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At the recommendation of prominent statistics educators, most notably George 

Cobb (2007), simulation-based inference methods have begun to replace or 

complement traditional inference methods in a number of introductory courses, 

including statistics courses at the high school level (Rossman & Chance, 2014).  

Developers of curricula that employ simulation-based inference as the primary means of 

teaching inference have published studies comparing their students’ understanding to 

students in traditional courses (e.g., Garfield et al., 2012; Tintle et al., 2012, 2011).  

However, these studies, which feature quantitative analysis of student performance on 

summative assessments, have not provided theory to explain how novices employ the 

tools and representations of traditional and simulation-based inference models. The 

existing literature also fails to illuminate student conceptions of inferential topics in 

courses that employ both traditional and simulation-based methods to introduce the 

logic of inference.  

Traditional inference methods and simulation-based inference methods are two 

models (and corresponding representational systems) used to express the logic of 

inference. Using the models and modeling theoretical perspective (Lesh & Doerr, 2003), 
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this dissertation explores the following central research question: How do students use 

traditional inference models and simulation-based inference models to understand 

inference?  

The data for this study were collected in an AP Statistics course that employed 

both traditional and simulation-based inference methods. The data include student 

responses to targeted formative assessments, exam items, and survey items; daily field 

notes and journal entries written by the teacher-researcher; and transcripts of individual 

and group interviews. Data analysis involved a process of systematic coding, following 

the guidelines for grounded theory provided by Charmaz (2014). 

The findings of this study are presented as three scholarly articles. The first 

examines how students use inferential models, representations, and tools as they 

reason about a statistical inference task. The second identifies common errors 

associated with simulation-based inference and characterizes the statistical conceptions 

underlying those errors. The third illustrates the connections that students make 

between approaches and offers recommendations for a course that includes both 

traditional and simulation-based models in instruction.  
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CHAPTER 1 
INTRODUCTION 

The discipline of statistics is characterized as a coherent set of tools for dealing 

with variability in data, and given the “omnipresence of variability” (Cobb & Moore, 

1997), these tools are applicable in innumerable contexts. From a scientist studying 

evolution to a market researcher studying consumer preferences, people from diverse 

fields need tools to describe how individuals vary within a population. From a researcher 

conducting a formal analysis to an informed citizen making a decision based on data, 

people need awareness of variability in measurements; they need familiarity with 

experiments that involve purposeful variation of certain conditions and control of others. 

Statistics education should offer opportunities to experience these and other sources of 

variability and introduce a statistical problem-solving process to make sense of 

variability in data (American Statistical Association, 2005; Franklin et al., 2007). 

In practice, a statistic calculated from a particular sample or experiment is often 

used to draw inferences about a larger population or an underlying causal relationship. 

Like data, statistics vary, so statistical inference methods must account for variability in 

statistics due to random sampling or random assignment. A rich understanding of 

variability as it relates to statistical inference is essential for students – both those who 

intend to produce their own statistical analyses and those who will engage with statistics 

primarily as critical consumers of data-based reports. 

In its list of goals for students in introductory statistics courses, the American 

Statistical Association’s Guidelines for Assessment and Instruction in Statistics 

Education (GAISE): College Report (ASA, 2016) begins with students’ development as 

critical consumers of statistical information. In addition to evaluation of study designs, 
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data descriptions, and data displays, informed consumers should habitually ask whether 

a reported result – be it a change in a politician’s poll numbers or the outcome of a new 

nutritional study - could have occurred by chance alone. However, “students do not 

spontaneously raise this possibility” (Konold, 1994, p. 206; Moore, 1990; Pfannkuch, 

2005). Absent educative experiences with sampling variability, people instinctively look 

for deterministic causes rather than consider chance variation (Wild & Pfannkuch, 

1999), which may lead to over-interpretation of results.  

Future producers of statistics must learn analytical techniques for deciding 

whether observed results could have plausibly occurred by chance under a given claim 

or model; in other words, they learn to formally test for statistical significance in different 

data scenarios. It is important that these students remain grounded in conceptual 

understanding of inference, recognizing the unifying themes amid the many technical 

variations (Cobb, 2007).  

Students should not leave their introductory statistics course with the mistaken 
impression that statistics consists of an unrelated collection of formulas and 
methods. Rather, students should understand that statistics is a problem-solving 
and decision-making process that is fundamental to scientific inquiry and 
essential for making sound decisions. (ASA, 2016) 
 

Statistics educators describe diverse inference procedures as ways to model the 

randomness inherent in study design (Cobb, 2007) and consider observed effects 

relative to variability (Pfannkuch, 2005). This conceptual foundation is generative as 

students acquire new inference techniques and adapt these procedures for specific 

circumstances; further, a strong conceptual foundation prevents misunderstandings that 

can lead to misuse.  
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 Although significance testing is a ubiquitous data analysis tool, there is evidence 

to suggest it is misunderstood by many who use it (Nickerson, 2000). In an introduction 

to the American Statistical Association’s statement on the use of p-values, Wasserstein 

and Lazar (2016) identify misuse and misunderstanding of statistical inference as 

contributors to a “reproducibility crisis.” First, interpretation of p-values is limited; for 

instance, p-values do not indicate the size or importance of an effect. Second, selective 

publication of results that pass a specific threshold for statistical significance (e.g.,  

p-value < 0.05) has incentivized poor statistical and scientific practice and caused some 

to doubt the validity of science itself. These issues “affect not only research, but 

research funding, journal practices, career advancement, scientific education, public 

policy, journalism, and law” (Wasserstein & Lazar, 2016). At the same time, terms like 

“p-hacking” are entering the vernacular, introduced to large audiences by the media, 

from data-driven journalism websites1 to late night comedy shows.2 H.G. Wells is often 

credited with the prediction, “Statistical thinking will one day be as necessary for 

efficient citizenship as the ability to read and write.”. Already, understanding of statistical 

inference is important for those who produce and consume statistics in today’s world.  

Before modern computing power allowed for rapid simulations, introductory 

statistics courses necessarily relied on traditional methods like z-tests and t-tests to 

introduce the core logic of inference (Cobb, 2007). Today, a growing number of 

statistics educators (e.g. Cobb, 2007; Garfield, delMas, & Zieffler, 2012; Lock, Lock, 

Morgan, Lock, & Lock, 2014; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 

                                            
1 “Science Isn’t Broken,” FiveThirtyEight, http://fivethirtyeight.com/features/science-isnt-broken/ 

2 “Scientific Studies,” Last Week Tonight,: https://www.youtube.com/watch?v=0Rnq1NpHdmw 
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2011) are proposing that traditional methods be replaced or supplemented with 

simulation-based tests. As enrollments in statistics courses grow and simulation-based 

inference methods gain popularity (ASA, 2016), a research-based understanding of the 

impact of simulation-based inference becomes necessary. The purpose of this study is 

to explore how students use traditional and simulation-based inference methods to 

understand inference in the context of an AP Statistics course. 

After introducing statistical concepts relevant to inference, this chapter provides a 

literature-based rationale for the current study. Although simulation-based inference 

methods are increasingly prevalent as a means to improve students’ inferential 

reasoning, the impact of these methods is not adequately understood. The models and 

modeling perspective and a conceptualization of statistical literacy, reasoning, and 

thinking provide theoretical perspective to address existing gaps in the literature. The 

chapter concludes with a brief overview of the study and the structure of the 

dissertation.  

Clarification of Statistical Concepts 

This section is intended to clarify the statistical concepts central to this study. 

Working definitions of statistical terms are provided, and an example is presented to 

illustrate traditional and simulation-based inference methods and highlight the 

differences between the two. 

Statistical Terms 

Defined broadly, statistical inference includes four main ideas: significance, 

estimation, generalizability, and causation (Rossman & Chance, 2014). Significance 

and estimation are two broad categories of inferential procedures. Significance 

concerns the strength of the statistical evidence for a particular claim (and against 
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another), and estimation provides an interval of plausible values for a parameter. 

Generalizability and causation are both related to the scope of inference: To what 

population can we generalize a statistical conclusion? Is it appropriate to draw 

conclusions about cause and effect? This dissertation focuses primarily on significance, 

and the term inference should be interpreted narrowly, as it will refer specifically to tests 

of statistical significance.  

Significance tests, also called hypothesis tests, are a way to quantify the strength 

of empirical evidence against a claim – the null hypothesis – in favor of another – an 

alternative hypothesis based on theory.  Randomized data production (random 

sampling or random assignment) protects against bias, so the results of a well-designed 

study provide a valid basis for inference. However, results that appear to support a 

researcher’s claim may be due to chance variability alone; thus, a significance test is 

necessary to determine whether a “just by chance” explanation is plausible.  

The same core logic underlies all significance tests (Cobb, 2007; Garfield et al., 

2012; Tintle et al., 2013), and the term logic of inference will be used to refer to the 

following line of reasoning. First, a model is specified to approximate the variability in 

outcomes that would occur due to randomization alone if the null hypothesis were true. 

The term sampling distribution will refer to this distribution of outcomes, regardless of 

whether the distribution is developed theoretically or empirically. An observed outcome 

that was unlikely to occur by chance provides evidence against the hypothesized model, 

and a p-value quantifies the likelihood that the observed outcome occurred by chance. 

Thus, when the p-value is small, we reject the null model, ruling out a “just by chance” 

explanation for the observed outcome and concluding in favor of the researchers’ claim 
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(Cobb, 2007; Garfield et al., 2012; Tintle et al., 2013). When we reject the null 

hypothesis, the results are called statistically significant.  

Traditionally, statisticians used theoretical probability distributions to model the 

outcomes that would occur by chance under the null hypothesis. In this study, statistical 

significance tests based on theoretical distributions (e.g., Normal distribution, t 

distribution, 𝛸2 distribution) will be called traditional inference methods. Alternatively, 

chance outcomes under the null hypothesis can be modeled using simulations, which 

employ physical chance devices (e.g., coins, dice, spinners) or a computer to mimic a 

random process. Significance tests that use simulations to model the null hypothesis will 

be called simulation-based inference methods. (Elsewhere in the literature, these are 

sometimes called randomization-based inference methods.) Both traditional tests and 

simulation-based tests are inference methods used by statisticians to account for 

variability in statistics. However, this study focuses on the use of these methods in 

instruction, as two ways to model the logic of inference in an introductory statistics 

course.  

Illustrative Example 

Consider the following example, which necessitates an inference method to 

determine the statistical significance of experimental results. 

[In] a study reported in Nature, researchers investigated whether infants 
take into account an individual’s actions towards others in evaluating that 
individual as appealing or aversive, perhaps laying the foundation for 
social interaction. In one component of the study, 10-month-old infants 
were shown a “climber” character … that could not make it up a hill in two 
tries. Then they were shown two scenarios for the climber’s next try, one 
where the climber was pushed to the top of the hill by another character 
(“helper”) and one where the climber was pushed back down the hill by 
another character (“hinderer”). The infant was alternately shown these two 
scenarios several times. Then the child was presented with the two 
characters from the video (the helper and the hinderer) and asked to pick 
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one to play with. The researchers found that 14 of the 16 infants chose the 
helper over the hinderer. (Holcomb, Chance, Rossman, Tietjen, & Cobb, 
2010, pp. 1–2) 

Does this result provide convincing evidence that the infants have a genuine preference 

for the helper toy or could the result have occurred merely by chance? There are two 

approaches to answer this question: one based on simulation and one based on 

theoretical distributions.  

Simulation-based inference. Suppose we choose a simulation-based inference 

method to address this question. If we assume that the infants do not prefer either toy 

over the other, then their selections can be modeled as a coin flip. For each trial, we flip 

a coin 16 times to represent the 16 infants who selected a toy in the original study. We 

can use an applet3 to simulate data for many trials, recording the number of infants who 

select the helper each time. The results of this simulation are shown in Figure 1-1. 

 
 
Figure 1-1.  Simulation-based test of one proportion using an applet.  

