 

practices were highest for the CPMP series and lowest for the HML series. On average, 

most instances addressed MP2, MP4, and MP6. In contrast, few instances address MP1 

and MP8, while a moderate amount of instances addressed MP3, MP5, and MP7. 
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CHAPTER 5: DISCUSSION, SUMMARY, AND RECOMMENDATIONS 

In this study, I analyzed the learning trajectories (LTs) and task features for 

bivariate data within three high school textbook series currently used in the U.S. In this 

chapter, I summarize the study and discuss the findings as well as provide implications 

for mathematics education researchers and practitioners. This chapter is organized into 

five sections: (a) Summary of the Study, Findings and Discussion, (b) Limitations, (c) 

Implications and Recommendations, and (d) Summary. 

Summary of the Study, and Findings and Discussions 

For more than two decades, statistics has been advocated for and emphasized in 

the school mathematics curriculum (Franklin et al., 2007; CCSSI, 2010; Jones et al., 

2004; NCTM, 1989, 2000). Collectively, the goals of these efforts are to equip students to 

be wise citizen-consumers of the myriad of data omnipresent in their daily lives (Ben-Zvi 

& Garfield, 2004; Shaughnessy, 2007). Bivariate relationships play a critical role in 

statistics and, in fact, many mathematical problems are addressed through applications of 

bivariate data analyses (Shaughnessy, 2007). In addition, covariational reasoning (i.e., 

reasoning about bivariate relationship) plays a crucial role in everyday life because it is 

closely related to the concept of causal relationships, which allows people “to explain the 

past, control the present and predict the future” (Crocker, 1981, p. 272). However, 

research has consistently shown that people’s judgments of relationships between events 

are generally poor (e.g., Crocker, 1981). 

Over generations of school reform, there have been numerous efforts to improve 

student learning but ultimately “a school mathematics curriculum is a strong determinant 

of what students have the opportunities to learn and what they do learn (NCTM, 2000, p. 
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14). Among multiple aspects of curriculum development, textbooks are clearly one of the 

most common tools for the teaching and learning of mathematics (Grouws & Smith, 

2000; Robitaille, & Travers, 1992; Tarr et al., 2006).  Robitaille and Travers (1992) cite 

textbooks as a “significant factor in determining students’ opportunity to learn and their 

achievement” (p. 706).  

The National Research Council (2004) called for rigorous approaches when 

analyzing curricular materials. Among these, learning trajectories are at the heart of every 

phase of mathematics education: standards, curriculum development, instruction, and 

assessment (Batista, 2004; Confrey et al., 2009; Daro et al., 2011). Hence, documenting 

the LTs for bivariate data has the potential to identify strengths and weaknesses of 

curricular materials that students use to learn this content. In addition, examining the 

features of tasks provides an essential source of information for curriculum developers to 

improve textbook materials, and enhance the teaching and learning of mathematics.  

Purpose of the Study 

Given that textbooks play central roles in teaching and learning mathematics, this 

study analyzed contemporary high school mathematics textbooks in order to address the 

following research questions:  

1. What learning trajectories for topics in bivariate data are represented in high 

school mathematics textbooks in the U.S.? How are those learning trajectories 

similar to and different from those embedded within the Common Core State 

Standards for Mathematics (CCSSM)? To what degree are the learning 

trajectories found in textbooks aligned with the developmental levels described in 
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the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

Report? 

a. What topics in bivariate data are addressed in the textbooks and what 

learning trajectories for bivariate data are evident in the textbooks?  

b. How are connections made between the topics in bivariate data and topics 

in univariate data in the textbooks? How are connections made between 

bivariate data and other conceptual categories in mathematics at the high 

school level? 

c. To what extent are the CCSSM standards for bivariate data at the high 

school level evident in the textbook materials, and to what extent does the 

approach to, and sequence of, content in the materials reflect the 

developmental progressions of the topics described by the GAISE 

Framework? 

2. With respect to bivariate data, what is the nature of the instructional tasks 

presented in textbooks?  Do the tasks provide opportunities for students to access 

the CCSSM’s Standards for Mathematical Practice (SMP)? 

a. What levels of mathematical complexity are required by the tasks related 

to bivariate data? 

b. To what degree are the GAISE developmental levels reflected in the tasks 

related to bivariate data? 

c. What is the quality level of the tasks in terms of purpose and utility? 

d. How do the tasks provide opportunities for students to access the 

CCSSM’s Standards for Mathematical Practice? 
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Methodology 

 Three current high school mathematics textbook series—the Holt McDougal 

Larson series (HML), the University of Chicago School Mathematics Project (UCSMP), 

and the Core-plus Mathematics Project (CPMP)—comprised the sample for this study. In 

order to examine the LTs and task features for bivariate data, I analyzed teacher’s 

editions.  

I examined the three series from multiple perspectives that are grounded in 

research literature: presence of combinations of variables (two categorical variables [CC], 

two numerical variables [NN], and one categorical and one numerical variable [CN]); 

learning goals; techniques and theories; NAEP mathematical complexity; components 

and developmental levels of the GAISE Framework; purpose and utility features, and the 

Standards for Mathematical Practice of the CCSSM. The LTs for bivariate data were 

described using two aspects: (1) the distributions of bivariate tasks, and (2) qualitative 

detailed descriptions of how bivariate data content was introduced and developed in each 

series. I then compared these LTs with the CCSSM learning expectations (LEs) and 

learning progressions for bivariate data that are advocated in the GAISE Framework. For 

the task features, I report descriptive statistics and distributions of data. In order to 

examine the association between components of the GAISE Framework, and the GAISE 

and task frameworks, I applied Goodman and Kruskal’s Gamma tests. Additionally, I 

provided examples to illustrate each of the key task features in my analysis. 

Results of the Study and Discussions 

 Learning trajectories. 
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Distributions of bivariate data instances. Results showed that LTs for the three 

combinations of variables appeared in all three series. By far, the most emphasis was 

placed on NN combination, comprising more than 80% of bivariate data instances across 

three series. Compared to all tasks in each series, the proportion of bivariate data tasks 

was highest for the CPMP series (5.3%), followed by the UCSMP (1.3%), and lowest for 

the HML series (0.9%). Content related to bivariate data was generally distributed evenly 

across the four textbooks in the CPMP series, whereas the bivariate content was more 

clustered in the UCSMP Algebra, Advanced Algebra, and Functions, Statistics, and 

Trigonometry books and the HML Algebra 1 and Algebra 2 books. Given that the 

attention given to bivariate data in the HML and UCSMP series is rather small, students 

utilizing these curricula likely will have limited opportunities to learn the content, and 

this might explain students’ generally poor judgments between two variables (e.g., 

Batanero et al., 1997; Crocker, 1982; Jennings et al., 1982; Smedslund, 1963; Snyder, 

1981). On the other hand, research has found that students tend to make better judgments 

when using graphs rather than tables (Lane et al., 1985); coincidentally, nearly all the 

instances for NN variables across the three series involved graphs. 

Of the instances related to NN combination, only 1 of 131 instances in the HML 

series, 13 of 244 in the UCSMP series, 29 of 214 in the CPMP series contained a set of 

20 or more data points. In addition, when data were provided, the vast majority of the 

instances were presented in an organized table as opposed to raw data form. In particular, 

only 2 instances in the HML series, 2 instances in the UCSMP series, and 10 instances in 

the CPMP series provided data in a raw format and required students to sort, categorize, 

and place the data in a well-organized table. Consequently, students using these textbooks 
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do not have to confront the messiness of data analysis, as is recommended by statistics 

educators (e.g., Ben-Zvi & Garfield, 2004).  

Two categorical variables combination of bivariate data.  All three textbook 

series addressed the CC combination in relation to two-way tables and conditional 

probabilities; however, the manner in which each series developed the content was 

qualitatively different. Specifically, the HML series began by introducing how to make 

and read two-way tables but did not use comparing absolute frequencies to examine the 

association between two variables. The authors then asked students to judge the 

independence of two events using conditional probabilities. In contrast, the UCSMP 

authors started with use of the Chi-Square test to judge the dependency of two events and 

subsequently revisited the test using data simulations. The UCSMP series LT ended by 

comparing the relative frequencies and using two-way tables to judge associations. In 

further contrast, the CPMP series began with the independence of two events and 

introduced conditional probability. As a formal tool to examine the association, CPMP 

then examined the significance of the difference between proportions (probabilities). 

Even though the CC combination was addressed, it appeared very little across the 

three series (less than 5% of the total bivariate instances for each of the three series). 

Coincidentally, research has found that students perform worse in judging covariation of 

categorical variables compared with numerical variables, and covariational reasoning 

cannot be transferred from one type of combination (e.g., NN combination) to the other 

combination (e.g., CC combination) (Beach & Scopp, 1966; Erlick & Mills, 1967, 

Jennings et al., 1982). By placing so little emphasis on the CC combination, textbook 
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authors might unknowingly inhibit students’ learning, and misconceptions they often 

encounter when solving tasks related to CC variables might not be addressed.  

The sequence of content related to judging the association of CC variables in 

UCSMP was reversed in relation to the GAISE Framework. In particular, the formal tool 

used at the highest developmental level in the GAISE Framework, was introduced quite 

early (i.e., in Algebra) and treated as a procedure. The early introduction of sophisticated 

tools without first acquiring more foundational understanding (in lower levels) runs 

counter to researchers’ recommendations that students move through increasingly higher 

levels of sophisticated statistical reasoning (Cobb, 2000; Franklin et al., 2007).  

All three series devoted little attention to quantifying the strength of association 

(e.g., Agreement and Disagreement Ratio [ADR], Quadrant Count Ratio [QCR]), as 

advocated in the GAISE Framework (Franklin et al., 2007).  In all three series, most 

instances related to CC variables included 2x2 tables. Measures such as ADR and QCR 

are suitable for helping students move from informal and intuitive quantification of the 

strength of association to the formal statistical tests. However, despite the benefits of 

ADR and QCR, these measures simply were not present. Moreover, multiple strategies 

and misconceptions found in research about the association of CC variables (e.g., 

Batanero et al., 1997, 1998) were not explicitly addressed in any of the three series.  

Table dimensions other than 2x2 were found in two of the three series. In 

particular, the UCSMP series included 2x4, 2x5, 2x6, 2x7, 2x8, 2x12, 3x4, and 3x5 

tables. This might be because the Chi-Square test was used as a tool to judge the 

association and is versatile for use in a variety of table dimensions. The HML series 

included 2x3, 3x3, and 3x4 tables and often asked students to utilize these to compare 
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frequencies or to calculate conditional probabilities, but not for judgments about 

association. Research has shown that, when judging association, students’ performance 

varies with respect to the dimensions of contingency tables (Batanero et al., 1996). 

Hence, it is helpful to attend to different techniques and strategies that are applicable for 

solving problems with multiple dimensions of tables to expose students to the plethora of 

table dimensions. However, the authors of the textbook series in this study did not 

include different approaches, techniques, and strategies for multiple types of tables.  

One categorical and one numerical variable combination of bivariate data. All 

three series addressed the relationship between CN variables by comparing distributions. 

However, the HML and UCSMP series did not ask students to judge the association but 

instead students were to merely compare distributions. In addition, the three textbook 

series differed in their use of graphical displays and numerical statistics to compare 

groups. Among the three series, the UCSMP series placed the least emphasis on CN 

combination (about 2% of total bivariate data instances in the series) compared with 

HML (about 13%) and CPMP (14%). The HML and CPMP series were similar in their 

introduction and development of the content; however, the examination of statistical 

difference between two groups received little emphasis (1 instance) in HML. Research 

provides evidence that sampling is a complicated concept (Chance, delMas, & Garfield, 

2004) and requires multiple prior concepts of statistics such as distribution, sample, 

population, variability, and sampling to understand. Thus, merely one instance probably 

does not provide an adequate opportunity for students to develop an understanding of this 

content. A careful introduction to and development of data simulations, as it is done in 

the CPMP series, is essential to helping students develop an understanding the 
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sophisticated concepts of testing for significance and to prepare them for formal 

reasoning later (Cobb, 2000; Franklin et al., 2007).  

Research suggests that the comparison of two or more groups has the advantage 

of helping students understand characteristics of a single distribution (Cobb, 1999; Cobb, 

McClain, & Gravemeijer, 2003; Konold & Higgins, 2003; Watson & Moritz, 1999). 

Simultaneously, all series include tasks related to the comparison of two or more groups 

in the introduction of distribution. However, HML and UCSMP did not explicitly connect 

the comparison of groups to the judgment of association between one categorical and one 

numerical. It is possible that teachers of these curricula might not be aware of the 

connection between comparing distributions and association judgment and, in turn, this 

might compromise students’ understanding.  

Types of studies. The HML and CPMP series included appropriate content related 

to types of studies and distinguishing between correlation and causation. However, the 

developments of the content were different. The HML series included examples for each 

type of study and asked students to design studies to investigate particular issues; 

whereas, the CPMP series provided one situation with contrasting designs of studies and 

linked the results to the important distinction between correlation and causation. Efforts 

to make connections between multiple topics within mathematics can enhance students’ 

overall learning of mathematics (NRC, 2001). 

Surprisingly absent from the UCSMP series was content related to the types of 

studies, because these are recommended in both the CCSSM and GAISE Framework. It 

is possible that this exclusion of content is due to a perception that types of studies are 

not mathematical content per se. Although authors of UCSMP did not mention about 
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types of studies in the entire series, they did address the distinction between correlation 

and causation. 

Even though all three series addressed correlation and causation, tasks asking 

students to examine the validity of study conclusions related to correlation and causation 

were absent. If offered, such tasks would force students to confront the common 

misconception that a correlation is synonymous with causation (e.g., Crocker, 1981; 

Ross & Cousins, 1993).  

 Two numerical variables combination of bivariate data. Even though all three 

series contained similar topics related to bivariate data, the manner in which authors’ of 

the three series introduced and developed the content was quite different. For the NN 

combination, the HML series began by requiring students to make a scatterplot and 

observe patterns of increase/decrease then moved to linear modeling, exponential 

regression, and quadratic regression. The HML series then included exponential fitting 

with the aid of linearizing data with log and log-log transformations and added on 

rational function fitting and trigonometric regression. All model regressions but linear 

and rational were introduced using calculators with no formal descriptions about the 

properties of the regressions such as minimizing SSR. When obtained from calculators 

without any definitions or formal investigations, regression equations and coefficients 

such as r are viewed as a black box (McCallum, 2003), and such an approach might not 

support student learning. 

The UCSMP series began with linear fitting of NN variables and then moved to 

exponential, quadratic regressions, and direct and inverse fittings. The authors then 

revisited linear, exponential and quadratic fittings and added trigonometric fitting. 



	
   219	
  

Logarithmic, exponential, and power fittings were introduced last with the aid of log and 

log-log transformations. The authors followed a spiral development of learning, with 

content repeated several times with increasingly sophisticated understanding of the 

content.  

In further contrast, the CPMP series began with an informal introduction of the 

content and then developed the content through more formalism. The CPMP authors 

began by asking students to observe patterns of data increasing/decreasing in a 

scatterplot, continued to linear fitting, exponential regression and then to direct, inverse 

fittings and power regressions. During students’ first experience with regression, they 

used calculators to find models for the regression. The authors then introduced formal 

investigations to explore the properties of the regressions in the second presentation of 

the regression. They included data transformations such as translations, reflections, log 

and log-log transformations to connect multiple model fittings to linear models. Although 

trigonometric fitting was not found in the CPMP series, the authors instead included tasks 

related to patterns of chance and statistical process control to study changes in one 

quantity as a function of time. In addition, CPMP is the only series that introduced other 

measures of correlation to assess the goodness of fit, such as Spearman’s rank 

correlation. While these various measures of association help prepare students to move 

through different levels of understanding of quantification of the goodness of fit, they are 

not suggested in either the GAISE Framework or the CCSSM.  

Each of the three series emphasized NN association, which is closely related to 

the concept of functions and is an important content in school mathematics (e.g., CCSSI, 

2010; NCTM, 2000; Tall & Bakar, 1992). The emphasis on the NN combination over 



	
   220	
  

other combinations coincides with the finding that subjects perform better in 

covariational reasoning with numerical data than categorical data (e.g., Beach & Scopp, 

1966; Erlick & Mills, 1967, Jennings et al., 1982). In the NN combination, linear 

functions received much greater emphasis than the other models (ranging about 30% to 

40% of all the models). Linear functions include important connections to key 

mathematical concepts such as slope and rate of change, are emphasized in the CCSSM 

(CCSSI, 2010). Exponential fitting was emphasized second-most. The emphasis on linear 

and exponential fittings is consistent with the recommendations of professional 

organizations that identify these as the two most important types of mathematical 

function (CCSSI, 2010; NCTM, 2000). Quadratic fitting was addressed in only one 

situation, projectile balls, but this result might be due to the relative scarcity of everyday 

life phenomena that can be modeled with quadratic fitting.  

Several models such as trigonometric, logarithmic, and cubic fittings were rarely 

found (or were not found) and this might be because the series required students to use 

technology to find the models as opposed to calculating by hand. An exception was the 

instances using logarithmic and trigonometric models in the UCSMP series.  

Related to model fitting, informally assessing the goodness of fit using 

scatterplots was addressed in all three series but with different degrees of emphasis. In 

particular, estimating and interpreting a correlation coefficient from a scatterplot were 

emphasized in UCSMP and CPMP The authors of these UCSMP and CPMP series 

advised students to use both informal knowledge about relationships and data at hand to 

specify models. In contrast, tasks in the HML series typically asked students to find a 
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specific model for a set of data using calculators, without first asking them to estimate the 

fit of the model using scatterplots.  

Alignment with the Common Core State Standards-Mathematics learning 

expectations. I generated a list of 21 CCSSM learning expectations (LEs) from eight 

CCSSM standards for bivariate data and used the LEs with the content of the three series. 

All 21 of the LEs were addressed in HML and CPMP, but the emphasis given to each of 

the LEs varied by series. Some LEs get much emphasis such as S-ID.6. Represent data 

on two quantitative variables on a scatter plot. Describe how the variables are related 

(with 27 instances in HML and 48 instances in CPMP) whereas some was addressed in 

only very few instances such as S-IC.5. Use simulations to decide if differences between 

parameters are significant (1 instance in HML and 15 instances in CPMP). Publishers 

can claim their books are aligned with the CCSSM but it might be that this is based on a 

single instance. For example, each of 4 CCSSM LEs was addressed with only one 

instance and 6 CCSSM LEs was addressed by two instances in the HML series. This 

finding is consistent with Seeley’s (2003) argument that publishers try to stuff textbooks 

with content in order to meet many state standards and therefore maximize adoption. By 

way of contrast, 6 LEs were not addressed in UCSMP.  

At the same time, there were 3 bivariate data LEs common to all series that were 

not found in the CCSSM. In addition, 6 LEs in the UCSMP series and 8 LEs related to 

bivariate data in the CPMP series were not found in the CCSSM. Some of these LEs such 

as Estimate correlation using scatterplots were also suggested in the GAISE Framework. 

Researchers emphasize the role of LTs in supporting coherence and rigor in standards 

and curriculum development (Confrey et al., 2010, Daro et al., 2011) and the CCSSM is 
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purportedly based on research about LTs and the logic of mathematics (Heck et al., 

2011). However, it is not clear which learning expectations were developed using 

research related to LTs, particularly for the content related to bivariate data.  

Comparison of GAISE Framework and textbook series learning trajectories. 

The results of learning trajectories for three combinations showed that the HML and 

CPMP series generally followed the developmental-level sequence prescribed in the 

GAISE Framework for bivariate data. Notwithstanding the developmentally appropriate 

sequencing of content, statistical content such as defining and investigating SSR was 

altogether missing in the HML series. The UCSMP series was least in accordance with 

the GAISE Framework’s guidelines for the sequencing of content. Specifically, for the 

CC combination, the authors introduced Chi-Square test (Level C) to examine the 

association very early in Algebra then move down to detect the association by comparing 

percentages (Level A) in FST. 

 Task features.  

Mathematical complexity. The vast majority of instances (ranging from 65% to 

80%) related to bivariate data in the three series were at a moderate level of mathematical 

complexity. Across the textbook series, the average level of mathematical complexity 

was highest for CPMP (2.10) and lowest for HML (1.75) and UCSMP (1.75). This 

finding was somewhat different from the literature indicating that the majority of tasks 

included in U.S. textbooks require a low level of cognitive demands (e.g., Jones, 2004; 

Schmidt et al., 1997; Valverde et al., 2002). The scales used to determine the level of 

cognitive demands or the difference of analyzed content might explain this discrepancy in 

findings. The tasks coded in this study often involved data and required students to do 
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multiple steps with some levels of decision making to model the data, and these 

inherently involve higher levels of mathematical complexity. Hence, it might be 

informative to examine how the cognitive demands of tasks vary by content strands 

within a set of curriculum materials. 