 

                                            
3 Available at http://www.rossmanchance.com/applets/OneProp/OneProp.htm 
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We evaluate the results by comparing the outcome of the original study to the 

distribution of outcomes produced by the model. Out of 1000 simulated trials, there 

were only 2 where heads appeared 14 or more times. That is, if we assume the infants 

were choosing randomly, the probability of getting a result at least extreme as the 

observed result (14 or more infants selecting the helper) is about 2 out of 1000; the 

estimated p-value is 0.002. Because 14 out of 16 infants choosing the helper is very 

unlikely to occur by chance, we reject the hypothesis that the infants were choosing 

randomly, and conclude that they have a genuine preference for the helper toy. 

Traditional inference. Alternatively, suppose we chose a traditional inference 

method; a theoretical probability distribution would be used to model the distribution of 

outcomes that would occur under the null hypothesis. In this case, the binomial 

distribution could be used to calculate the exact probability of 14 or more babies 

choosing the helper, assuming that each of the 16 babies chooses independently with 

probability 0.5. The test would result in a p-value of 0.0021; this p-value is very similar 

to the one obtained through simulation and has the same interpretation. However, tests 

based on the binomial distribution are not included in the AP Statistics curriculum and 

are not taught in many introductory statistics courses. 

More commonly, introductory statistics courses use a z-test to draw inferences 

about a single proportion. If certain conditions are met (questionable in this case, 

because the sample size is small), a sample proportion has a sampling distribution that 

is approximately Normal with a known standard deviation. This prerequisite knowledge 

can be used to calculate a standardized test statistic, 𝑧 =
𝑝−𝑝0

√𝑝0(1−𝑝0)/𝑛
= 3, which 

suggests that the sample proportion 𝑝̂ =
14

16
= 0.875 is three standard deviations above 
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the hypothesized proportion of 𝑝0 = 0.5. As shown in Figure 1-2, a z-statistic has a 

standard Normal distribution (assuming the null hypothesis is true), which can be used 

to calculate the probability of obtaining a z statistic of 3 or greater.4 This test would 

result in a p-value of 0.0013. 

 
 
Figure 1-2.  Traditional test of one proportion using the z distribution.  

This brief example illustrates that although the logic of inference is the same for 

traditional and simulation-based inference methods, the two approaches use different 

models for the outcomes that are expected under the null hypothesis. Further, the 

approaches apply different representations (e.g. formulas, graphical displays, notation, 

and chance devices) and prerequisite knowledge. This dissertation is concerned with 

how students use the two models and representational systems in courses that employ 

both to introduce the logic of inference. 

                                            
4 The applet used to calculate the p-value is available at http://www.rossmanchance.com/applets/TBIA.html 
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Theoretical Perspective 

This exploration of how students use traditional and simulation-based inference 

methods will be informed by a models and modeling perspective, which conceptualizes 

learning as model-building, an iterative process in which students invent, extend, and 

revise constructs (Lesh & Doerr, 2003b). In this study, the term model will be defined 

broadly: 

Models are conceptual systems (consisting of elements, relations, 
operations, and rules governing interactions) that are expressed using 
external notation systems, and that are used to construct, describe, or 
explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently. (Lesh & Doerr, 
2003b, p. 10) 

This definition suggests that models have two parts: conceptual systems in the minds of 

learners and various representational media (Johnson & Lesh, 2003). Thus, models and 

representations are intimately related, as “the meaning of a model, or conceptual 

system, tends to be distributed across a variety of interacting representation systems” 

(Lesh & Doerr, 2000, p. 239). In this dissertation, the term representation will be 

reserved for external systems, such as graphs, equations, and concrete models. In 

addition to external representations, this study will consider other tools that support 

statistical inference, including calculators, computer programs, and problem-solving 

heuristics. 

An inclusive definition of the term model supports two major research 

approaches: the constructivist approach focuses on mental models while the pragmatic 

approach focuses on the functionality of explanatory models and representations (Seel, 

2014). The pragmatic approach has been used in subject-matter domains such 

mathematics to study how external representations mediate understanding by allowing 
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students to simplify complex phenomena, envision the invisible, or identify relationships 

through analogies (Seel, 2014). This study is situated in that pragmatic tradition.  

Central to the models and modeling perspective is the assumption that reality is 

accessed through models and representations that emphasize different aspects of the 

underlying system (Lesh & Doerr, 2003b). The discipline of statistics consists of a 

distinctive set of models and representations of real-world phenomena (Wild & 

Pfannkuch, 1999), so attention to models and modeling is a powerful lens in this content 

domain. Lehrer and Schauble (2007, p. 157) argue that “representational change both 

reflects and instigates new ways of thinking about the data;” thus, it is critical to 

understand how students interact with the various models and representations used in 

statistics instruction. Viewed through a models and modeling lens, traditional and 

simulation-based inference methods can be seen as two models (and corresponding 

representational systems) used to express the same underlying conceptual system – 

the logic of inference. 

This study also draws on the work of Ben-Zvi and Garfield (2004), who describe 

teaching and learning of statistics in terms of three broad objectives: statistical literacy, 

statistical thinking, and statistical reasoning. Though there exist competing definitions 

for these interrelated constructs, differentiating between the three provides a framework 

for cataloging objectives and learning outcomes related to statistical inference. Under a 

restricted definition, statistical literacy describes the ability to organize and read data 

displays, familiarity with vocabulary and symbols specific to statistics, and knowledge of 

necessary mathematics content, specifically probability. Statistical reasoning involves 

making connections between concepts and interpreting statistical information to justify 
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conclusions. Statistical thinking describes thought processes which recognize the need 

for data and statistical methods to make decisions in a world of omnipresent variability 

(Ben-Zvi & Garfield, 2004).   

Traditional and simulation-based inference methods both require statistical 

literacy, thinking and, reasoning. However, traditional inference tends to make use of 

certain graphical representations, vocabulary, notation, and prerequisite knowledge, 

while simulation-based inference uses others. Thus, demands on statistical literacy may 

differ between the two methods. For example, traditional inference is based on idealized 

theoretical sampling distributions, which are typically represented graphically as smooth 

density curves. Other inscriptions – such as, formal specification of the null and 

alternative hypotheses and formulas used in calculations – may also be used. In 

contrast, simulation-based inference involves the construction and use of a model to 

create a simulated sampling distribution. Since simulated sampling distributions are 

defined in terms of repeating the randomization process many times, they are often 

represented graphically using dotplots or histograms instead of idealized curves, and 

they require less prerequisite knowledge of probability (Cobb, 2007).   

If meaning is distributed across various representational media (Lesh & Doerr, 

2000), then the differing representations employed in traditional and simulation-based 

inference may impact students’ ability to connect concepts and interpret information – 

namely, their statistical reasoning. Further, Cobb (2007) suggests that the “technical 

machinery” of inference – which also differs between the two methods – can obfuscate 

core statistical ideas. This, in turn, may impact students’ statistical thinking. Taken 

together, the models and modeling framework and Ben-Zvi and Garfield’s (2004) 
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conceptualization of statistical literacy, thinking, and reasoning provide theoretical 

perspective for studying students’ understanding of inference.  

Teaching for Understanding of Inferential Concepts 

A rich understanding of inference is an important outcome of an introductory 

statistics course. The GAISE College Report (ASA, 2016) mentions understanding of 

statistical inference as a key feature of what it means to be statistically educated. 

Significance testing is a widely used data analysis method (Nickerson, 2000), and 

although no introductory statistics course can include all hypothesis tests, “a conceptual 

understanding of the p-value and statistical significance opens the door to a wide array 

of statistical procedures that utilize this inferential logic” (Lane-Getaz, 2007, p. 10).  

Despite the prevalence of hypothesis testing across disciplines, statistical 

significance and p-values are commonly misunderstood, not only among college 

students (Aquilonious & Brenner, 2015; Batanero, 2000; Reaburn, 2014) but also 

among university faculty (Haller & Krauss, 2002; Mittag & Thompson, 2000) and other 

professionals who use statistics in their research (Nickerson, 2000). In fact, p-values are 

so often misinterpreted that some have called for abandoning their use altogether 

(Nickerson, 2000). Nonetheless, some statistics educators (e.g., Chance & Rossman, 

2006) believe that simulations have the potential to develop a deeper conceptual 

understanding of statistical significance and p-values, and today simulation-based 

inference methods are increasingly common in introductory statistics courses (ASA, 

2016; Rossman & Chance, 2014).  

Students’ Understanding of Inferential Concepts 

As mentioned earlier, p-values are a way to quantify the likelihood of an 

observed outcome under the null hypothesis to determine statistical significance; 
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formally, this is expressed as rejecting or failing to reject the null hypothesis. Many 

students in introductory statistics courses understand p-values as a tool for making 

decisions about the null hypothesis or a way to quantify the strength of evidence but 

lack an integrated conceptual understanding of what the p-value represents 

(Aquilonious & Brenner, 2015; Holcomb, Chance, Rossman, & Cobb, 2010; Taylor & 

Doehler, 2015). Based on a literature review of ten empirical studies, Lane-Getaz 

(2007) identified a number of common misconceptions about p-values. Many of these 

involve confusing relationships between inferential concepts or misinterpreting the p-

value as the probability that the hypotheses are true or false.  

Chance, delMas, and Garfield (2004, p. 295) attribute poor understanding of 

inference to “the notoriously difficult, abstract topic of sampling distributions.” Because 

sampling distributions represent the variability of a statistic in repeated sampling, they 

invoke prerequisite conceptions of variability, distributions, and sampling (Chance et al., 

2004), and require “a multi-tiered scheme” that distinguishes between the population 

distribution, the distribution of a single sample, and the distribution of statistics 

calculated from multiple samples (Saldanha & Thompson, 2002). Cobb (2007) 

compares understanding sampling distributions to understanding derivatives: 

The idea of a sampling distribution is inherently hard for students, in the 
same way that the idea of a derivative is hard. Both require turning a 
process into a mathematical object… Students can understand the 
process of drawing a single random sample and computing a summary 
number like a mean. But the transition from there to the sampling 
distribution as the probability distribution each of whose outcomes 
corresponds to taking-a-sample-and-computing-a-summary-number is … 
a hard transition. (Cobb, 2007, p. 7) 

Further, in traditional inference, changing the setting (e.g., comparing two populations 

instead of making inferences about one population) or changing the statistic of interest 
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(e.g., comparing medians instead of means) requires substantive, technically difficult 

changes to the model (Cobb, 2007).  

Use of Simulations to Teach Inference 

Citing the difficulty of inferential concepts like sampling distributions and p-

values, many have proposed the use of simulations to develop statistical concepts (e.g., 

Chance & Rossman, 2006; Cobb, 2007; delMas, Garfield, & Chance, 1999; Pfannkuch, 

2005). Though existing empirical studies demonstrate only modest gains in student 

understanding (delMas et al., 1999), the use of simulation in statistics instruction is 

common. Mills (2002) provides examples of computer simulation methods used to 

develop a number of concepts including the central limit theorem, the t-distribution, 

confidence intervals, the binomial distribution, regression analysis, sampling 

distributions, hypothesis testing, and survey sampling.  

After using simulation to introduce concepts, most introductory statistics courses 

use traditional inference methods based on theoretical distributions to carry out 

inference; however, in recent years, simulation-based inference methods have attracted 

considerable attention (Rossman & Chance, 2014). Statistics educators have suggested 

that these methods require less prerequisite knowledge, generalize easily to a large 

number of settings, incorporate modern computing power in a meaningful way, and 

support conceptual understanding of inference (Chance & Rossman, 2006; Cobb, 2007; 

Holcomb, Chance, Rossman, Tietjen, et al., 2010).  

These proposed advantages have led to increased use of simulation-based 

inference in high school and college courses. At the high school level, simulation-based 

inference is included in curriculum documents, including the Common Core State 

Standards for Mathematics (CCSSM) (NGACBP & CCSSO, 2010). Further, hundreds of 
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thousands of high school students take AP Statistics every year; though the AP 

Statistics curriculum primarily uses traditional inference methods, some textbooks 

incorporate simulation-based inference throughout the course (e.g., Starnes, Tabor, 

Yates, & Moore, 2013). At the college level, some instructors have incorporated a few 

activities or modules, while others have completely reconceptualized their courses with 

simulation-based inference as the cornerstone (Rossman & Chance, 2014). 