The GAISE Framework coding. An examination of the components of the 

GAISE Framework across the three series showed that across three series, a sizable 

proportion (ranging from 27.1% to 45.5%) of bivariate data instances addressed 

Formulate Questions (FQ). The FQ component affords the opportunity for students to 

gradually become aware of the difference between mathematical and statistical problems 

(Franklin et al., 2007). Introducing or reviewing the process of formulating questions at 

the beginning of a task, provides students with an opportunity to develop an 

understanding of the purpose of statistics and make connections to the other statistical 

components on which they may be working. However, despite the prevalence of FQ 

instances, students nevertheless were not afforded opportunities to generate statistical 

questions for themselves but instead were provided them by authors.   

 Few bivariate data instances (ranging 4.9% to 12.1%) provided students 

opportunities to Collect Data (CD), one of the crucial components of doing statistics as 

suggested in the GAISE Framework. In addition, when students were required to collect 

data they were not required to engage in higher levels of mathematical maturity to 

“design for difference” (Franklin et al., 2007, p. 14) and to use random selection. 

Notwithstanding, there were several instances related to bivariate data in the CPMP and 

UCSMP series that included the CD component in the form of a project at the end of the 

chapters or as an investigation that could be carried out in class. By doing projects and/or 
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statistical investigations, students can work with authentic data and become aware of the 

measurement error and the inherent messiness of data analysis (Ben-Zvi & Garfield, 

2004).  

Almost all bivariate data instances (88.5% to 95.3%) addressed the Analyze Data 

(AD) component, and the majority of the instances (63.1% to 87.7%) included the 

component Interpret Results (IR). Similarly, almost all the instances addressing CD were 

at the lowest developmental level (Level A) with the exception of a few in CPMP and 

UCSMP that addressed Level B of the GAISE framework. On average, CPMP included 

the greatest number of opportunities (2.20) for students to Analyze Data, this was 

followed by the UCSMP (2.12) and HML (1.84) series. For IR, on average, the CPMP’s 

developmental level (2.09) was higher than those of the UCSMP (1.94) and HML series 

(1.92). 

An attempt was made to examine the relationship between the four components of 

the GAISE Framework as well as explore associations between the developmental levels 

of GAISE and levels of mathematical complexity. When aggregating the data from the 

three series, Goodman and Kruskal’s Gamma tests show that AD and IR codes were 

accordant; meaning that, tasks ranked with a high code in the AD component were likely 

to be assigned a high code in the IR component, and vice versa. The Goodman and 

Kruskal’s Gamma test also showed that two frameworks, the GAISE Framework and the 

NAEP mathematical complexity framework, were comparable. That is, an increase in the 

level of coding in one framework generally led to an increased coding level in the other 

framework.  
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Despite the accordant ratings of two frameworks, there were several bivariate data 

instances that got a high code in one framework but a low code in the other. Generally in 

these situations, complicated knowledge was simplified by providing a procedure to 

follow or by having students use calculators without providing explanation. Therefore, 

the two frameworks are largely concordant and yet serve different purposes when 

addressing two interrelated aspects of tasks. In particular, the NAEP mathematical 

complexity framework is used to identify the mathematical complexity for all 

mathematical tasks (including statistical tasks) while the GAISE Framework is used for 

the purpose of identifying the developmental level of statistical thinking and reasoning 

and is applicable to statistical tasks only. Furthermore, the GAISE Framework suggests 

that students should move through increasingly sophisticated reasoning without skipping 

over any level whereas the mathematical complexity framework is not built on the 

premise of the continuous development of three levels.  

Purpose and utility task features. In terms of purpose and utility features across 

the three series, almost all (more than 90%) instances addressed the utility feature, 

meaning that students explained how, when, and why the mathematical ideas are useful. 

On average, more than half (ranging from 50% to 65%) of the instances attended to the 

purpose feature, meaning that a virtual or actual product was available for students as a 

result of the accomplished task. This might be explained by the nature of tasks in the 

sample; they involved data, required interpretation, and were connected to real life. 

Results also showed that if a task addressed the purpose feature, it almost always 

addressed the utility feature. 
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Common Core State Standards Mathematics Mathematical Practices coding. 

Results related to SMP showed that the three series offered potential for students to 

access the eight practices. However, the extent of access varied by each SMP and by 

series. On average for the percentages of instances addressing the SMPs, the CPMP 

series offered the most (57.6%) instances addressing the practices followed by the 

UCSMP (48.3%) and then HML (40.3%) series. Specifically, on average the three series 

offered students the greatest number of opportunities to learn MP2 Reason abstractly and 

quantitatively (72%), MP4 Model with mathematics (84%), and MP6 Attend to precision 

(84.5%). The textbooks offered a moderate number of opportunities to learn MP3 

Construct viable arguments and critique the reasoning of others (60.1%), MP5 Use 

appropriate tools strategically (44.9%), and MP7 Look for and make use of structure 

(34.7%). In contrast, the least number offer opportunities to learn MP1 Make sense of 

problems and persevere in solving them (6.3%) and MP8 Look for and express regularity 

in repeated reasoning (3.2%). The lowest percent for MP1 might be because persevere in 

solving [problems] can rarely be evident in textbook and instead should be observed in 

practice (Stein & Lane, 1996). Notwithstanding, I looked for the feature in the tasks 

asking students to solve one problem with using multiple approaches to code for this 

SMP; however, they were rarely present in the three series (less than 10.6%). The low 

percent of bivariate instances addresses MP8 might relate to the design features of the 

curriculum or nature of the content analyzed, statistics. Generalization is essential when 

learning mathematics (Sasman, Olivier, & Linchevski, 1999). However, the three series 

analyzed did not afford the opportunity for students to generalize strategies for a set of 

similar problems or use “analogous problems, and try special cases and simpler forms of 
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the original problem” (CCSSI, 2010, p. 6) to help solve problems. 

Limitations of the Study 

Personal bias is inherent in any qualitative study when selecting topics, coding, 

analyzing data and reporting the results. Nevertheless, I have worked diligently to 

maintain the integrity of this research study. To be trained in advanced mathematics, 

working toward a Ph.D. with a minor in statistics, and taking extensive courses in 

mathematics education provides a strong background to conduct my analyses with 

integrity. I argue that I am qualified to conduct the curriculum analyses, as suggested by 

the NRC (2004), namely “Content analyses … should be conducted by a variety of 

scholars … who should identify their qualifications, values concerning mathematical 

priorities, and potential sources of bias regarding their execution of content analyses” (p. 

197).  

One potential limitation is inherent in framing coding scheme and the inclusion 

and exclusion of tasks for coding. However, I made an effort to minimize personal bias 

by integrating consultations with researchers whose expertise was in statistics, statistics 

education, or mathematics education to maintain the trustworthiness of this research 

study. I made strong efforts to establish the reliability of coding and develop a coding 

manual that was grounded in the research literature.  

The sample of tasks might bring about another limitation for this study related to 

findings for tasks features. To be included in the sample for coding, tasks must often 

include data and require statistical reasoning. Therefore, the findings related to 

mathematical complexity, purpose and utility, and mathematical practices might not be 

representative of population of all tasks for the whole series.  
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The final limitation relates to the small sample size, namely three textbook series. 

In order to address this limitation, I chose textbooks with different design principles, 

classroom expectations, and approaches to the sequencing of content and, in doing so, 

was able to document and represent the diversity of learning trajectories for bivariate 

data, in spite of the small sample size. I did not aim to provide extensive results for the 

trajectories in U.S. curriculum with this research, but instead intended to let it serve as an 

illustration of an uncharted research approach with implications for future use. 

Implications and Recommendations for Future Research 

The findings of this study provide several insights in mathematics education, 

specifically related to curriculum design and curriculum research. In this section, I 

discuss implications that are drawn from the results and offer recommendations for future 

research. 

Curriculum Development 

 A criticism of U.S. curriculum is that it covers too many topics without going in-

depth in any of them (Valverde et al., 2002) and is highly repetitive (Flanders, 1987, 

1994), thus sacrificing the coherence and rigor of the content. The findings of this study 

partially support this criticism.  For example, HML covered some complex topics (e.g., 

examining the significance of statistics test) with exactly one instance or only a few 

instances. Furthermore, in the HML series, some topics (e.g., independent events) in 

Algebra 1 were repeated exactly without any subsequent expansion in Geometry books. 

Learning trajectories could inform curriculum design to reduce the fragmentation of 

content and build rigor by providing a systematic and sequential map of important 

content (Simon & Tzur, 2004). The use of learning trajectories as a basic construct 
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enables curriculum developers to use concepts such as prior knowledge to form matrices 

of connection among strands, thereby promoting coherence of the curriculum.  

The GAISE Framework provides a robust description of the sequence of 

statistical content in increasing levels of sophistication, and therefore it can serve as a 

guide for developing learning progressions for statistical content such as bivariate data. 

However, the findings related to LTs of this study show that the suggestions were not 

fully addressed in the textbook series. For example, the quantification of CC association 

(e.g., QCR, ADR) at Level B were absent in the three series, and Chi-Square Statistics 

(Level C) appeared too early in the UCSMP series in Algebra. Future curriculum 

development might include these quantifications to help students to move to the most 

sophisticated content and embody the developmental levels in the curriculum. 

  This study found several instances that simultaneously addressed more than one 

component of doing statistics, more than one SMP, and multiple learning expectations. 

Using such super-instances promote the connectedness of statistical and mathematical 

topics. In addition, by incorporating multiple LEs within a single task, which requires 

students to be able to make decisions in major points, curriculum developers have the 

potential to raise the level of cognitive demands required by the task. 

In the years since the release of the CCSSM, there have been efforts to revise or 

rewrite curricula to align with the new standards (Heck et al., 2011). For the content 

analyzed, HML addressed all LEs in the CCSSM and yet some LEs were given little 

emphasis (in terms of number of instances addressed) and, moreover, some mathematical 

practices were not evident in the HML series. In contrast, CPMP gave appropriate 

attention to both the CCSSM content and mathematical practices. Hence, it would be 
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wise to invest in curriculum development so that more textbook series embody the 

CCSSM content and practice standards as well as address the GAISE Framework.  

Teachers’ editions are an essential component in a publisher’s wide array of 

resources. It is critical that they go beyond merely providing answers to problems found 

in the students’ texts. Two of the three series include features that help teachers in lesson 

planning such as chapter overviews, and linking contents to the end-of-chapter projects 

(in UCSMP) and discussion of students’ misconceptions (in CPMP). Thus it is important 

that curriculum developers also include in the teachers’ editions information related to 

learning trajectories for interconnections between mathematical ideas, students' common 

misconceptions and faulty strategies students might use.  

Content Analysis 

This study has demonstrated how learning trajectories are useful in the analysis of 

curriculum materials. In particular, (a) examining the learning goals the authors convey in 

the curriculum materials, (b) the activities related to the content as presented by the order 

of tasks, and (c) the connection between the learning goals and learning activities and 

among activities collectively provide a valid picture of how bivariate data content is 

introduced and developed in the three curriculum materials. Researchers can use the 

construct of LT to capture the nuance the introduction and development of content as 

presented in different curriculum materials. 

Results of this study show that the GAISE Framework and NAEP mathematical 

complexity frameworks are concordant. Although the frameworks are concordant, future 

researchers can decide to use one or both of them to serve different purposes of content 

analysis and curriculum evaluation. Specifically, if researchers are concerned about the 
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cognitive demands required by mathematical tasks, then the NAEP mathematical 

complexity framework is better suited for that purpose. In contrast, if researchers wish to 

document the developmental levels related to statistics content, the GAISE Framework 

better meets this demand. Notwithstanding, using both frameworks for statistics content 

has the advantage to provide different perspectives for one issue and help compare each 

other.  

Another purpose of content analysis is to assess the alignment of a curriculum to a 

given set of student learning goals or standards. The findings in this study show that the 

approach is sensible to capture the alignment of multiple curriculum materials with 

learning standards (i.e., the CCSSM and the GAISE Framework). Specifically, 

comparing the learning trajectories of content in the textbooks and in the standards (e.g., 

the GAISE Framework) can contribute to the research related to alignment that focuses 

on the extent of inclusion and exclusion of content (e.g., Dingman, 2007; Porter, 2002). 

Teacher Education 

According to the Conference Board of Mathematical Sciences (2001, 2011), 

teachers are least prepared to teach statistics and probability. Effective teachers must 

deeply understand mathematical content to teach it well (Ball, Thames, & Phelps, 2008). 

The learning trajectories presented in this study offer pre-service teachers opportunities to 

make the connections between and among bivariate data content. Hence, mathematics 

courses should heighten awareness about the sequencing of topics and their 

interrelatedness. Moreover, methods courses should provide pre-service teachers the 

opportunity to learn about and understand the construct of learning trajectories and, 
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ultimately, gain deeper understanding and be prepared for their future roles in the 

classroom. 

As indicated in this study, the GAISE Framework offers a systematic way to 

analyze curricula. In-service teachers might benefit from learning the framework and 

applying its components to an analysis of current curricular materials. In particular, in-

service teachers can trace learning trajectories in one textbook or compare textbooks in 

relation to these aspects. Using the analysis method of this study can prepare in-service 

teachers to make informed decisions regarding the selection of mathematics textbooks as 

well as assist them in adapting them to meet with needs of students in their classrooms.  

Future Research 

Given that textbooks play an important role in the educational system, it is 

imperative to conduct content analysis of textbooks at all levels of education. The 

methodology used in this study can be readily applied to the study of bivariate data 

content in other grade levels. Therefore, I recommend extending this research to 

curricular materials used at the elementary and middle school levels. Additionally, 

although this study focused on bivariate data content, by modifying the boundaries for the 

inclusion of other statistical concepts such as distributions, variation, future studies can 

apply this methodology to analyze other school mathematics content.  

Results of this study showed that statistical content can be introduced and 

developed quite differently in U.S. high school mathematics textbooks. For example, 

with regard to linear fitting, the HML authors provide a procedure for determining the 

line of best fit and show examples to illustrate the procedure. Students were expected to 

follow the strategies introduced in the examples related to the content. In contrast, with 
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the same content of linear fitting, the CPMP authors build an investigation and a series of 

questions to guide student learning without providing specific worked examples for 

students to imitate. This difference can be captured using another important construct that 

needs to be addressed, namely the pedagogical storyline (Heck, Chval, Weiss, & 

Ziebarth, 2012). Therefore, future curriculum evaluation research needs to examine both 

content and pedagogical storylines in order to provide a more complete or holistic 

characterization of curricula. 

Perhaps it is predictable that the findings related to the CCSSM mathematical 

practices varied for different strands/conceptual categories in school mathematics. The 

framework developed for this study to code for mathematical practices worked for the 

tasks related to bivariate data; however the need still remains for other mathematical 

content to be examined and it is likely that the framework coding for SMP would need to 

be revised in order to fit plethora of topics in the school mathematics curriculum.  

This study did not include a comparison of learning trajectories in the curriculum 

materials and in the CCSSM. This is because learning trajectories of the CCSSM at high 

school level were not available at the time of this study. Hence, future research can 

expand LTs of K-8 CCSSM (e.g., Confrey et al., 2012) to continue the development of 

LTs at the high school level. In turn, researchers can examine the relationship between 

LTs evident in the CCSSM and those present in curriculum materials. 

Findings from this study provide hypothetical learning trajectories for bivariate 

data found in the textbooks. Future research can synthesize HLTs, research related to 

bivariate data, and recommendations of the GAISE Framework to form efficient LTs and, 

in turn, examine how the LTs play out in actual classrooms. In addition, data gained from 
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students’ learning might inform modifications to the learning trajectories and in turn 

provide a “best case” LT for future learning. 

Summary 

This study, categorized as a vertical analysis, was the first attempt to use the 

construct of learning trajectories to analyze bivariate data in textbooks. This study does 

not aim to evaluate curricula and provide the depth or quality of curricular treaments, but 

to capture the differences in the introduction and development of bivariate data content 

between textbook series as well as to highlight the opportunities that students might have 

when learning the content. In addition, multiple facets of tasks were first examined to 

point out important aspects for developers to consider when designing and for teachers to 

attend to when selecting tasks.  

Among the findings was the existence of multiple learning trajectories for the 

content analyzed. The CPMP series best reflects knowledge about learning trajectories 

and aligns well with the suggestions in the GAISE Framework. In addition, even though 

it was developed before the release of the CCSSM, CPMP addresses the content related 

to bivariate data and mathematical practices of the CCSSM document. The remaining 

issues for future research are to form hypothetical learning trajectories taking incorporate 

LTs from the textbooks, findings from research in bivariate data, the suggestions from the 

GAISE Framework, and try them out in different classroom settings for future revision. 



	
   235	
  

References 

Adi, H., Karplus, R., Lawson, A., & Pulos, S. (1978). Intellectual development beyond 
elementary school VI: Correlational reasoning. School Science and Mathematics, 78(8), 
675-683. doi: 10.1111/j.1949-8594.1978.tb18270.x 

Ainley, J., Bills, L., & Wilson, K. (2003). Designing tasks for purposeful algebra. Paper 
presented at the 3rd Conference of the European Society for Research in Mathematics 
Education, Bellaria. 

Ainley, J., & Pratt, D. (2002). Purpose and utility in pedagogic task design. Paper presented at 
the 26th Annual Conference of the International Group for the Psychology of 
Mathematics Education, UK. 

Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task 
design. British Educational Research Journal, 32(1), 23-38. doi: 
10.1080/01411920500401971 

Artique, M. (2000). Instrumentation issues and the integration of computer technologies into 
secondary mathematics teaching. Paper presented at the Annual Meeting of GDM, 
Potsdam, Germany. 

Artique, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection 
about instrumentation and the dialectics between technical and conceptual work. 
International Journal of Computers for Mathematical Learning, 7(3), 245-274. doi: 
10.1023/A:1022103903080 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes 
it special? Journal of Teacher Education, November/December(59), 389-407. doi: 
10.1177/0022487108324554 

Baroody, A. J., Cibulskis, M., Lai, M.-l., & Li, X. (2004). Comments on the use of learning 
trajectories in curriculum development and research. Mathematical Thinking and 
Learning, 6(2), 227-260. doi: 10.1207/s15327833mtl0602_8 

Batanero, C., Estepa, A., & Godino, J. D. (1997). Evolution of students’ understanding of 
statistical association in a computer based teaching environmen. In J. B. Garfield & G. 
Burrill (Eds.), Research on the role of technology in teaching and learning statistics: 
Proceedings of the 1996 IASE Round Table Conference (pp. 191-205). Voorburg, The 
Netherlands: International Statistical Institute. 

Batanero, C., Estepa, A., Godino, J. D., & Green, D. R. (1996). Intuitive strategies and 
preconceptions about association in contingency tables. Journal for Research in 
Mathematics Education, 27(2), 151-169.  

Batanero, C., Godino, J. D., & Estepa, A. (1998). Building the meaning of statistical association 
through data analysis activities. In A. Olivier & K. Newstead (Eds.), Proceedings of the 
22nd Conference of the International Group for the Psychology of Mathematics 
Education (Vol. 1, pp. 221-236). Stellenbosh, South Africa: University of Stellenbosh. 

Battista, M. T. (2004). Applying cognition-based assessment to elementary school students' 
development of understanding of area and volume measurement. Mathematical Thinking 
and Learning, 6(2), 185-204. doi: 10.1207/s15327833mtl0602_6 



	
   236	
  

Beach, L. R., & Scopp, T. S. (1966). Inferences about correlations. Psychonomic Science, 6(6), 
253-254.  

Bell, A., Brekke, G., & Swan, M. (1987). Diagnostic teaching: 4 graphical interpretations. 
Mathematics Teaching, 120, 56-60.  

Bell, A., Brekke, G., & Swan, M. (1987). Diagnostic teaching: 5 graphical interpretation 
teaching styles and their effects. Mathematics Teaching, 120, 50-57.  

Bell, A., & Janvier, C. (1981). The interpretation of graphs representing situations. For the 
Learning of Mathematics, 2(1), 34-42.  