Statement of the Problem 

Simulation-based inference methods have begun to replace or complement 

traditional inference methods in a number of introductory courses, including statistics 

courses at the high school level. Though philosophical arguments have been made for 

these changes, further empirical research is necessary to understand how students use 

traditional inference models and simulation-based inference models to understand 

inference.  Developers of curricula that employ simulation-based inference as the 

primary means of teaching inference have published studies comparing their students’ 

understanding to students in traditional courses (Garfield et al., 2012; Tintle, Topliff, 

Vanderstoep, Holmes, & Swanson, 2012; Tintle et al., 2011). However, these studies, 

which feature quantitative analysis of student performance on summative assessments, 

have not provided theory to explain how novices employ the tools and representations 

of traditional and simulation-based inference models. The existing literature also fails to 

illuminate student understanding of statistical significance in courses that employ both 

traditional and simulation-based methods to introduce the logic of inference. Further, 

although simulation-based inference is included in the CCSSM (NGACBP & CCSSO, 

2010) and many high school students study inference in AP Statistics courses, a review 
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of the literature did not reveal any studies of high school students’ understanding of 

inference.  

Research Questions 

Traditional inference methods and simulation-based inference methods are two 

models (and corresponding representational systems) used to express the logic of 

inference. Using the models and modeling theoretical perspective, this study addresses 

the following central research question: 

 How do students use traditional inference models and simulation-based 
inference models to understand inference?  

This broad research interest is further refined in the following sub-questions: 

 What conceptions of inferential topics do students hold, and how are these 
related to commonly occurring student errors?  

 What connections do students see between the two models and representational 
systems?  

Overview of Study 

Because of its emphasis on inductive data analysis for generation of theory 

(Charmaz, 2014) and its compatibility with various epistemological paradigms (Taber, 

2000), a modified grounded theory methodological approach was used in this study. 

These methods were informed by a models and modeling perspective (Lesh & Doerr, 

2003b), which can be used to study how representations such as mathematical 

equations, graphs, concrete materials, and notation systems mediate understanding 

(Seel, 2014). Further, this study employed conceptualization of statistical literacy, 

reasoning, and thinking (Ben-Zvi & Garfield, 2004) to categorize learning goals and 

outcomes related to statistical inference.  
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The data for this study were collected during the second semester of instruction 

in an AP Statistics course that employs both traditional and simulation-based inference 

methods. The data include student responses to targeted formative assessments, exam 

items, and survey items; daily field notes and journal entries written by the teacher-

researcher; and transcripts of individual and group interviews. Because grounded theory 

encourages simultaneous data collection and analysis, the collection of classroom data 

was guided by the analysis, as the researcher aimed to saturate emerging categories.  

Data analysis involved a process of systematic coding, following the guidelines 

provided by Charmaz (2014). The sensitizing concepts of the models and modeling 

perspective provided a starting point, but other analytical approaches were also 

considered. Memos were used to document the process of coding and theory 

development and to draft descriptions of conceptual categories to be presented in the 

written report. 

Structure of the Dissertation 

 This dissertation study examines how students use traditional and simulation-

based inference in a class that uses both to introduce the logic of inference – a 

pedagogical approach employed in many classrooms but still underrepresented in the 

literature. The written report consists of six chapters. This chapter (Chapter 1) presents 

literature and theoretical frameworks that provide a rationale for the study. Chapter 2 is 

a formal methods section that details methodology, data collection, and data analysis. 

Chapter 2 also includes a thorough description of instruction in the AP Statistics class 

that provided the context for this study. Chapters 3, 4, and 5 are articles written for 

publication independent of the dissertation document. Chapter 3 examines how 

students use inferential models, representations, and tools as they reason about a 
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statistical inference task. Chapter 4 identifies common errors associated with 

simulation-based inference and characterizes the statistical conceptions underlying 

those errors. Chapter 5 is intended as a resource for practitioners interested in 

complementing traditional inference with simulation-based methods; this article 

illustrates the connections that students make between approaches and offers 

recommendations for a course that includes both traditional and simulation-based 

models in instruction. Finally, Chapter 6 synthesizes the findings across articles, 

interpreting the results in relation to the overarching research question; limitations, 

implications, and directions for future research are also discussed.
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CHAPTER 2 
METHODS 

The purpose of this study is to explore how students use traditional and 

simulation-based inference methods to understand inference in the context of an AP 

Statistics course. From a models and modeling theoretical perspective, traditional 

inference methods and simulation-based inference methods are two models (and 

corresponding representational systems) used to express the logic of inference. A 

qualitative study employing modified grounded theory methodology was conducted to 

address the following central research question: 

 How do students use traditional inference models and simulation-based 
inference models to understand inference?  

This broad research interest is further refined in the following sub-questions: 

 What conceptions of inferential topics do students hold, and how are these 
related to commonly occurring student errors?  

 What connections do students see between the two models and representational 
systems? 

This chapter details the methodology, context, study design, and limitations of 

the study. In the first section, a literature-based characterization of grounded theory is 

provided, accompanied by a rationale for the selection of this methodology. The next 

section sets the stage for the study by providing a detailed description of instruction in 

the AP Statistics class in which data were collected. The next section describes the 

study design, explaining how grounded theory methodology guides data collection and 

analysis in the context of this study. Finally limitations are presented, defining the scope 

of the study and acknowledging threats to the study’s validity.  
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Methodology 

Because of its emphasis on inductive data analysis for generation of theory 

(Charmaz, 2014) and its compatibility with various epistemological paradigms (Taber, 

2000), a modified grounded theory methodological approach was used in this study. 

Several defining features characterize this methodological approach (Charmaz, 2014; 

Corbin & Strauss, 1990; Creswell, 2013). First, data analysis in grounded theory is 

always inductive and aims to generate theory “grounded” in empirical data. Systematic 

coding of data relies on constant comparison among data, codes, and categories rather 

than a priori theory. Second, data collection and analysis in grounded theory are carried 

out simultaneously, and the relationship between the two is expected to be bidirectional. 

That is, ongoing data collection is informed by the analysis of previously collected data 

in order to saturate emerging categories. Finally, grounded theory employs memoing as 

a means of analysis and theory development. Memos are analytical notes that provide a 

space to develop ideas, plan subsequent data collection, and critically reflect on the 

research process (Charmaz, 2014).  

From its inception, grounded theory represented a marriage of competing 

research traditions (Charmaz, 2014), and some see grounded theory as a way to build 

on both positivistic and interpretive paradigms (Taber, 2000). Specifically, Conrad 

(1982, p. 248) advocates for the use of grounded theory in education research as a 

means to overcome the “objective-subjective dualism – which has provided the 

justification for the dominance of ‘quantitative’ over ‘qualitative’ techniques.” The 

statistical generalizability of quantitative studies stands in contrast to the analytical 

generalizability of qualitative studies, which involve “a reasoned judgment about the 
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extent to which the findings from one study can be used as a guide to what might occur 

in another situation” (Kvale, 1996, p. 233).  

Though the content domain of statistics is largely quantitative and statistics 

education research has traditionally favored quantitative methodology (Gordon, Reid, & 

Petocz, 2010), there is no contradiction in using qualitative methods to study the 

teaching and learning of statistics. Specifically, qualitative research in statistics 

education is instrumental for “uncovering novel insights and new directions for research” 

(Kalinowski, Lai, Fidler, & Cumming, 2010, p. 32). Although recent policy documents 

promote experimental designs and quantitative methods for their presumed objectivity, 

generalizability, and scientific rigor (Groth, 2010), these studies may not provide 

sufficient information to inform instruction and policy, particularly if they are conducted 

before educational interventions have been honed, before measurement tools have 

been validated, or without consideration of local context variables (Groth, 2010; 

Kalinowski et al., 2010; Lewis, Perry, & Murata, 2006; Schoenfeld, 2007).  

Existing quantitative studies have found that student performance on the 

multiple-choice CAOS assessment (delMas, Garfield, Ooms, & Chance, 2007) is similar 

for students who study simulation-based and traditional curricula, with simulation-based 

curricula linked to modest gains on certain topics including modeling and simulation 

(Garfield et al., 2012), study design and tests of significance (Tintle et al., 2011). 

However, these studies have not provided theory to explain how novices employ the 

tools and representations of traditional and simulation-based inference models. In 

particular, there are no established theoretical frameworks appropriate for deductive 

data analysis; thus, grounded theory methods of inductive data analysis are well-suited 
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for early work in this research area. Further, the simultaneous collection and analysis of 

data in grounded theory grants flexibility to explore new directions, while careful 

memoing supports rigor.  

In grounded theory, discussions of the literature review and theoretical 

framework are controversial because of grounded theory’s rejection of “received theory” 

(Charmaz, 2014). However, as Dey (1999, p. 251) points out, “There is a difference 

between an open mind and an empty head.” Grounded theorists reject the use of theory 

to deduce hypotheses before collecting data, but theory inevitably shapes the 

researcher’s worldview (Charmaz, 2014). Thus, a theoretical framework – which might 

be better called a theoretical perspective – provides “sensitizing concepts” as a starting 

point, but these concepts are not accepted in the analysis until and unless they “earn 

[their] way into the theory” (Corbin & Strauss, 1990, p. 7).  

This grounded theory exploration of how students use traditional and 

randomization-based inference methods will be informed by a models and modeling 

perspective. As described in Chapter 1, this perspective conceptualizes learning as 

modeling-building and assumes that reality is accessed through models and 

representations that emphasize different aspects of the underlying system (Lesh & 

Doerr, 2003).  Working from a models and modeling perspective, Lehrer and Schauble 

(2007, p. 157) argue that “representational change both reflects and instigates new 

ways of thinking about the data.” Thus this study examines students’ interactions with 

the models, representations, and tools used for statistical inference, remaining sensitive 

to the ways these may affect or reflect student thinking.  
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Complementing Traditional Instruction with Simulation-Based Methods 

This study is situated in the context of an AP Statistics class at P.K. Yonge (PKY) 

Developmental Research School. In addition to the prescribed AP Statistics curriculum, 

which relies on traditional inference methods (College Board, 2010), the course taught 

at PKY regularly incorporated simulation-based inference methods. This section 

describes how the course used simulation-based inference activities as a complement 

to traditional inference in instruction during the 2015-2016 school year.  

Consider the following example, which necessitates an inference method to 

determine the statistical significance of experimental results.  

In a study reported in the New England Journal of Medicine, researchers 
investigated whether fish oil can help reduce blood pressure. 14 males 
with high blood pressure were recruited and randomly assigned to one of 
two treatments. The first treatment was a four-week diet that included fish 
oil, and the second was a four-week diet that included regular oil.  At the 
end of the four weeks, each volunteer’s blood pressure was measured 
again and the reduction in diastolic blood pressure was recorded.  The 
results of this study are shown below.  Note that a negative value means 
that the subject blood pressure increased. (Starnes et al., 2013, p. 245) 

Fish oil 8 12 10 14 2 0 0 

Regular oil -6 0 1 2 -3 -4 2 

 
This example will be used to illustrate the pedagogy specific to this course and the 

approach to inference embodied in the AP Statistics curriculum more generally.  

Traditional Inference Instruction 

The AP Statistics course description includes four major topics (College Board, 

2010): data analysis and exploration (20-30%), study design (10-15%), probability and 

simulation (20-30%), and statistical inference (30-40%). Because traditional inference 

requires substantial prerequisite knowledge, including knowledge of probability and 

theoretical sampling distributions, traditional inference is typically taught in the final third 
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of the course (Malone, Gabrosek, Curtiss, & Race, 2010). The course textbook used at 

PKY, The Practice of Statistics (Starnes et al., 2013), adheres to this pattern, covering 

traditional inference at the end of the year. The AP Statistics curriculum includes nine 

tests of significance (College Board, 2010): large-sample test for a proportion; large-

sample test for a difference between two proportions; test for a mean; test for a 

difference between two means (unpaired and paired); chi-square test for goodness of 

fit, homogeneity of proportions, and independence; and test for the slope of a least-

squares regression line.   

To help students organize statistical problems, The Practice of Statistics (Starnes 

et al., 2013) uses the same four-step process throughout the text. The four-step 

process, as applied to all significance tests, is as follows: 

 State: What hypotheses do you want to test, and at what significance level? 
Define any parameters you use. 

 Plan: Choose the appropriate inference method. Check conditions.  

 Do: If the conditions are met, perform calculations. 

o Compute the test statistic. 

o Find the P-value. 

 Conclude: Interpret the result of your test in the context of the problem.  (Starnes 
et al., 2013, p. 552, emphasis in original) 

This four-step process is applied to all traditional tests of significance in the course. In 

addition to its purpose as an organizational tool, following this process ensures that 

students earn full credit from graders of the AP Statistics exam.  

In the following sections, this four-step process is used to outline how traditional 

inference instruction experienced by the participants in this study.  
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State 

In this course, a traditional inference task begins with a formal inscription of the 

null and alternative hypotheses and definition of parameters. We want to perform a test 

of 𝐻0: 𝜇1 − 𝜇2 = 0 versus 𝐻𝐴: 𝜇1 − 𝜇2 > 0, where 𝜇1 is the true mean decrease in blood 

pressure for men like the ones in this study whose diet includes fish oil and 𝜇2 is the 

true mean decrease in blood pressure for men like the ones in this study whose diet 

includes regular oil. At this step, we also set a significance level, typically 𝛼 = 0.05.  

Plan 

If conditions are met, we will conduct a two-sample t-test for 𝜇1 − 𝜇2. As Cobb 

(Cobb, 2007, p. 2) points out, evaluating “the fit between model and reality” can be 

technically complicated, even in this seemingly simple case.  

[Suppose] we really want to be able to compare two groups, two means. 
So we need the expected value of the difference of two sample means, 
and the standard deviation of the difference as well. So maybe now we go 
to the two-sample t with pooled estimate of a common variance. At least 
that t-statistic still has a t-distribution. But of course it’s not what we really 
want our students to be using, because it can give the wrong answer 
when the samples have different standard deviations. So we introduce the 
variant of the t-statistic that has an un-pooled estimate of standard error. 
But this t-statistic no longer has a t-distribution, so we have to use an 
approximation based on a t-distribution with different degrees of freedom. 
(Cobb, 2007, p. 6)  

Cobb (2007, p. 8) also disputes the use of a sampling modeling to represent the 

outcomes of randomized experiments: “Do we want students to leave their brains 

behind and pretend, as we ourselves apparently pretend, that choosing at random from 

a large normal population is a good model for randomly assigning treatments?” 

However, this course does not expose students to all the details of theoretical 

models; the textbook (Starnes et al., 2013) streamlines the process of checking model 

fit by including lists of conditions for each test. For all tests, students check the Random 
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condition; this condition is satisfied since the subjects were randomly assigned to 

treatments. Next, for all z-test and t-tests, students check the Normal condition; the 

guidelines used to check this condition vary from test-to-test. Because the sample sizes 

are less than 30 in this example, a t-test is only appropriate if we can reasonably 

assume that the actual changes in blood pressure are Normally distributed for the two 

groups. To receive full credit, students must draw a graph to show that they checked the 

distribution of the sample data. In this example, plots of the data do not show strong 

skew or outliers, so students would proceed with t procedures. Lastly, students check 

the Independent condition. Since these subjects were randomly assigned, the two 

groups are considered independent; further, one subject’s blood pressure should have 

no effect on another’s.  

Do 

In this course, the calculations for a given hypothesis test are always introduced 

using formulas for the test statistic. The formula sheet, which students were allowed to 

use on all exams, includes a general form that expresses the test statistic in terms of 

the statistic and the hypothesized parameter, but it does not include a complete list of 

test statistics. In this case, 

𝑡 =
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑠𝑡 𝑑𝑒𝑣 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
=

(𝑥̅1 − 𝑥̅2) − (𝜇1 − 𝜇2)

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

=
(6.57 − (−1.14)) − 0

√5.862

7 +
3.182

7

= 3.06 
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After calculating the test statistic, the p-value is illustrated by sketching a t-distribution 

and shading the values of t more extreme than the one obtained from the original study. 

If the test statistic and sampling distribution are known, the p-value can be calculated 

using a cumulative density function in the TI-84 Plus calculator. Figure 2-1 below shows 

a student-drawn density curve and the calculator function used to find the p-value; the 

symbols on the curve indicate that it represents a distribution of t statistics. 

 
Figure 2-1.  Calculating a p-value using a cumulative density function.  

 
Figure 2-2.  Calculating a p-value using a TI-84 Plus inference function.  

For each significance test that is introduced, students first learn to calculate the 

test statistic using a formula and to find the p-value using a cumulative density function 

in the calculator. After using these tools a few times, students are introduced to 

functions on the TI-84 Plus that calculate test statistics and p-values using summary 

statistics or raw data as inputs, as shown in Figure 2-2.  

Two sample t-tests are an exception to the usual pattern. As mentioned by Cobb 

(2007), there is no simple expression for the degrees of freedom of the t distribution 
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used to model the sampling distribution in this context. Thus, students transition to the 

calculator’s inference functions almost immediately, because “by hand” calculations do 

not agree with the more complex formulas used by the calculator. Note that the 

calculator’s inference functions allow students to calculate the test statistic and p-value, 

as required for the AP Statistics exam, without using formulas or creating visual 

representations of the sampling distribution.  

Conclude 

Finally, students must interpret the results of the test in context. Since the theory-

based p-value 0.0065 is smaller than the specified significance level, we reject the null 

hypothesis that the two types of oil had equal effects on the subjects’ blood pressure. If 

the treatment had no effect, a t statistic of 3.06 or larger would be very unlikely. We 

conclude that on average, fish oil caused larger reductions in blood pressure than 

regular oil.  

 To summarize the traditional inference instruction in this course, the final third of 

the course is devoted to statistical inference (including significance tests and confidence 

interval estimation). Over a period of several months, students apply the State-Plan-Do-

Conclude process to many traditional inference tasks in class, on assignments, and on 

tests. Following this framework, hypotheses are stated using formal inscriptions. The 

appropriateness of a particular test is determined by checking a list of conditions. 

Calculations are introduced through formulas, but later carried out largely by dedicated 

inference functions in the TI-84 Plus calculator. Conclusions based on the p-value are 

always interpreted in context.  
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Simulation-Based Inference Instruction 

In addition to traditional inference methods, the course taught at PKY regularly 

incorporated simulation-based inference methods. Because these methods seem to 

require less prerequisite knowledge (Cobb, 2007), simulation-based inference can be 

introduced much earlier in the year, and the AP Statistics course at PKY introduced 

simulation-based inference on the first day of class.  

The use of simulation-based inference to complement traditional instruction was 

supported by the course textbook, The Practice of Statistics (Starnes et al., 2013); 

however, the course also used activities drawn from other sources. In 2015-2016, the 

class included fourteen in-class simulation-based inference activities; detailed 

information about these activities is provided in Appendix E.  

To help students recognize the unified modeling process of simulation-based 

inference, the teacher adopted the 3S Strategy used in the Introduction to Statistical 

Investigations curriculum (Tintle, et al., 2013), applying the same approach to each 

inference task:  

1. Statistic: Compute the statistic from the observed sample data. 

2. Simulate: Identify a “by chance alone” explanation for the data. Repeatedly 
simulate values of the statistic that could have happened when the chance model 
is true.  

3. Strength of Evidence: Consider whether the value of the observed statistic from 
the research study is unlikely to occur if the chance model is true. If we decide 
the observed statistic is unlikely to occur by chance alone, then we can conclude 
that the observed data provide strong evidence against the plausibility of the 
chance model… (Tintle, et al., 2013) 

This three-step process is applied to all simulation-based tests of significance. In the 

following sections, the process is used to outline how simulation-based inference is 

taught in this course.  
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Statistic 

The data from the original experiment can be summarized by a difference of 

sample means: 𝑥̅1 − 𝑥̅2 = 6.57 − (−1.14) = 7.14. Unlike traditional methods, this 

approach does not require calculation of a standardized test statistic. There are two 

possible explanations for the observed difference of sample means: The first is a “by 

chance alone” explanation; it is possible that the treatments had no effect, and the 

difference between groups is due to random assignment. The second is that fish oil 

caused larger reductions in blood pressure than regular oil, on average.  

Simulate 

Random assignment to groups can be modeled using cards. First we write the 

improvement scores on blank cards. Then cards from both groups are shuffled together, 

assuming that the subjects’ improvement scores were determined in advance by factors 

unrelated to treatment.  Then the cards are dealt into two groups to mimic random 

assignment, and the difference in means for the two groups is recorded. We can use an 

applet1 to simulate data for many trials. The results of this simulation are shown in 

Figure 2-3. 

Students may engage with the simulation in a number of ways. First, they may be 

asked to physically carry out the simulation using cards; students may record their own 

simulated statistics on a class dotplot that can be used to determine the strength of 

evidence. Second, students may use the applet on their tablets, phones, or computers. 

Third, students may be asked to design an appropriate simulation. These modes of 

engagement are not mutually exclusive, and this course used each of them in varying 

                                            
1 http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2 
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combinations over the course of the year. The mode of student participation in the 

simulation step largely determines how much time is spent on these activities. 

Figure 2-3. Applet to simulate random assignment 

Strength of evidence 

We evaluate the strength of evidence by comparing the outcome of the original 

study to the distribution of outcomes produced by the model. In the simulation shown in 

the figure, a difference of means of 7.714 or larger occurred in 11 out of 1000 trials – an 

estimated p-value of 0.0011. Because a difference of 7.714 would be very unlikely to 

occur by random assignment if the treatment had no effect, we reject the “by chance 

alone” explanation, and conclude that fish oil caused larger reductions in blood pressure 

than regular oil, on average. 

To summarize, this course incorporated simulation-based inference throughout 

the year, beginning on the first day of class, and added traditional inference later in the 
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second semester. In total, the course included fourteen in-class experiences with 

simulation-based inference, including multiple opportunities for groups of students to 

design and carry out simulations using physical chance devices and applets. In the 

second semester, simulation-based inference activities were included as part of every 

chapter, so students used simulations to model a variety of study designs. However, 

because the AP Statistics course description emphasizes traditional inference, students 

had considerably more experience with traditional, theory-based methods by the end of 

the school year. 

Lastly, this course intended to make the connections between simulation-based 

inference and traditional inference explicit. For example, traditional inference was first 

introduced as a modification to the 3S Strategy, where the simulation step was replaced 

by use of a theoretical sampling distribution. Strategies used to promote connections 

are described in more detail in Chapter 5. Further, assessments prompted students to 

reflect on the connections between approaches; assessment tasks are described later 

in this chapter. 

Study Design 

Context 

This study is situated in the context of an AP Statistics class at P.K. Yonge (PKY) 

Developmental Research School. PKY is a public school district affiliated with the 

University of Florida that serves students in grades K-12. The admissions policy of PKY 

aims to create a student body that mirrors the demographics of the state of Florida for 

five admission categories: gender, race/ethnic origin, family income, exceptional student 

status, and academic achievement level. PKY uses block scheduling, and the AP 

Statistics course meets three times per week throughout the academic year. 
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Data for this study were collected in two phases. First, a pilot study was 

conducted at the end of the 2013-2014 academic year. Building on the results of the 

pilot study, a second phase of data collection was conducted throughout the spring 

semester of the 2015-2016 academic year. In 2013-2014 – the first year that AP 

Statistics was offered at PKY – the course was taught by a four-person instructional 

team composed of a high school mathematics teacher and three Ph.D. students 

studying statistics education, including the author. Twenty-one students from grades 10 

– 12 completed the class and took the AP exam. In 2015-2016, the course was taught 

by a single instructor - the author. Eleven students from grades 10 – 12 completed the 

class and took the AP exam. 