Ben-Zvi, D., & Garfield, J. (2004). Statistical literacy, reasoning, and thinking: Goals, 
definitions, and challenges. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of 
developing statistical literacy, reasoning and thinking (pp. 3-15): Springer Netherlands. 

Beyth-Marom, R. (1982). Perception of correlation reexamined. Memory & Cognition, 10(6), 
511-519. doi: 10.3758/bf03202433 

Bobko, P., & Karren, R. (1979). The perception of Pearson product moment correlations from 
bivariate scatterplots. Personnel Psychology, 32(2), 313-325. doi: 10.1111/j.1744-
6570.1979.tb02137.x 

Brown, S. A., Breunlin, R. J., Wiltjer, M. H., Degner, K. M., Eddins, S. K., Edwards, M. T., . . . 
Usiskin, Z. (2008). The University of Chicago School Mathematics Project: Algebra - 
Teacher's edition (3rd ed.). Chicago, IL: McGrawHill - Wright Group. 

Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. 
In E. Dubinsky, A. H. Schoenfeld & J. J. Kaput (Eds.), Research in collegiate 
mathematics education III, Issues in mathematics education (Vol. 7, pp. 115-162). 

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic events: A framework and a study. Journal for Research in 
Mathematics Education, 33(5), 352-378. doi: 10.2307/4149958 

Carlson, M. P. (2002). Physical enactment: A powerful representational tool for understanding 
the nature of covarying relationships. In F. Hitt (Ed.), Representations and mathematics 
visualization (pp. 63-77). Mexico: CINVESTAV. 

Carlson, M. P., Larsen, S., & Jacobs, S. (2001). An investigation of covariational reasoning and 
its role in learning the concepts of limit and accumulation. In R. Speiser, C. Maher & C. 
Walter (Eds.), Proceedings of the 23rd annual meeting of the North American Chapter of 
the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 145-
153). Snowbird, UT: PME-NA. 

Catena, A., Maldonado, A., & Cándido, A. (1998). The effect of frequency of judgment and the 
type of trials on covariation learning. Journal of Experimental Psychology: Human 
Perception and Performance, 24(2), 481-495. doi: 10.1037/0096-1523.24.2.481 

Chance, B., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In Ben-
Zvi & J. Garfield (Eds.), The challenges of developing statistical literacy, reasoning, and 
thinking (pp. 295-324). Netherlands: Kluwer Academic. 

Chapman, L. J. (1967). Illusory correlation in observational report. Journal of Verbal Learning 



	
   237	
  

and Verbal Behavior, 6(1), 151-155. doi: 10.1016/S0022-5371(67)80066-5 
Chapman, L. J., & Chapman, J. B. (1969). Illusory correlation as an obstacle to the use of valid 

psychodiagnostic signs. Journal of Abnormal Psychology, 74(3), 271-280.  
Chapman, L. J., & Chapman, J. P. (1967). Genesis of popular but erroneous psychodiagnostic 

observations. Journal of Abnormal Psychology, 72(3), 193-204. doi: 10.1037/h0024670 
Charalambous, C. Y., Delaney, S., Hsu, H.-Y., & Mesa, V. (2010). A comparative analysis of the 

addition and subtraction of fractions in textbooks from three countries. Mathematical 
Thinking and Learning, 12(2), 117-151. doi: 10.1080/10986060903460070 

Clement, J. (1989). The concept of variation and misconceptions in Cartesian graphing. Focus on 
Learning Problems in Mathematics, 11(1-2), 77-87.  

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. 
Mathematical Thinking and Learning, 6(2), 81-89. doi: 10.1207/s15327833mtl0602_1 

Clements, D. H., Wilson, D. C., & Sarama, J. (2004). Young children's composition of geometric 
figures: A learning trajectory. Mathematical Thinking and Learning, 6(2), 163-184. doi: 
10.1207/s15327833mtl0602_5 

Cleveland, W. S., Diaconis, P., & McGill, R. (1982). Variables on scatterplots look more highly 
correlated when the scales are increased. Science, 216, 1138-1141.  

Cobb, P. (2000). The importance of a situated view of learning to the design of research and 
instruction. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and 
learning. Westport, CT: Ablex. 

Cobb, P., McClain, K., & Gravemeijer, K. (2003). Learning about statistical covariation. 
Cognition and Instruction, 21(1), 1-78. doi: 10.1207/s1532690xci2101_1 

Common Core State Standards Initiative [CCSSI]. (2010). Common Core State Standards for 
Mathematics. Washington, DC: National Governors Association Center for Best 
Practices and the Council of Chief State School Officers. 

Conference Board of Mathematical Sciences. (2012). The mathematical education of teachers II. 
Providence, Rhode Island: Mathematical Association of America. 

Confrey, J., & Krupa, E. E. (2012). The Common Core State Standards for Mathematics: How 
did we get here, and what needs to happen next? In C. R. Hirsch, G. T. Lappan & B. J. 
Reys (Eds.), Curriculum issues in an era of Common Core State Standards for 
Mathematics. Reston, VA: NCTM. 

Confrey, J., & Maloney, A. (2010). The construction, refinement, and early validation of the 
equipartitioning learning trajectory. Paper presented at the 9th International Conference 
of the Learning Sciences - Volume 1, Chicago, Illinois. 

Confrey, J., Maloney, A., Nguyen, K., Mojica, G., & Myers, M. (2009).Equipartitioning/splitting 
as a foundation of rational number reasoning using learning trajectories. Paper 
presented at the 33rd Conference of the International Group for the Psychology of 
Mathematics Education, Thessaloniki, Greece. 

Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-
based approach to reform (Research report #RR-63). Philadelphia, PA: Consortium for 



	
   238	
  

Policy Research in Education. 
Coulombe, W. N., & Berenson, S. B. (2001). Representations of patterns and functions: Tools 

for learning. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school 
mathematics (2001 Yearbook) (pp. 166-172). Reston, VA: National Council of Teachers 
of Mathematics. 

Crocker, J. (1981). Judgment of covariation by social perceivers. Psychological Bulletin, 90(2), 
272-292. doi: 10.1037/0033-2909.90.2.272 

Crocker, J. (1982). Biased questions in judgment of covariation studies. Personality and Social 
Psychological Bulletin, 8, 214-220.  

Daro, P., Mosher, F. A., & Corcoran, T. (2011). Learning trajectories in mathematics: A 
foundation for standards, curriculum, assessment, and instruction. Philadelphia, PA: 
Consortium for Policy Research in Education. 

Dierdorp, A., Bakker, A., Eijkelhof, H., & van Maanen, J. (2011). Authentic practices as 
contexts for learning to draw inferences beyond correlated data. Mathematical Thinking 
and Learning, 13(1-2), 132-151. doi: 10.1080/10986065.2011.538294 

Dingman, S. W. (2007). Mathematics textbooks and state curriculum standards: an analysis of 
the alignment between the written and intended curricula. (Doctoral dissertation), 
University of Missouri, Columbia, MO. Retrieved from 
https://mospace.umsystem.edu/xmlui/handle/10355/4690 MOspace database.  

Donnelly, J. F., & Welford, A. G. (1989). Assessing pupils’ ability to generalize. International 
Journal of Science Education, 11(2), 161-171. doi: 10.1080/0950069890110205 

Erlick, D. E. (1966). Human estimates of statistical relatedness. Psychonomic Science, 5(10), 
365-366.  

Erlick, D. E., & Mills, R. G. (1967). Perceptual quantification of conditional dependency. 
Journal of Experimental Psychology, 73(1), 9-14. doi: 10.1037/h0024138 

Estapa, A., & Batanero, C. (1996). Judgments of correlation in scatter plots: Students' intuitive 
strategies and preconceptions. Hiroshima Journal of Mathematics Education, 4, 21-41.  

Fey, J., & Hirsch, C. (2007). The case of Core-Plus mathematics. Perspectives on the design and 
development of school mathematics curricula, 129-142.   

Fiedler, K. (1991). The tricky nature of skewed frequency tables: An information loss account of 
distinctiveness-based illusory correlation. Journal of Personality and Social Psychology, 
60, 24-36.  

Flanders, J. R. (1987). How much of the content in mathematics is new? Arithmetic Teacher, 
35(1), 18-23.  

Flanders, J. R. (1994). Student opportunities in grade 8 mathematics: Textbook coverage of the 
SIMS Test. In I. Westbury, C. A. Ethington, L. A. Sosniak & D. P. Baker (Eds.), In 
Search of more effective mathematics education: Examining data from the IEA Second 
International Mathematics Study (pp. 61-93). Norwood, NJ: Ablex. 

Flanders, J. R. (1994). Textbooks, teachers, and the SIMS Test. Journal for Research in 
Mathematics Education, 25(3), 260-278. doi: 10.2307/749338 



	
   239	
  

Flanders, J. R., Lassak, M., Sech, J., Eggerding, M., Karafiol, P. J., McMullin, L., . . . Usiskin, Z. 
(2010). The University of Chicago School Mathematics Project: Advanced Algebra - 
Teacher's edition (3rd ed.). Chicago, IL: McGrawHill - Wright Group. 

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). 
Guidelines and assessment for instruction in statistics education (GAISE) report: A Pre-
K-12 curriculum framework. Alexandria, VA: American Statistical Association. 

Garfield, J., & Ben-Zvi, D. (2007). How students learn statistics revisited: A current review of 
research on teaching and learning statistics. International Statistical Review, 75(3), 372-
396. doi: 10.1111/j.1751-5823.2007.00029.x 

Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform 
mathematics education. Mathematical Thinking and Learning, 6(2), 105-128. doi: 
10.1207/s15327833mtl0602_3 

Gray, C. W. (1968). Predicting with intuitive correlations. Psychonomic Science, 11(2), 41-42.  
Grouws, D. A., & Smith, M. S. (2000). Findings from NAEP on the preparation and practices of 

mathematics teachers. In E. A. Silver & P. A. Kenney (Eds.), Results from the seventh 
mathematics assessment of the national assessment of education progress (pp. 107-141). 
Reston, VA: National Council of Teachers of Mathematics. 