Participants 

Sampling in grounded theory aims to gather enough information to support 

theory development (Creswell, 2013): “in grounded theory, representativeness of 

concepts, not of persons, is critical” (Corbin & Strauss, 1990, p. 9). Consequently, the 

necessary number of participants required cannot be specified concretely, as it depends 

on factors including topic and research purpose (Charmaz, 2014). In the field of 

statistics education, qualitative studies intended to characterize students’ statistical 

literacy, reasoning, and thinking often involve in-depth analysis of observations or 

interviews with a relatively small number of participants (e.g., Aspinwall & Tarr, 2001; 

Stohl & Tarr, 2002; Wild & Pfannkuch, 1999; Zieffler, delMas, Garfield, & Brown, 2014)., 

2014). Further, grounded theory maintains that data collection and data analysis are 

intertwined; the principle of theoretical sampling suggests that additional participants 

and incidents should be selected for their relevance to the emergent theory until the 
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categories become saturated (Creswell, 2013). Thus, grounded theory methodological 

principles support multi-phase data collection. 

At the pilot study phase, seven students were selected to represent a range of 

statistical understanding, as judged by their course grades. This decision was based on 

the assumption that students with varying achievement levels may use traditional and 

simulation-based inference models differently, thus contributing different information to 

the developing theory. Additionally, the sample of seven students reflected the 

demographic diversity of the class, in terms of sex, race, and grade level. A 

demographic description of participants in the pilot study is given in Table 2-1.  

 

Creswell (2013, p. 86) describes grounded theory data collection and analysis as 

a “zigzag” process: “out to the field to gather information, into the office to analyze the 

data, back to the field to gather more information… and so forth.” In the second phase 

of the study, data were collected to answer questions raised by preliminary analysis of 

the pilot data. Data were collected from all students enrolled in the course in an effort to 

saturate the emerging categories. However, data collection was guided by concurrent 

data analysis, so data collection was not identical for each participant. For example, if a 

student demonstrated a particular conception on a formative assessment, a follow-up 

Table 2-1.  Demographic description of participants in pilot study. 

Sex  Race  Grade level  

Male 3  White 4  10th  4  

Female 4  Black 1  11th  3  

   Asian 1  12th  2  

   Hispanic 1      
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interview question might be asked of that students that was not asked of others. A 

demographic description of participants in the second phase is given in Table 2-2. 

Table 2-2.  Demographic description of participants in second phase. 

Sex  Race  Grade level  

Male 3  White 7  10th 2  

Female 8  Black 0  11th 3  

   Asian 1  12th  6  

   Hispanic 3     

 

Before beginning this study, permission was granted by the institutional review 

board (UFIRB-02 for social and behavioral research). The UFIRB based their decision 

on a submitted protocol that described the purpose of the study, the research 

methodology, the potential benefits and risks, and the recruitment plan. According to the 

approved plan, students assented to participate in the study by signing an informed 

consent document. Because some students were under 18, the informed consent 

document also required a parent’s signature to indicate consent for the minor to 

participate. In addition to the risks and benefits of participation in the study, the informed 

consent document explained that participation is voluntary and that students who 

choose not to participate at any point will face no consequences (academic or social). 

The informed consent letter is included in Appendix B.  

Role of the Researcher 

As implied above, the author played a dual role in this study: teacher and 

researcher. Creswell (2013) suggests that researchers who are deeply engaged as 

participants may benefit by establishing greater rapport and gaining insider views. In 

this study, the dual role provided ample opportunity for data collection and intimate 
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knowledge of the instructional context. However, engagement in classroom activity can 

also distract from research activity (Creswell, 2013). Efforts to overcome this challenge 

are described in the data collection section. 

Data Collection 

As described above, the data for this study were collected in the context of an AP 

Statistics course that employed both traditional and simulation-based inference 

methods. The data include student responses to targeted formative assessments, exam 

items, and survey items; daily field notes and journal entries written by the teacher-

researcher; and transcripts of individual and group interviews. Data for the pilot study 

consisted of individual interviews only. A timeline for data collection in this study is 

provided in Table A-1 in Appendix A. 

In contrast to the positivist leanings of early grounded theorists, this study 

recognizes that data are not merely collected, but co-constructed by the researcher and 

the participants: 

In the original grounded theory texts, Glaser and Strauss talk about 
discovering theory as emerging from data separate from the scientific 
observer. Unlike their position, I assume that neither data nor theories are 
discovered either as given in the data or the analysis. Rather, we are part 
of the world we study, the data we collect, and the analyses we produce. 
We construct our grounded theories through our past and present 
involvements and interactions with people, perspectives, and research 
practices (Charmaz, 2014, p. 17)  

Thus, these descriptions of data sources acknowledge how the data were elicited, with 

particular attention given to the role of the researcher and the influence of concurrent 

analysis. 
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Student work  

Formative assessments and exam items were intended to assess students’ 

emergent understanding of inference and associated concepts, such as sampling 

distributions and p-values. Additionally, some items prompted students to reflect on their 

use of models and representations or draw connections between inferential concepts. 

That is, student work informs all three research questions. Appendix D includes a 

complete list of assessment items used to elicit student work for this study. These items 

are indexed by date administered and by the associated research question. Some items 

focus on a single research question while others prompt responses that may inform 

multiple research questions. Consider the following illustrative examples of assessment 

tasks.  

In one class period, simulation-based inference was used to test a hypothesis 

about the difference between two proportions. At the end of class, students were asked 

to write a few sentences about the role of the simulation. Additional prompts were 

provided to help them get started: Why is [the simulation] necessary? What does the 

simulated distribution represent? How do we use the simulation to make a decision 

about the hypotheses? In the next class period, traditional inference was used to test a 

hypothesis about the difference between two proportions. At the end of class, students 

were asked to write a few sentences about the role of the sampling distribution, with 

prompts that mirrored the ones given on the previous assessment. Student responses 

to these formative assessments illuminated how students use traditional and simulation-

based inference models (research question 1). Further, responses revealed students’ 

conceptions of inferential topics, particularly sampling distributions (research question 
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2). Finally, comparing responses across these items suggested connections perceived 

between the two approaches (research question 3). 

Some items assessed connections more directly. For example, on the day that z-

tests were introduced, students were asked to explain how a z-test is similar to the 3S 

strategy and how it is different. Consistent with a models and modeling perspective, 

other items highlighted tools and representations. For example, one presented students 

with two graphical representations: a dotplot representing a simulated sampling 

distribution and a smooth density curve representing a theoretical sampling distribution. 

Students were asked to compare and contrast the two graphical representations. How 

are they similar? How are they different? Responses to questions like these illuminate 

the connections students see between the two models and representational systems 

(research question 3). 

Formative items like the illustrative examples above were not graded, whether 

they were administered in class (e.g., as an exit ticket) or as part of a chapter exam. 

The body of data also includes student responses to graded assessments items that 

ask students to carry out inference procedures. Lastly, the data includes responses to 

open-ended assessments that students completed as a group. For example, students 

were asked to design a simulation that could be used to test hypotheses in a particular 

context.  

Because grounded theory encourages simultaneous data collection and analysis, 

the collection of student work was guided by the analysis, as the researcher aimed to 

saturate emerging categories. For example, analysis of pilot study data piqued the 

researcher’s interest in the connections that students make between traditional and 
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simulation-based models and students’ conceptions of specific inferential topics, like 

sampling distributions and p-values. Thus, many early assessment items were targeted 

at the second and third research questions. However, analysis of assessments and 

journal entries suggested that open-ended modeling tasks also had the potential to be 

thought-revealing. In particular, when students designed models and used tools with 

little teacher intervention, they employed unexpected strategies and revealed their 

thinking about the larger modeling process. Thus, several assessments administered 

late in the year are more open-ended design tasks.  

Further, tasks focused on conceptions and connections became increasingly 

targeted as patterns arose in the on-going analysis. Compare the first and last 

assessment items, both aimed at the second research question. The first simply asks, 

“In your own words, what is a sampling distribution?” The last asks (among other 

questions), whether students are surprised that the average of the simulated slopes is 

near 0; this question was intended to assess a specific conception – the assumption of 

the null hypothesis in a simulation.  

Teacher reflections 

Student work as a data source has limitations, because it only captures students’ 

written inscriptions. During class, the teacher-researcher may observe other modes of 

modeling and representation. For example, the language that students use to describe 

models during a class discussion may differ from the language they use on a written 

assessment at the end of the lesson. Thus, data collection also included daily teacher 

reflections, beginning at the point in the course when traditional inference was 

introduced.  
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Immediately after each lesson, the teacher-researcher wrote a journal entry to 

record her observations of students’ statistical literacy, reasoning, and thinking. These 

journal entries were based on brief, informal field notes taken during the lesson. First, 

the teacher-researcher briefly described the day’s lesson to provide context for other 

data collected. Then, she used the research questions as prompts to capture 

observations of classroom activity that informed the emerging theory. Guided by the 

sensitizing concepts of the models and modeling framework, the teacher-research 

carefully attended to students’ use of mathematical equations, graphs, concrete 

materials, notation systems, and specialized language.  

The teacher reflections played an important part in the larger data collection 

process. First, these journal entries complemented students’ written work with 

information about the context and the process. For example, when groups worked on a 

modeling task, they only submitted their final models; however, the teacher was able to 

observe the process by which they proposed, rejected, and/or revised models. Second, 

journal entries often informed future data collection. Consider again the example of 

students working on modeling tasks in groups. The teacher’s journal entry written after 

one such activity included the following quote: 

From a methodological standpoint, it is interesting to see how students 
interact with each other in groups without intervention from me. It gives me 
a better sense of their language and the approaches that they use. 
However, it was very difficult to monitor and record all that was going on. 
What I overheard from their conversations or learned by asking probing 
questions was at least as interesting as what they wrote on paper. Their 
written responses capture their best “answers” not the thinking that led to 
those answers. 

This real-time observation informed future data collection, particularly the design of the 

group interviews. 
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Individual interviews 

The data for this study include task-based individual interviews (Maher & Sigley, 

2014) with two cohorts of AP Statistics students: Seven students from the 2013-2014 

cohort were interviewed in May 2014, and seven students from 2015-2016 cohort were 

interviewed in May 2016. The individual interviews, which lasted between 20 and 45 

minutes, were conducted during the school day in the weeks immediately following the 

AP Statistics exam. These interviews were audio-recorded and transcribed, and 

students’ written work was collected. The interview tasks prompted students to conduct 

hypothesis tests to draw conclusions about the results of research studies. The 

research studies used as inference tasks in the interviews are included in Appendix D.  

In the individual interviews, students were asked to apply two different inference 

methods – a traditional test and a simulation-based test – to a single given context. All 

tools necessary to carry out the two approaches were provided to students; these 

included chance devices (coins, dice, cards, etc.), computer applets, formula sheets, 

and graphing calculators with statistical functions. As students worked, they were 

encouraged to think aloud and provide any relevant visual representations. Students 

were also asked to write an interpretation of the p-value as a probability in context after 

completing the first hypothesis test; they were given an opportunity to revise their 

interpretation at the end of the interview.   

After carrying out both approaches, students were asked to compare and 

contrast the two approaches and describe any connections they saw between them. 

After the students’ initial responses, the interviewer directed their attention to specific 

parts of their work and probed for other connections. In particular, students were asked 

to comment on the similarities and differences between the two approaches in terms of 
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the claims/hypotheses being tested, the conditions necessary to perform the test, the 

calculations, the representations of the sampling distribution, and the p-values. The 

individual interview protocol is included in Appendix D.  

Schoenfeld (1985) points out that verbal data collected through “out-loud” 

problem-solving protocols are affected by a number of variables, and the individual 

interviews used in this study offer specific strengths and limitations. First, single-person 

protocols offer insight into the knowledge of an individual student, but they may elicit 

“unnatural” responses, if students feel uneasy receiving individual attention in the 

interview environment or feel pressure to “produce something mathematical for the 

researcher” (Schoenfeld, 1985, p. 178). Second, asking probing question about why 

choices were made may impact students’ behavior: “The students may begin to reflect 

on those choices while working on the given task, and behave from that point on in a 

manner very different than he or she would otherwise have behaved” (Schoenfeld, 

1985, p. 175). To address some of these limitations, this study also included multi-

person protocols, as described below. 

Group interviews 

All eleven students from the 2015-2016 cohort were invited to participate in group 

interviews. These interviews were designed to investigate how students use inferential 

models, representations, and tools while working in groups. Ten students were recorded 

as they completed statistical inference tasks in pairs. (One student was unable to 

participate because of absence.) The interviews, which lasted between 25 and 45 

minutes, were conducted during the school day in the weeks immediately following the 

AP Statistics exam. The interviews were audio-recorded and transcribed, and the 

students’ use of an applet for simulation-based inference was recorded using a screen-
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capturing tool. Other than the presence of recording devices, this activity was very 

similar to others students had completed in class. 

Similar to the structure of the individual interviews, pairs of students were asked 

to apply two different inference methods – a traditional test and a simulation-based test 

– to a single given context. The inference task, which asked students to draw 

conclusions from an experiment testing response bias, is included in Appendix D. At the 

beginning of the interview, students were made aware of all available tools – a formula 

sheet, a graphing calculator with statistical functions, an extensive collection of chance 

devices (coins, dice, cards, etc.), and a computer applet. However, no instructions were 

given about whether students should use a traditional or simulation-based approach. 

After drawing a conclusion, students were asked to consider the alternative approach; 

e.g. students who initially carried out a traditional test were asked to carry out a 

simulation-based test.  

Unlike the individual interviews, students were not asked to “think aloud” and the 

interviewer largely refrained from asking questions. The interviewer intervened in the 

students’ problem-solving process as little as possible, but when students struggled to 

move forward, the interviewer sometimes prompted them with questions such as, “What 

are you trying to represent?” or “Would it help you to see the applet?” These were 

intended to reflect the kinds of prompts students would hear if they asked for help from 

the classroom teacher. The group interview protocol is included in Appendix D.  

A two-person protocol was included in this study for several reasons. First, the 

group interview data were intended to approximate how students reason about 

inference in a natural classroom setting, and in class, students typically worked on 
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inference tasks in groups. In particular, classmates who had worked together on similar 

tasks in class were paired together to help students feel comfortable in the interview 

environment. In addition to realism and student comfort, Schoenfeld (1985) suggests 

that interviews with multiple students produce rich data for investigating students’ 

problem-solving processes. Multi-person protocols ease the pressure to “produce 

something mathematical for the researcher” (Schoenfeld, 1985, p. 178), and 

discussions among students makes the reasoning behind their decisions more visible 

(Schoenfeld, 1985).  

Schoenfeld (1985, p. 174) reminds us, “Any framework for gathering and 

analyzing verbal data will illuminate certain aspects of cognitive processes and obscure 

others: There are trade-offs between structured and unstructured interviews, single or 

group protocols, etc.” Thus, the verbal data collected through individual and group 

interviews were triangulated with the other data sources.  

Confidentiality 

Student identity will be kept confidential to the extent provided by law. 

Specifically, all student information has been assigned a pseudonym. Student names 

will not be used in any report. Hard copies of data are stored in a locked file cabinet and 

digital copies stored on a password protected hard drive. 

Data Analysis 

For this study, the primary goal of the data analysis was to explore how students 

use the two models and their representational systems as they reason about statistical 

inference. Data analysis consisted of a process of systematic coding in multiple phases, 

according to the guidelines for grounded theory presented by Charmaz (2014).  
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Initial coding 

In the initial coding phase, each segment of data in the student work, teacher 

reflections, and interview transcripts was assigned a concrete and descriptive code to 

reflect the students’ actions. For example, the group interview with Libby and William, 

discussed at length in Chapter 4, received hundreds of initial codes including the 

following: 

 Proposing a chi-square test 

 Reading calculator output 

 Deciding to reject the null based on a rule 

 Using cards to represent yes/no 

 Explaining how the model accounts for treatment groups 

 Questioning the validity of using data from one sample 

 Suggesting that the observed sample could be an outlier 
 
In keeping with the recommendations put forth by Charmaz (2014), these initial codes 

are short and precise. They are coded as gerunds in order to focus on students’ actions 

and stay close to the data, encouraging the researcher to “begin analysis from their 

perspective” (Charmaz, 2014, p. 121).  

Focused coding 

After comparing these initial codes to the data and looking for patterns in the 

codes across interviews, the researcher inductively constructed focused codes to “sift, 

sort, synthesize, and analyze” the large amounts of data (Charmaz, 2014, p. 138). 

Unlike initial codes, focused codes never retained contextual information specific to the 

task. Thus, focused codes facilitated comparisons across tasks, across students, and 

across inferential approaches.  

In this study, focused codes reflect the “sensitizing concepts” of the models and 

modeling perspective, as well as the researcher’s familiarity with descriptions of 
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inference by other statistics educators. However, these concepts were not accepted into 

the analysis until they could be substantiated in the data (Charmaz, 2014; Corbin & 

Strauss, 1990). In some cases, using the language of modeling, tools, and 

representations facilitated comparisons. For example, consider two initial codes: 

checking conditions for a chi-square test and discussing the inadequacies of a coin for 

modeling yes/no responses in a population where the two responses are not equally 

likely. At first glance, these do not appear similar, but from a modeling perspective, both 

are instances of evaluating model fit. 

Ultimately, the focused codes were grouped into categories, the largest and most 

salient of which are presented in Chapters 3, 4, and 5. More specific information about 

data analysis is presented in the methods section of each chapter. 

Memoing 

From the earliest coding sessions to the final presentation of results, “writing 

theoretical memos is an integral part of doing grounded theory” (Corbin & Strauss, 

1990, p. 10). Early in the research process, memoing provides a spontaneous, informal 

way of capturing ideas that will be refined later. Successive memos become more 

abstract and theoretical as categories are developed (Charmaz, 2014). In this study, 

memos were used to document the process of data collection and coding and to draft 

descriptions of conceptual categories to be presented in the written report. 

Specifically, grounded theory calls for constant comparisons among data, codes, 

and categories rather than a priori theory; memos provide a space to refine these 

comparisons. In this study, memos were used to describe comparisons at various 

phases in the analysis, including the following: 

 Comparison of responses on a common task across individuals 
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 Comparison of data collected from a single individual across tasks 

 Comparison of modeling codes across traditional and simulation-based 
approaches 

 Comparison of conception codes across traditional and simulation-based 
approaches 

 Comparison of one common error to another 

 Comparison of data coded as an error to data that provide context for the error 

 
Thus, memoing provided space to develop codes, explore connections, and identify 

conceptual areas where further data collection was necessary. 

Following the guidelines of the grounded theory methodological approach and 

diligently documenting the interrelated processes of data collection and data analysis 

establish rigor in this qualitative study.  Intermittently, progress was compared to the 

criteria put forth by Charmaz (2014) for grounded theory studies; these include 

credibility, originality, resonance, and usefulness.   

Discussion of Perspective and Scope 

In contrast to the statistical generalizability of quantitative studies, this qualitative 

study aims for analytical generalizability (Kvale, 1996). Even in the field of statistics 

education, which has traditionally favored quantitative methodology (Gordon, Reid, & 

Petocz, 2010), there have been calls for qualitative research that produces “vivid 

descriptions that … represent a researcher’s well-formulated perspective rather than an 

objective reality that cuts across a tightly specified range of context” (Groth, 2010). 

Accordingly, this dissertation describes how students used traditional and simulation-

based inference to understand inference in the context of an AP Statistics class; the 

study’s conclusions are supported by data co-constructed by the teacher-researcher 
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and the participating students. This section provides recommendations for how the 

results might be interpreted in light of the study’s design and epistemological position.  

First, all data were collected in AP Statistics classes taught by a single teacher-

researcher at a single school. It is not reasonable to assume that the results of the study 

will generalize to all introductory statistics courses that complement traditional inference 

with simulation-based inference. Factors including the teacher, the textbook, the school 

environment, and individual student traits likely affected how the participants in this 

study used traditional and simulation-based inference models to understand inference. 

In order to help the reader “discover the extent to which the theory does apply and 

where it has to be qualified for the new situations” (Corbin & Strauss, 1990, p. 15), this 

dissertation includes thorough descriptions of the context and participants to “situate the 

sample” (Kalinowski, et al., 2010). 

Second, the study provides a naturalistic description of the use of models, tools, 

and representations in a single classroom environment; it is not an experimental design. 

Thus, the study does not provide a basis for comparing the effectiveness of traditional 

and simulation-based inference, as all students were exposed to both approaches in 

instruction. Further, the study does not provide a basis for comparing simulation-based 

inference with other possible uses of class time, such as additional practice with 

traditional methods.  

Lastly, the research process in this study is subjective. This limitation is routinely 

acknowledged for qualitative studies, although Groth (2007) points out that all forms of 

research involve subjective decisions that largely determine the final conclusions and 

interpretations that can be drawn. In contrast to the positivist leanings of early grounded 
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theorists, this study acknowledges the subjectivity of both data collection and analysis. 

Recognizing that data are not merely collected but co-constructed by the researcher 

and the participants, this dissertation described how the data were elicited with attention 

to the role of the researcher and the influence of concurrent analysis. Specifically, three 

facets of the study’s subjectivity merit mention.  

First, the researcher’s dual role as teacher necessarily influenced the study. The 

teacher-researcher chose to use simulation-based inference in her class, which 

suggests a certain pre-existing belief in the potential of these methods. Second, the 

researcher was familiar with views of inference shared among statisticians and statistics 

educators before she began this study. This lens of disciplinary knowledge likely 

influenced the researcher’s perceptions of the students’ modeling practices. Third, 

incidents in the data were coded by a single person, so there is no indication of inter-

rater reliability. This highlights the importance of the teacher-researcher’s perspective in 

constructing the final analysis. Thorough documentation of data analysis and clear, 

detailed examples “invite the reader to appraise [the researcher’s] interpretations and 

think about other ways the data could have been interpreted” (Kalinowski et al., 2010, p. 

30).  

Summary 

The overarching goal of this dissertation is to explore how students use 

traditional inference models and simulation-based inference models to understand 

inference. Because of its emphasis on inductive data analysis for generation of theory 

and its compatibility with various epistemological paradigms, a grounded theory 

methodological approach is appropriate for this study. Further, the systematic 

procedures for data collection and analysis outlined in the grounded theory literature 
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address standards of rigor and support credibility of the study’s results. Currently, the 

pedagogical approach of complementing traditional inference with simulation-based 

methods is common in introductory statistics classes but underrepresented in the 

research literature. In particular, this approach has not been studied in AP Statistics 

courses at the high school level, and there is no theory to explain how novices use 

traditional and simulation-based inference models in courses that employ both to 

introduce statistical inference. Thus, this study represents a useful contribution to the 

field of statistics education.
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CHAPTER 3 
STATISTICAL MODELING AS A THOUGHT-REVEALING ACTIVITY 

Introduction to Inference Models 

Statistical inference incorporates knowledge of both data analysis and 

probability. More specifically, the logic of inference connects data and chance via the 

relationship between empirical outcomes and hypothesized models. Introductory 

statistics courses teach statistical inference using two distinct approaches. Traditional 

inference methods use theoretical probability distributions (e.g., Normal distribution, t 

distribution, 𝛸2 distribution) to model the outcomes that would occur by chance under 

the null hypothesis. Alternatively, simulation-based inference methods model chance 

outcomes using simulations, which employ physical chance devices (e.g., coins, dice, 

spinners) or a computer to mimic a random process. Both traditional and simulation-

based inference require statistical reasoning (Ben-Zvi & Garfield, 2004) to connect 

empirical outcomes and hypothesized models, but they differ in the types of models 

used. 