Hamilton, D. L., & Gifford, R. K. (1976). Illusory correlation in interpersonal perception: A 
cognitive basis of stereotypic judgments. Journal of Experimental Social Psychology, 
12(4), 392-407. doi: 10.1016/S0022-1031(76)80006-6 

Hamilton, D. L., & Rose, T. L. (1980). Illusory correlation and the maintenance of stereotypic 
beliefs. Journal of Personality and Social Psychology, 39(5), 832-845. doi: 
10.1037/0022-3514.39.5.832 

Heck, D. J., Chval, K. B., Weiss, I. R., & Ziebarth, S. W. (2012). Developing measures of 
fidelity of implementation for mathematics curriculum materials enactment. In D. J. 
Heck, K. B. Chval, I. R. Weiss & S. W. Ziebarth (Eds.), Approaches to studying the 
enacted mathematics curriculum (pp. 67-87). Charlotte, NC: Information Age Publishing. 

Heck, D. J., Weiss, I. R., & Pasley, J. D. (2011). A priority research agenda for understanding 
the influence of the Common Core State Standards for Mathematics. Chapel Hill, NC. 

Herbst, P. (1995). The construction of the real number system in textbooks: A contribution to the 
analysis of discursive practices in mathematics. (Unplished Master' Thesis), University 
of Georgia, Athens.    

Hiebert, J. S., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on 
students' learning. In J. Frank K. Lester (Ed.), Second Handbook of Research on 
Mathematics Teaching and Learning (Vol. 1). Charlotte, NC: Information Age 
Publishing. 

Hirsch, C. R. (2007). Perspectives on the design and development of school mathematics 
curricula. Reston, VA: National Council of Teachers of Mathematics. 

Hopfensperger, P., Jacobbe, T., Lurie, D., & Moreno, J. (2012). Bridging the gap between 
Common Core State Standards and teaching statistics. Alexandria, VA: American 
Statistical Association. 



	
   240	
  

Inhelder, B., & Piaget, J. (1958). Random variations and correlations (A. Parsons & S. Milgram, 
Trans.). In B. Inhelder & J. Piaget (Eds.), The growth of logical thinking from childhood 
to adolescence (pp. 224-242). London: Routledge & Kegan Paul. 

Jenkins, H. M., & Ward, W. C. (1965). Judgment of contingency between responses and 
outcomes. Psychological Monographs: General and Applied, 79(1), 1-17. doi: 
10.1037/h0093874 

Jennings, D., Amabile, T., & Ross, L. (1982). Informal covariation assessment: Data-based 
versus theory-based judgments. In D. Kahneman, P. Slovic & A. Tversky (Eds.), 
Judgment under uncertainty: Heuristics and biases (pp. 211-230). Cambridge, England: 
Cambridge University Press. 

Johnson, G. J., Thompson, D. R., & Sharon, L. S. (2010). Proof-related reasoning in high school 
textbooks. Mathematics Teacher, 103(6), 410-417.  

Jones, D. L. (2004). Probability in middle grades mathematics textbooks: An examination of 
historical trends, 1957-2004. (Doctoral dissertation), University of Missouri at Columbia, 
MO. Retrieved from http://laurel.lso.missouri.edu/record=b5299484~S1   

Jones, G. A., Langrall, C. W., Mooney, E. S., & Thornton, C. A. (2004). Models of development 
in statistical reasoning. In D. Ben-Zvi & G. Joan (Eds.), The challenge of developing 
statistical literacy, reasoning, and thinking (pp. 97-117). Netherlands: Kluwer Academic 
Publishers. 

Kaput, J. J. (1992). Patterns in students’ formalization of quantitative patterns. In G. Harel & E. 
Dubinsk (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA 
Notes (Vol. 25, pp. 290-318). Washington, DC: Mathematical Association of America. 

Kelley, H. H. (1967). Attribution theory in social psychology In D. Levine (Ed.), Nebraska 
Symposium on Motivation (Vol. 15, pp. 192-238). Lincoln: University of Nebraska Press. 

Konarski, R. (2005). Judgments of correlation from scatterplots with contaminated distributions. 
Polish Psychological Bulletin, 36(51-62).  

Konold, C. (2002). Alternatives to scatterplots. In B. Phillips (Ed.), Proceedings of the sixth 
international conference on teaching statistics, Cape Town, South Africa. Voorburg, The 
Netherlands: International Statistical Institute. 

Konold, C., & Higgins, T. L. (2003). Reasoning with data. In J. Kilpatrick, G. W. Martin & D. 
Schifter (Eds.), A research companion to principles and standards for school 
mathematics (pp. 193-215). Reston, VA: NCTM. 

Krabbendam, H. (1982). The non-qualitative way of describing relations and the role of graphs: 
Some experiments. Paper presented at the Conference on functions Enschede, The 
Netherlands. 

Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-
689. doi: 10.1037/0033-295x.96.4.674 

Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. 
Orlando, FL: Academic Press. 

Kuhn, D., Garcia-Mila, M., Zohar, A., Andersen, C., Sheldon, H. W., Klahr, D., & Sharon, M. C. 



	
   241	
  

(1995). Strategies of Knowledge Acquisition. Monographs of the Society for Research in 
Child Development, 60(4), i-157. doi: 10.2307/1166059 

Lane, D. M., Anderson, C. A., & Kellam, K. L. (1985). Judging the relatedness of variables: The 
psychophysics of covariation detection. Journal of Experimental Psychology: Human 
Perception and Performance, 11(5), 640-649.  

Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. (2012). Holt McDougal Larson Algebra 1 - 
Teacher's Edition. Orlando, FL: Holt McDougal - Houghton Miffin Harcourt. 

Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. (2012). Holt McDougal Larson Geometry - 
Teacher's  Edition. Orlando, FL: Holt McDougal - Houghton Mifflin Harcourt. 

Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. (2012). Holt McDougal Larson Algebra 2 - 
Teacher's  Edition. Orlando, FL: Holt McDougal - Houghton Mifflin Harcourt. 

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, 
learning, and teaching. Review of Educational Research, 60(1), 1-64. doi: 
10.3102/00346543060001001 

Lesh, R., & Yoon, C. (2004). Evolving communities of mind-in which development involves 
several interacting and simultaneously developing strands. Mathematical Thinking and 
Learning, 6(2), 205-226. doi: 10.1207/s15327833mtl0602_7 

Li, Y. (1999). An analysis of algebra content, content organization and presentation, and to-be-
solved problems in eighth-grade mathematics textbooks from Hong Kong, Mainland 
China, Singapore, and the United States. (Doctoral dissertation), University of 
Pittsburgh, Pennsylvania. Retrieved from http://search.proquest.com/docview/304519739   

Lipe, M. G. (1990). A lens model analysis of covariation research. Journal of Behavioral 
Decision Making, 3(1), 47-59. doi: 10.1002/bdm.3960030105 

Lovell, K. (1961). A follow-up study of Inhelder and Piaget’s the growth of logical thinking. 
British Journal of Psychology, 52(2), 143-153. doi: 10.1111/j.2044-8295.1961.tb00776.x 

McCallum, W. G. (2003). Thinking out of the box. In J. T. Fey, A. Cuoco, C. Kieran, L. 
McMullin & R. M. Zbiek (Eds.), Computer Algebra Systems in Secondary School 
Mathematics Education (pp. 73-86). Reston, VA: NCTM. 

McConnell, J. W., Brown, S. A., Karafiol, P. J., Brouwer, S., Ives, M., Lassak, M., . . . Usiskin, 
Z. (2010). The University of Chicago School Mathematics Project: Functions, statistics, 
and trigonometry - Teacher's Edition (3rd ed.). Chicago, IL: McGrawHill - Wright 
Group. 

McKnight, C. C., Crosswhite, F. J., Dossey, J. A., Kifer, E., Swafford, J. O., Travers, K. J., & 
Cooney, T. J. (1987). The underachieving curriculum: Assessing U. S. School 
mathematics from an international perspective. . Champaign, Illinois: Stipes Publishing 
Company. 

Mesa, V. (2004). Characterizing practices associated with functions in middle school textbooks: 
An empirical approach. Educational Studies in Mathematics, 56(2-3), 255-286. doi: 
10.1023/b:educ.0000040409.63571.56 

Mesa, V. M. (2000). Conceptions of function promoted by seventh- and eighth-grade textbooks 



	
   242	
  

from eighteen countries. Unpublished doctoral dissertation. University of Georgia. Athen, 
GA.  

Mevarech, Z., & Kramarsky, B. (1997). From verbal descriptions to graphic representations: 
Stability and change in students' alternative conceptions. Educational Studies in 
Mathematics, 32(3), 229-263. doi: 10.1023/a:1002965907987 

Meyer, J., Taieb, M., & Flascher, I. (1997). Correlation estimates as perceptual judgments. 
Journal of Experimental Psychology: Applied, 3(1), 3-20. doi: 10.1037/1076-898x.3.1.3 

Monk, S. (1992). Students’ understanding of a function given by a physical model. In G. Harel & 
E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, 
MAA Notes (Vol. 25, pp. 175-193). Washington, DC: Mathematical Association of 
America. 

Moore, D. S. (1990). Uncertainty. In L. Steen (Ed.), On the shoulders of giants: A new approach 
to numeracy (pp. 95-137): National Academy of Sciences. 

Moritz, J. B. (2000). Graphical representations of statistical associations by upper primary 
students. In J. B. A. Chapman (Ed.), Mathematics education beyond 2000: The 23rd 
Annual Conference of the Mathematics Education Research Group of Australasia (pp. 
440-447). Perth: Mathematics Education Research Group of Australasia. 

Moritz, J. B. (2002). Study times and test scores: What students’ graphs show. Australian 
Primary Mathematics Classroom, 7(1), 24-31.  

Moritz, J. B. (2004). Reasoning about covariation. In D. Ben-Zvi & J. Garfield (Eds.), The 
challenge of developing statistical literacy, reasoning and thinking (pp. 227-256). 
Dordrecht, The Netherlands: Kluwer Academic Publishers. 

National Assessment Governing Board. (2006). Mathematics framework for the 2007 National 
Assessment of Educational Progress. Washington, DC: The National Academies Press. 

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for 
school mathematics. Reston, VA: Author. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 
mathematics. Reston, VA: Author. 

National research Council. (2001). Knowing what students know: The science and design of 
educational assessment. Washington, DC: The National Acedemy Press. 

National Research Council. (2004). On evaluating curricular effectiveness: Judging the quality 
of K-12 mathematics evaluations. Washington, DC: The National Academies Press. 

Neimark, E. D. (1975). Longitudinal development of formal operations thought. Genetic 
Psychology Monographs, 91(2), 171-225.  

Nemirovsky, R. (1996). A functional approach to algebra: Two issues that emerge. In N. 
Dedrarg, C. Kieran & L. Lee (Eds.), Approaches to algebra: Perspectives for research 
and teaching (pp. 295-313). Boston: Kluwer Academic Publishers. 

Nisbett, R., & Ross, L. (1980). Human inference: Strategies and shortcomings of social 
judgment. Englewood Cliffs, NJ: Prentice-Hall. 

Olson, T. (2010). Articulated learning trajectories related to the development of algebraic 



	
   243	
  

thinking that follow from patterning concepts in middle grades mathematics. (Doctoral 
dissertation), University of Missouri Columbia. Retrieved from 
https://mospace.umsystem.edu/xmlui/handle/10355/8318 MOspace database.  

Peressini, A. L., DeCraene, P. D., Rockstroh, M. A., Viktora, S. S., Canfield, W. E., Wiltjer, M. 
H., & Usiskin, Z. (2010). The University of Chicago School Mathematics Project: 
Precalculus and Discrete Mathematics - Teacher's Edition (3rd ed.). Chicago, IL: 
McGrawHill - Wright Group. 

Perez Echvarria, M. P. (1990). Psicologia del razonamiento probabilistico. [The psychology of 
probabilistic reasoning]. Madrid: Ediciones de la Universidad Autenoma de Madrid. 

Peterson, C. (1980). Recognition of noncontingency. Journal of Personality and Social 
Psychology, 38(5), 727-734. doi: 10.1037/0022-3514.38.5.727 

Porter, A. C. (2002). Measuring the content of instruction: Uses in research and practice. 
Educational Researcher, 31(7), 3-14. doi: 10.3102/0013189x031007003 

Reys, B. J., Reys, R. E., & Chavez, O. (2004). Why mathematics textbooks matter. Educational 
Leadership, 61(4), 61-66.  

Reys, B. J., Thomas, A., Tran, D., Dingman, S., Kasmer, L., Newton, J., & Teuscher, D. (2013). 
State-level actions following adoption of Common Core State Standards for 
Mathematics. NCSM Journal, 14(2), 5-13.  

Robitaille, D. F., & Travers, K. J. (1992). International studies of achievement in mathematics. 
In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning 
Reston, VA: National Council of Teachers of Mathematics. 

Ross, D. J. (2011). Functions in contemporary secondary mathematics textbook series in the 
United States. (Doctoral dissertation), University of Missouri, Columbia, MO. Retrieved 
from https://mospace.umsystem.edu/xmlui/handle/10355/14225 MOspace database.  

Ross, J. A., & Cousins, J. B. (1993). Pattern of student growth in reasoning about correlational 
problems. Journal of Educational Psychology, 85(1), 49-65.  

Sasman, M. C., Olivier, A., & Linchevski, L. (1999). Factors influencing student's generalisation 
thinking processes. In O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 4, pp. 161-168). 
Haifa, Israel: PME. 

Schmidt, W. H., McKnight, C. C., Valverde, G. A., Houang, R. T., & Wiley, D. E. (1997). Many 
visions, many aims: A cross-national investigation of curricular intentions in school 
mathematics. Dordrecht, The Netherlands: Kluwer. 

Schustack, M. W., & Sternberg, R. J. (1979). Evaluation of evidence in causal inference. Journal 
of Experimental Psychology: General, 110, 101-120.  

Seeley, C. L. (2003). Mathematics textbook adoption in the United States. In G. Stanic & J. 
Kilpatrick (Eds.), A history of school mathematics (pp. 957-988). Reston, VA: NCTM. 

Seggie, J. L., & Endersby, H. (1972). The empirical implications of Piaget's concept of 
correlation. Australian Journal of Psychology, 24(1), 3-8. doi: 
10.1080/00049537208255778 



	
   244	
  

Senk, S. L., & Thompson, D. R. (2003). Standards-based school mathematics curricula: What 
are they? What do students learn? Mahwah, NJ: Erlbaum. 

Shaklee, H., & Mims, M. (1981). Development of rule use in judgments of covariation between 
events. Child Development, 52(1), 317-325. doi: 10.2307/1129245 

Shaklee, H., & Paszek, D. (1985). Covariation judgment: systematic rule use in middle 
childhood. Child Development, 56(5), 1229-1240. doi: 10.2307/1130238 

Shaklee, H., & Tucker, D. (1980). A rule analysis of judgments of covariation between events. 
Memory & Cognition, 8(5), 459-467. doi: 10.3758/bf03211142 

Shaughnessy, J. M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), 
Second handbook of research on mathematics teaching and learning. Charlotte, NC: 
Information Age. 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 
Journal for Research in Mathematics Education, 26(2), 114-145.  

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual 
learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking 
and Learning, 6(2), 91-104. doi: 10.1207/s15327833mtl0602_2 

Smedslund, J. (1963). The concept of correlation in adults. Scandinavian Journal of Psychology, 
4(1), 165-173. doi: 10.1111/j.1467-9450.1963.tb01324.x 

Snyder, M. (1981). Seek and ye shall find: Testing hypotheses about other people. In E. T. 
Higgins, D. C. Herman & M. P. Zanna (Eds.), Social cognition: The Ontario Symposium 
on Personality and Social Psychology. Hillsdale, NJ Erlbaum. 

Snyder, M., & Swann, W. B., Jr. (1978). Hypothesis-testing processes in social interaction. 
Journal of Personality and Social Psychology, 36, 1202-1212.  

Sotos, A. E. C., Vanhoof, S., Noortgate, W. V. D., & Onghena, P. (2009). The transitivity 
misconception of Pearson’s correlation coefficien. Statistics Education Research Journal, 
8(2), 33-55.  

Stanton, T. (Producer). (2010, 08/01/2012). McGraw-Hill and University of Chicago School 
Mathematics Project announce first continuous pre-K-12 math curriculum. Retrieved 
from http://pressrelated.com/press-release-mcgraw-hill-authors-receive-presidential-
awards-for-excellence-in-mathematics-and-science-teaching.html 

Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of 
commensurate fractions. Mathematical Thinking and Learning, 6(2), 129-162. doi: 
10.1207/s15327833mtl0602_4 

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to 
think and reason: An analysis of the relationship between teaching and learning in a 
reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. doi: 
10.1080/1380361960020103 

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. 
In F. K. J. Lester (Ed.), Second handbook of research on mathematics teaching and 
learning (Vol. 1, pp. 319-369): Charlotte, North Carolina: Information Age Publishing. 



	
   245	
  

Stevenson, H. W., & Bartsch, K. (1992). An analysis of Japanese and American textbooks in 
mathematics. In R. Leetsma & H. Walberg (Eds.), Japanese educational productivity (pp. 
103-133). Ann Arbor: Center for Japanese Studies, University of Michigan. 

Stockburger, D. W. (1982). Evaluation of three simulation exercises in an introductory statistics 
course. Contemporary Educational Psychology, 7(4), 365-370. doi: 10.1016/0361-
476X(82)90021-2 

Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. 
Mathematical Thinking and Learning, 11(4), 258-288. doi: 10.1080/10986060903253954 

Swan, M. (1985). The language of functions and graphs. University of Nottingham: Shell 
Center. 

Swan, M. (1988). Learning the language of functions and graphs Mathematics Interfaces: 
Proceedings of the 12th Biennial Conference of the Australian Association of 
Mathematics Teachers (pp. 76-80). Newcastle, NSW: The New England Mathematical 
Association. 

Swatton, P. (1994). Pupils’ performance within the domain of data interpretation, with particular 
reference to pattern recognition. Research in Science & Technological Education, 12(2), 
129-144. doi: 10.1080/0263514940120203 

Swatton, P., & Taylor, R. M. (1994). Pupil performance in graphical tasks and its relationship to 
the ability to handle variables. British Educational Research Journal, 20(2), 227-243. 
doi: 10.1080/0141192940200207 

Tarr, J. E., Chavez, O., Reys, R. E., & Reys, B. J. (2006). From the written to the enacted 
curricula: The intermediary role of middle school mathematics teachers in shaping 
students' opportunity to learn. School Science and Mathematics, 106(4), 191-201.  

Thompson, P. W. (1994). Images of rate and operational understanding of the Fundamental 
Theorem of calculus. Learning Mathematics, 125-170. doi: 10.1007/978-94-017-2057-
1_5 

Trolier, T. K., & Hamilton, D. L. (1986). Variables influencing judgments of correlational 
relations. Journal of Personality and Social Psychology, 50(5), 879-888. doi: 
10.1037/0022-3514.50.5.879 

Truran, J. M. (1997). Understanding of association and regression by first year economics 
students from two different countries as revealed in responses to the same examination 
question. In J. Garfield & J. M. Truran (Eds.), Research papers on stochastics educations 
from 1997 (pp. 205-212). Minneapolis, MN: University of Minnesota. 

Usiskin, Z. (2007). The case of the University of Chicago School Mathematics Project - 
Secondary Component. In C. R. Hirsch (Ed.), Perspectives on the design and 
development of school mathematics curricula (pp. 173-182). Reston, VA: NCTM. 

Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). 
According to the book: Using TIMSS to investigate the translation of policy into practice 
through the world of textbooks. Boston: Kluwer Academic Publishers. 

Ward, W. C., & Jenkins, H. M. (1965). The display of information and the judgment of 
contingency. Canadian Journal of Psychology/Revue canadienne de psychologie, 19(3), 



	
   246	
  

231-241. doi: 10.1037/h0082908 
Wason, P. C., & Johnson-Laird, P. N. (1972). Psychology of reasoning: Structure and content. 

London: Batsford. 
Wasserman, E. A., Dorner, W. W., & Kao, S. F. (1990). Contributions of specific cell 

information to judgments of interevent contingency. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 16(3), 509-521. doi: 10.1037/0278-
7393.16.3.509 

Watson, J., & Moritz, J. (1999). The beginning of statistical inference: Comparing two data sets. 
Educational Studies in Mathematics, 37(2), 145-168. doi: 10.1023/a:1003594832397 

Watson, J. M., & Moritz, J. B. (1997). Student analysis of variables in a media context. Paper 
presented at the International Congress on Mathematics Education - 8 (ICME), Seville, 
Spain.  