Because traditional and simulation-based inference differ in their use of models, 

the two approaches may be associated with differences in the way students connect 

concepts and interpret statistical information. To explore this possibility, a qualitative 

dissertation study was conducted in the context of an AP Statistics course that uses 

both traditional and simulation-based inference methods in instruction. Presenting 

results from that study, this article characterizes how students use inferential models, 

representations, and tools as they work together to carry out a statistical inference task. 
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Theoretical Perspective 

This exploration of how students use traditional and simulation-based inference 

methods will be informed by a models and modeling perspective, which conceptualizes 

learning as model-building, an iterative process in which students invent, extend, and 

revise constructs (Lesh & Doerr, 2003b). In this study, the term model will be defined 

broadly: 

Models are conceptual systems (consisting of elements, relations, 
operations, and rules governing interactions) that are expressed using 
external notation systems, and that are used to construct, describe, or 
explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently. (Lesh & Doerr, 2003, 
p. 10) 

This definition suggests that models have two parts: conceptual systems in the minds of 

learners and various representational media (Johnson & Lesh, 2003). Thus, models and 

representations are intimately related, as “the meaning of a model, or conceptual 

system, tends to be distributed across a variety of interacting representation systems” 

(Lesh & Doerr, 2000, p. 239). In this article, the term representation will be reserved for 

external systems, such as graphs, equations, and concrete models. In addition to 

external representations, this study will consider other tools that support statistical 

inference, including calculators, computer programs, and problem-solving heuristics. 

Central to the models and modeling perspective is the assumption that reality is 

accessed through models and representations that emphasize different aspects of the 

underlying system (Lesh & Doerr, 2003b). The discipline of statistics consists of a 

distinctive set of models and representations of real-world phenomena (Wild & 

Pfannkuch, 1999), so attention to models and modeling is a powerful lens in this content 

domain. Lehrer and Schauble (2007, p. 157) argue that “representational change both 
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reflects and instigates new ways of thinking about the data;” thus, it is critical to 

understand how students interact with the various models and representations used in 

statistics instruction.  

This study conceptualizes traditional and simulation-based inference as two 

models and corresponding representational systems used to express the logic of 

inference, and a models and modeling perspective supports the article’s central 

research question: How do students use the models, representations, and tools of 

traditional and simulation-based inference as they reason about a statistical inference 

task? 

Two Approaches to Statistical Inference 

This section introduces the two approaches to statistical inference explored in 

this study First, a brief literature outlines the proposed advantages and empirical studies 

that have inspired the use of simulation-based inference in introductory statistics 

classes. Next, an example is used to contrast the modeling process for the two 

approaches, highlighting differences in the tools and representational media employed. 

Finally, this section provides details about the inferential instruction experienced by the 

participants in this study.  

Literature Review 

Before modern computing power allowed for rapid simulations, introductory 

statistics courses necessarily relied on traditional methods like z-tests and t-tests to 

introduce the core logic of inference (Cobb, 2007). However, at the recommendation of 

prominent statistics educators, most notably George Cobb (2007), simulation-based 

inference methods have begun to replace or complement traditional inference methods 

in a number of introductory courses, including statistics courses at the high school level 
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(Rossman & Chance, 2014). Statistics educators have suggested that these methods 

require less prerequisite knowledge, generalize easily to a large number of settings, 

incorporate modern computing power in a meaningful way, and support conceptual 

understanding of inference (Chance & Rossman, 2006; Cobb, 2007; Holcomb, Chance, 

Rossman, Tietjen, et al., 2010).  

Evaluations of curricula that use simulation-based inference as the primary 

means of conducting inference find student performance on multiple-choice CAOS 

assessment items (delMas et al., 2007) is similar for students who study simulation-

based and traditional curricula (Chance & McGaughey, 2014; Garfield et al., 2012; 

Tintle et al., 2011). However, simulation-based curricula are linked to modest gains on 

certain topics including modeling and simulation (Garfield et al., 2012), study design and 

tests of significance (Tintle et al., 2011), and understanding tests of significance as a 

test of whether observed results plausibly occurred “by chance alone” (Chance & 

McGaughey, 2014).  

Contrasting the Modeling Process across Approaches 

The participants in this study were enrolled in an AP Statistics course that 

employed both traditional and simulation-based inference methods in instruction; thus, 

these students used both theoretical and empirical models for the outcomes that would 

occur by chance under the null hypothesis. This section contrasts the modeling process 

for the two approaches, highlighting differences in the tools and representational media 

employed. Further, this section provides specific information about the instructional 

experiences of the participants in this study.  

Consider the following example, which necessitates an inference method to 

determine the statistical significance of experimental results: 
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[Earlier in the year] we learned how characteristics of an interviewer can 
lead to response bias. Two AP Statistics students decided to investigate 
this issue. They speculated that students would be more likely to identify 
as feminists if asked by a female interviewer.  A sample of 60 male high 
school students were asked, “Are you a feminist?” Half were randomly 
assigned to a male interviewer and half were randomly assigned to a 
female interviewer. Of the 30 asked by a male interviewer, 11 responded, 
“Yes.” Of the 30 asked by a female interviewer, 15 responded, “Yes.” 

 
Does this result provide convincing evidence of response bias or could the result have 

occurred merely by chance? There are two approaches to answer this question: a 

traditional approach and a simulation-based approach. 

Theoretical Models for Traditional Inference 

Suppose we choose a traditional approach to inference. A theoretical probability 

distribution would be used to model the distribution of outcomes that would occur if the 

gender of the interviewer had no impact and differences in proportions were due to 

random chance alone. The sample size is sufficiently large, according to commonly 

used guidelines, so the Normal distribution can be used as a model. Thus, we can use a 

z test to determine the statistical significance of the experimental results.  

In the original experiment, fewer subjects claimed to be feminists when asked by 

a male interviewer. The difference of proportions, 𝑝̂𝑀 − 𝑝̂𝐹 =
11

30
−

15

30
= −0.133, 

corresponds to a standardized z-statistic of 𝑧 = −1.04. When conditions are met, the z-

statistic has a standard Normal distribution, which can be used to calculate the 

probability of obtaining a test statistic of 𝑧 = −1.04 or less assuming the null hypothesis 

is true. This test would result in a p-value of 0.1493. Thus results like those observed in 

the experiment would be fairly likely to occur by chance even if the gender of the 

interviewer had no effect on the responses. We cannot reject the hypothesized model, 

and these results do not provide convincing evidence of response bias.  
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Alternatively students may consider a chi-square test, which uses a chi-square 

distribution to model the outcomes that would occur by chance. A large chi-square 

statistic indicates large differences between the observed counts and the counts that 

would be expected if there were no response bias. However, a chi-square statistic does 

not account for the direction of the response bias; in other words, a chi-square test is 

equivalent to a two-sided z-test, resulting in a p-value of 0.2974. 

As shown in Figure 3-1, continuous probability models like the Normal, t, and 𝜒2 

distributions are often represented as smooth density curves, and the p-value is often 

represented as an area under the curve by locating the test statistic and shading values 

that are more extreme in the direction hypothesized by the researchers. 1 Other 

inscriptions – such as, formal specification of the null and alternative hypotheses – are 

also common. 

 
 
Figure 3-2.  Theory-based inference applet. 

 

                                            
1 The applet used to calculate the p-value is available at http://www.rossmanchance.com/applets/TBIA.html 
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The AP Statistics curriculum prescribes traditional inference methods, and the 

course includes nine tests of significance (College Board, 2010). In total, statistical 

inference – which includes tests of significance and confidence interval estimation – 

constitutes 30-40% of an AP Statistics course (College Board, 2010). Because 

traditional inference requires substantial prerequisite knowledge, this approach is 

typically taught in the final third of the course (Malone et al., 2010); the course textbook, 

The Practice of Statistics (Starnes et al., 2013), adheres to this pattern. 

The Practice of Statistics (Starnes et al., 2013) uses the same four-step process 

for all significance tests: 

 State: What hypotheses do you want to test, and at what significance level? 
Define any parameters you use. 

 Plan: Choose the appropriate inference method. Check conditions.  

 Do: If the conditions are met, perform calculations. 

o Compute the test statistic. 

o Find the P-value. 

 Conclude: Interpret the result of your test in the context of the problem.  (Starnes 
et al., 2013, p. 552, emphasis in original) 

Over a period of several months, students applied the State-Plan-Do-Conclude process 

to many traditional inference tasks in class, on assignments, and on tests. Following this 

framework, hypotheses were stated using formal inscriptions. The appropriateness of a 

particular test was determined by checking a list of conditions. Calculations were 

introduced through formulas, but later carried out largely by dedicated inference 

functions in the TI-84 Plus calculator. Conclusions based on the p-value were always 

interpreted in context. 
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Empirical Models for Simulation-Based Inference 

Alternatively, suppose we chose a simulation-based approach to inference. 

Using a physical chance device, we model the outcomes of the study: for example, let 

26 blue cards represent all subjects who said yes and let 34 green cards represent all 

subjects who said no. We shuffle the cards from both groups together, assuming that 

the gender of the interviewer has no impact on the response. To model the difference in 

proportions that would occur by random assignment alone, the cards are shuffled and 

dealt into two groups. For each trial, we record the difference in the proportions of blue 

cards in each group. We can use an applet2 to simulate data for many trials, recording 

the difference of proportions each time. The results of this simulation are shown in 

Figure 3-2. 

We evaluate the results of the experiment by comparing the outcome of the 

original study to the distribution of outcomes produced by the model. Out of 1000 

simulated trials, there were 229 where the difference of proportions was -0.133 or less, 

an estimated p-value of 0.229.3 That is, if we assume the gender of the interviewer had 

no effect on subjects’ responses, a difference as or more extreme than the difference in 

the original study is fairly likely to occur. 

Because simulated sampling distributions are defined in terms of repeating the 

randomization process many times, they are often represented graphically using 

dotplots or histograms instead of idealized curves. Further, the vocabulary, notation, 

                                            
2 Available at http://www.rossmanchance.com/applets/ChisqShuffle.htm 

3 In this example, the simulation-based approach – which models chance outcomes using a discrete distribution – 

leads to a p-value that is appreciably different than the one obtained through the traditional approach – which 
models chance outcomes using a continuous distribution.  
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Figure 3-2.  Simulation-based inference applet. 
 
 
and inscriptions may differ from traditional inference. For example, an instructor using 

simulation-based inference may refer to the “just by chance” explanation instead of 

formally defining the null hypothesis, though these details certainly vary across 

instructors. Pfannkuch (2005, p. 280) warns that more informal language may still be 

misunderstood by students; for example, “The term ‘chance’ should not be lightly 

overlooked in teaching, as students may understand the term in dice problems but may 

not for real problems where causes are known.” 

In addition to traditional inference methods, the AP Statistics course under study 

regularly incorporated simulation-based inference methods. Because these methods 

seem to require less prerequisite knowledge (Cobb, 2007), simulation-based inference 

can be introduced much earlier in the year. Beginning on the first day of the school year, 

this class included fourteen in-class simulation-based inference activities, including 

multiple opportunities for groups of students to design their own simulations. In the 

second semester, simulation-based inference activities were included as part of every 
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chapter, so students used simulations to model a variety of study designs. The use of 

simulation-based inference to complement traditional instruction is supported by the 

course textbook (Starnes et al., 2013), and additional activities were drawn from other 

sources. Detailed information about these activities is provided in Appendix E.  

To help students recognize the unified modeling process of simulation-based 

inference, the teacher adopted the 3S Strategy used in the Introduction to Statistical 

Investigations curriculum (Tintle, et al., 2013), applying the same approach to each 

inference task: 

1. Statistic: Compute the statistic from the observed sample data. 

2. Simulate: Identify a “by chance alone” explanation for the data. Repeatedly 
simulate values of the statistic that could have happened when the chance model 
is true.  