Wavering, M. J. (1989). Logical reasoning necessary to make line graphs. Journal of Research in 
Science Teaching, 26(5), 373-379. doi: 10.1002/tea.3660260502 

Willoughby, S. (2010). Reflections on five decades of curriculum controversies. In B. J. Reys & 
R. E. Reys (Eds.), Mathematics curriculum: Issues, trends, and future directions (72nd 
Yearbook of the National Council of Teachers of Mathematics) (pp. 77-85). Reston, VA: 
National Council of Teachers of Mathematics. 

Woodward, A. (1994). Textbook. In T. Husen & T. N. Postlethwaite (Eds.), International 
encyclopedia of education (2 ed., Vol. 2, pp. 6366-6371): BPC Wheatons, Exeter. 

Wright, J. C., & Murphy, G. L. (1984). The utility of theories in intuitive statistics: The 
robustness of theory-based judgments. Journal of Experimental Psychology: General, 
113(2), 301-322. doi: 10.1037/0096-3445.113.2.301 

Zieffler, A. S. (2006). A longitudinal investigation of the development of college students’ 
reasoning about bivariate data during an introductory statistics course. (Doctoral 
dissertation), University of Minnesota, Minneapolis, MN. Retrieved from 
http://search.proquest.com/docview/305305165  

 



	
   247	
  

APPENDIX A: CCSSM’S MATHEMATICAL PRACTICES CODING FRAMEWORK 
 
CCSSM Statement Descriptors of the coding framework 
Make sense and persevere on solving problems 
(MP1). 
[S]tudents start by explaining to themselves the 
meaning of a problem and looking for entry 
points to its solution. They analyze givens, 
constraints, relationships, and goals. They 
make conjectures about the form and meaning 
of the solution and plan a solution pathway 
rather than simply jumping into a solution 
attempt. They consider analogous problems, 
and try special cases and simpler forms of the 
original problem in order to gain insight into its 
solution. They monitor and evaluate their 
progress and change course if necessary… they 
check their answers to problems using a 
different method, and they continually ask 
themselves, “Does this make sense?” They can 
understand the approaches of others to solving 
complex problems and identify 
correspondences between different approaches. 
(CCSSI, 2010, p. 6) 

Perseverance when solving a problem is only 
observable in practice, not in the written 
direction of a task itself. For this study, I 
considered the first component: make sense of 
problem. I identified if the task offers 
opportunities for students to do the preparatory 
work before jumping into solving the task. I 
also examined if the task asks students to 
approach one problem with multiple methods 
to check their solution. Particularly, I 
determined if the task requires students to 
formulate and clarify problems and situations 
such as to: (a) construct a verbal or symbolic 
statement or a question in which a 
mathematical problem goal can be specified, 
(b) design an appropriate statistical experiment 
to solve a stated problem or to specify the data 
and range of data needed.  
 

Reason abstractly and quantitatively (MP2). 
[S]tudents make sense of quantities and their 
relationships in problem situations. They bring 
two complementary abilities ...: the ability to 
decontextualize—to abstract a given situation 
and represent it symbolically and manipulate 
the representing symbols as if they have a life 
of their own, without necessarily attending to 
their referents—and the ability to 
contextualize, to pause as needed during the 
manipulation process in order to probe into the 
referents for the symbols involved. 
Quantitative reasoning entails habits of … 
considering the units involved; attending to the 
meaning of quantities, not just how to compute 
them; and knowing and flexibly using different 
properties of operations and objects. (CCSSI, 
2010, p. 6) 

I examined whether a task provides 
opportunities for students to: (a) make sense of 
quantities (not merely numbers), (b) reason 
about the relationship between two quantities, 
and (c) reason abstractly with symbols and 
formula particularly in algebra. 
 

Construct viable arguments and critique the 
reasoning of others (MP3). 

 [S]tudents understand and use stated 
assumptions, definitions, and previously 
established results in constructing arguments. 
They make conjectures and build a logical 
progression of statements to explore the truth 
of their conjectures. They are able to analyze 

I examine whether a task provides 
opportunities for students to argue or critique. 
Specifically, I look for the performance 
expectations from the task that ask students to 
(a) verify the computational correctness of a 
solution, or justify a step in the solution, (b) 
identify information relevant to verify or 
disprove a conjecture, (c) argue the truth of a 
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situations by breaking them into cases, and can 
recognize and use counterexamples. They 
justify their conclusions, communicate them to 
others, and respond to the arguments of others. 
They reason inductively about data, making 
plausible arguments that take into account the 
context from which the data arose. [S]tudents 
are also able to compare the effectiveness of 
two plausible arguments, distinguish correct 
logic or reasoning from that which is flawed, 
and—if there is a flaw in an argument—explain 
what it is. …Students learn to determine 
domains to which an argument applies. 
Students … can listen or read the arguments of 
others, decide whether they make sense, and 
ask useful questions to clarify or improve the 
arguments. (CCSSI, 2010, pp. 6-7) 

conjecture or construct a plausible argument, 
(d) identify a contradiction (something that is 
never true), (e) critique a written or spoken 
mathematical idea, solution, result, or method 
for solving a problem and the efficiency of the 
method or similarly critique an algorithm and 
its efficiency.  

Model with mathematics (MP4). 
[S]tudents can apply the mathematics they 
know to solve problems arising in everyday 
life, society, and the workplace. [S]tudents who 
can apply what they know are comfortable 
making assumptions and approximations to 
simplify a complicated situation, realizing that 
these may need revision later. They are able to 
identify important quantities in a practical 
situation and map their relationships using such 
tools as diagrams, two-way tables, graphs, 
flowcharts and formulas. They can analyze 
those relationships mathematically to draw 
conclusions. They routinely interpret their 
mathematical results in the context of the 
situation and reflect on whether the results 
make sense, possibly improving the model if it 
has not served its purpose. (CCSSI, 2010, p. 7) 

I considered if a task provides opportunities for 
students to use mathematics to deal with real-
life problems. I look for performance 
expectations from the task that attends to 
formulating and clarifying problems and 
situations such as tasks that ask students to (a) 
construct a verbal or symbolic statement of a 
real world or other situations, (b) simplify a 
real world or other problem situation by 
selecting aspects and relationships to be 
captured in a representation modeling the 
situation, (c) select or construct a mathematical 
representation of a problem (real-world or 
other problem situation plus a related 
question/goal), and (d) develop notations or 
terminologies to record actions and results of 
real-world or other mathematizable situations.  

Use appropriate tools strategically (MP5). 
[S]tudents consider the available tools when 
solving a mathematical problem. These tools 
might include pencil and paper, concrete 
models, a ruler, a protractor, a calculator, a 
spreadsheet, a computer algebra system, a 
statistical package, or dynamic geometry 
software. Proficient students are sufficiently 
familiar with tools appropriate for their grade 
or course to make sound decisions about when 
each of these tools might be helpful, 
recognizing both the insight to be gained and 
their limitations. They detect possible errors by 
strategically using estimation and other 
mathematical knowledge. When making 
mathematical models, they know that 

Inherent in almost every task are different 
approaches in terms of using tools such as 
paper and pencil or technological tools to solve 
the task.  In order to avoid every task being 
coded as offering students exposure to this 
practice, I examined if the task mentions about 
the selection of tools used to solve the task. In 
addition, a task will be coded to meet this 
practice if inherent in the task, students have to 
use a technological tool, but not merely for 
calculation. For example, the task asks students 
to carry out a simulation (e.g., find a 
probability of a Monte Carlo simulation).In this 
situation, the technological tool is used to 
deepen understanding.   
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technology can enable them to visualize the 
results of varying assumptions, explore 
consequences, and compare predictions with 
data. [S]tudents … are able to identify relevant 
external mathematical resources, such as digital 
content located on a website, and use them to 
pose or solve problems. They are able to use 
technological tools to explore and deepen their 
understanding of concepts. (CCSSI, 2010, p. 7) 
Attend to precision (MP6). 
[S]tudents try to communicate precisely to 
others. They try to use clear definitions in 
discussion with others and in their own 
reasoning. They state the meaning of the 
symbols they choose, including using the equal 
sign consistently and appropriately. They are 
careful about specifying units of measure, and 
labeling axes to clarify the correspondence 
with quantities in a problem. They calculate 
accurately and efficiently, express numerical 
answers with a degree of precision appropriate 
for the problem context. (CCSSI, 2010, p. 7) 
 
 

I looked at the intent of tasks in the set-up 
phase in the materials. I determine if the task 
asks students to: calculate, to measure, to use 
specialized terms, symbols. In particular, I look 
for performance expectations that ask students 
to: (a) use equipment to measure, (b) 
compute/calculate with or without instruments, 
(c) graph with scale with or without 
technology/device, (d) collect data by surveys, 
samples, measurements, etc., (e) develop or 
select, using notations, terminologies to record 
actions and results in dealing with real-world or 
other mathematizable situations, and (f) 
describe the characteristics of a formal 
algorithm or solution procedure.  

Look for and make use of structure (MP7). 
[S]tudents look closely to discern a pattern or 
structure. They also can step back for an 
overview and shift perspective. They can see 
complicated things, such as some algebraic 
expressions, as single objects or as being 
composed of several objects. (CCSSI, 2010, p. 
8) 
 

In this study, I determined if a task provides 
opportunities for students to look for a structure 
within the task.  For example, I examined task 
performance expectations that ask students to: 
(a) fit a curve of given type to a set of data 
(only if students are not told what kind of curve 
to fit), (b) classify mathematical objects by 
implicit criteria (e.g., geometric shapes), (c) 
predict a number, pattern, outcome, etc., that 
will result from an operation, procedure or 
experiment before it is actually performed.  

Look for and express regularity in repeated 
reasoning (MP8). 
[S]tudents notice if calculations are repeated, 
and look both for general methods and for 
shortcuts. As they work to solve a problem, 
mathematically proficient students maintain 
oversight of the process, while attending to the 
details. They continually evaluate the 
reasonableness of their intermediate results. 
(CCSSI, 2010, p. 8) 
 
 

I determined if a task offers students 
opportunities to draw from a series of similar 
situations a general technique, strategy or 
algorithm to use in a class of problems. I 
analyzed task performance expectations that 
ask students to: (a) describe the effect of a 
change in a situation (e.g., the effect on its 
graph of changing a parameter), (b) develop a 
formal algorithm for computation or a formal 
solution procedure for problems of a specified 
class or type, (c) identify a class of problems 
for which a formal solution procedure is 
appropriate, (d) generalize the solution, the 
strategy, or the algorithm of a specific problem, 
and (e) abstract the common elements from 
multiple related situations. 
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