3. Strength of Evidence: Consider whether the value of the observed statistic from 
the research study is unlikely to occur if the chance model is true. If we decide 
the observed statistic is unlikely to occur by chance alone, then we can conclude 
that the observed data provide strong evidence against the plausibility of the 
chance model… (Tintle, et al., 2013) 

This three-step process was applied to all simulation-based tests of significance 

throughout the year. 

Interpreting P-values 

Whether calculated theoretically or empirically, p-values have the same 

interpretation. Holcomb, Chance, Rossman, and Cobb (2010) identify four components 

of a correct p-value interpretation: probability of observed data, tail probability, based on 

randomness, and under null hypothesis. That is, students should be able to indicate that 

the p-value is the probability of observing results as or more extreme than those 

observed, identifying what “results as or more extreme” means in the context of the 

problem at hand. Students should also be able to identify the source of randomness, 
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distinguishing between random sampling and random assignment, and they should 

understand that the p-value is calculated based on the assumption that the null 

hypothesis is true (Holcomb, Chance, Rossman, & Cobb, 2010). 

Methods 

Because of its emphasis on inductive data analysis for generation of theory 

(Charmaz, 2014) and its compatibility with various epistemological paradigms (Taber, 

2000), a modified grounded theory methodological approach was used in this study. 

This choice had several important implications for data collection and analysis 

(Charmaz, 2014; Corbin & Strauss, 1990; Creswell, 2013). First, data analysis in 

grounded theory is always inductive; thus, systematic coding of data in this study relied 

on constant comparison among data, codes, and categories rather than a priori theory. 

Second, data collection and analysis in grounded theory are carried out simultaneously, 

and the relationship between the two is expected to be bidirectional. Thus, ongoing data 

collection was informed by the analysis of previously collected data in order to saturate 

emerging categories. Finally, grounded theory employs memoing as a means of 

analysis and theory development. In this study, memos provided a space to develop 

ideas, plan subsequent data collection, and critically reflect on the research process 

(Charmaz, 2014). 

Participants 

This study was situated in the context of an AP Statistics taught by the author at 

a public school in the southeastern United States. The school is associated with a large 

research university and serves students in grades K-12. The admissions policy of the 

school aims to create a student body that mirrors the demographics of the state for five 
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admission categories: gender, race/ethnic origin, family income, exceptional student 

status, and academic achievement level.  

Eleven students from grades 10-12 were enrolled in AP Statistics in the year the 

study was conducted4, and all eleven students assented to participate in the study with 

their parents’ consent. A demographic description of the study participants is given in 

the table below. 

Table 3-1.  Demographic description of study participants. 

Sex Race Grade level  

Male 3  White 7  10th 2  

Female 8  Black 0  11th 3  

   Asian 1  12th  6  

   Hispanic 3     

 
As described above, these participants had been exposed to a curriculum that 

included both traditional and simulation-based inference methods. However, because 

the AP Statistics course description emphasizes traditional inference, students had 

considerably more experience with theory-based methods by the end of the school 

year. The impact of students’ in-class experiences on the analytical generalizability of 

this study will be discussed later in the paper.  

Data Collection 

Group interviews 

This article focuses primarily on data collected through task-based interviews 

(Maher & Sigley, 2014). Ten students enrolled in the course were interviewed in pairs. 

(One student was unable to participate because of absence.) The interviews, which 

                                            
4 Additionally, seven students participated in a pilot study two earlier. In this article, no results from the 
pilot study are presented.  
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lasted between 25 and 45 minutes, were conducted during the school day in the weeks 

immediately following the AP Statistics exam. The interviews were audio-recorded and 

transcribed. Additionally, the students’ use of an applet for simulation-based inference 

was recorded using a screen-capturing tool. 

A two-person protocol was chosen for this study for several reasons. First, the 

interview data were intended to approximate how students reason about inference in a 

natural classroom setting, and in class, students typically worked on inference tasks in 

pairs. In particular, classmates who had worked together on similar tasks in class were 

paired together to help students feel comfortable in the interview environment. 

Additionally, Schoenfeld (1985) suggests that interviews with multiple students produce 

rich data for investigating students’ problem-solving processes. Multi-person protocols 

ease the pressure to “produce something mathematical for the researcher,” thus 

eliciting more natural responses (Schoenfeld, 1985, p. 178), and discussions among 

students makes the reasoning behind their decisions more visible (Schoenfeld, 1985).  

In the interview task, students were asked to draw conclusions from the response 

bias experiment described in the previous section. After reading about the study, 

students were asked to work together to decide whether the results provide convincing 

evidence of response bias. At the beginning of the interview students were made aware 

of all available tools – a formula sheet, a graphing calculator with statistical functions, an 

extensive collection of chance devices (coins, dice, cards, etc.), and a computer applet. 

However, no instructions were given about whether students should use a traditional or 

simulation-based approach. After drawing a conclusion, students were asked to 
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consider the alternative approach; e.g. students who initially carried out a traditional test 

were asked to carry out a simulation-based test.  

Other than the presence of recording devices, this activity was intentionally 

similar to others that students had completed in class. For example, students were 

asked to design a physical simulation before using the applet on the computer, as they 

often did in class. In general, the interviewer intervened in the students’ problem-solving 

process as little as possible, but when students struggled to move forward, the 

interviewer sometimes prompted them with questions such as, “What are you trying to 

represent?” or “Would it help you to see the applet?” Again, these were intended to 

reflect the kinds of prompts students would hear if they asked for help from the 

classroom teacher. Paper was provided to facilitate communication between partners, 

but students were not required to produce written work. 

Other data sources 

Schoenfeld (1985, p. 174) reminds us, “Any framework for gathering and 

analyzing verbal data will illuminate certain aspects of cognitive processes and obscure 

others: There are trade-offs between structured and unstructured interviews, single or 

group protocols, etc.” Because, the study described in this article was conducted as part 

of us a larger dissertation study, it was possible to triangulate the verbal data collected 

through group interviews with other data sources. These included student responses to 

targeted formative assessments, exam items, and survey items; daily field notes and 

journal entries written by the teacher-researcher; and transcripts of individual interviews. 

Data Analysis 

 Data analysis consisted of a process of systematic coding in multiple phases, 

according to the guidelines for grounded theory presented by Charmaz (2014); these 
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guidelines provided a systematic yet flexible way to study the emerging data. In the 

initial coding phase, each segment of data was assigned a concrete and descriptive 

code intended to reflect the students’ actions. After comparing these initial codes to the 

data and looking for patterns in the codes across interviews, the researcher inductively 

constructed a set of focused codes to “sift, sort, synthesize, and analyze” the large 

amounts of data (Charmaz, 2014, p. 138). The focused codes reflect the “sensitizing 

concepts” of the models and modeling perspective, as well as the researcher’s 

familiarity with descriptions of inference by other statistics educators. However, these 

concepts were not accepted into the analysis until they could be substantiated in the 

data (Charmaz, 2014; Corbin & Strauss, 1990).  

 Although students were not required to interpret the p-value as a probability, 

review of the initial codes revealed that the components of p-value interpretation 

proposed by Holcomb, et al. (2010) arose frequently in their discussions. To facilitate 

analysis, these components were included as focused codes: probability of observed 

data, tail probability, based on randomness, and under null hypothesis. 

 The focused codes were iteratively applied to the data and revised, until every 

incident of student problem-solving could be coded. Table 3-2 compares the focused 

codes applied at the first iteration to those applied at the final iteration. 

 One code, summary of observed data, was removed completely; the researcher 

had anticipated that students would summarize the results of the study, perhaps by 

interpreting the difference in proportions for the two groups, but that expectation was not 

substantiated in the data. Two codes were added: discussion of study design and use of 

tools. As described in the Results section, these codes, which the researcher initially 
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imagined were separate from the modeling process, had considerable explanatory 

power. 

Table 3-2.  Development of focused codes. 

First Iteration Final iteration 

--- Discussion of study design 
Summary of observed data --- 
Definition of hypotheses Specification of claims to be tested 
Choice of model for chance outcomes Choice of model for chance outcomes 
Evaluation of model fit Evaluation of model fit 
--- Comparison of results to model 
Conclusion Decision about claims 
Use of graphical representation Use of graphical representation 
--- Use of tools 
Evaluating strength of evidence --- 
Probability of observed data Probability of observed data 
Tail probability Tail probability 
Based on randomness Based on randomness 
Under null hypothesis Under null hypothesis 

 Another code was changed substantially. When components of the p-value 

interpretation – probability of observed data, tail probability, based on randomness, and 

under the null hypothesis – arose in the initial codes, the researcher hypothesized a 

cover term – evaluating strength of evidence – that would include these components. 

However, focused coding revealed that these codes did not arise from formal 

evaluations of evidence at the point of drawing a conclusion. Rather, they arose at 

various points during the modeling process. For example, the following exchange 

between Ryan and Eva was coded under the null hypothesis; this concept arose as they 

evaluated competing physical models for the simulation, not at the conclusion phase.  

Ryan: That would be testing like – assuming that everybody – because that 
would be assuming like there isn’t response bias and that what they say is 
true, and then you’d be doing… 

Eva: Aren’t we supposed to do that though? 

Ryan: I’m going to take out four pinks. 
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Eva: Wait, I thought we were supposed to test assuming… 

Ryan: Yeah, and that’s what it would be doing if you took all the yeses and the 
nos, because if you assume that there’s no response bias, then in the 
sample 11 people were actually saying yes… 

Eva: Oh, I see what you’re saying. 

 Even at the point of estimating a p-value, which the 3S strategy conceptualizes 

as measuring strength of evidence, students rarely used the language of 

strength/weakness. Consider Alicia’s reasoning as she calculated a p-value using the 

applet.  

Alicia: Ok, so our difference – our observed difference from this sample is 0.133. 
So like where that would fall on that graph is kind of in the middle, 
between 0.117 and 0.317. 

Catherine: Over here somewhere? 

Alicia: Yea, in that third bar maybe? We can – so let’s draw that just so I can see 
it. So we have our little graph. So our observed difference is 0.133 here, 
and… Wait, no we use that number (referring to the most recent shuffle). 
… No, we don’t care about that number. We care about this number 
(referring to the observed difference in proportions). So we look where 
0.133 falls on the graph, and that’s our p-value. 

Notice that she never described what she was doing in terms of the strength of 

evidence. Thus, the label comparison of results to model was judged to be a more 

faithful rendering of students’ actions.  

 Similarly, other codes were revised to better reflect the empirical data. For 

example, definition of hypotheses connotes a formal definition, perhaps writing both the 

null and hypotheses using symbols. In contrast, some students specified the claim to be 

tested more informally. 

Devon: So what would response bias look like? So we’re testing response bias 
against no response bias. So I guess we could like model a distribution of 
if there was no response bias. 



 

82 

To better reflect these data, the code was changed to specification of claims to be 

tested. The results section includes examples of each code. 

Results 

The data suggest that there are qualitative differences in how these students use 

the models, representations, and tools of the two inference methods. A few broad 

differences provide context for the more subtle differences presented later in this 

section. First, all five pairs chose to complete the task using traditional inference first. 

Compared to the simulation-based approach, students appeared to apply traditional 

inference methods with more confidence and less effort, and all pairs were able to reach 

a reasonable conclusion without intervention by the interviewer. In contrast, completing 

the task using simulation-based inference required considerable discussion among 

students and some prompting from the interviewer. Besides having more experience 

with the traditional approach, some students volunteered reasons that they find it easier 

than simulation-based inference, calling traditional inference “straight to it” and 

“structured.”  

The second broad difference is related to the first. For all five pairs, the part of 

the interview devoted to simulation-based inference was much longer than the part 

devoted to traditional inference. In addition to the reasons given above, recall that 

students were asked to design a physical simulation before using the applet to carry out 

simulation-based inference. There is no analogous design step in traditional inference; 

instead carrying out traditional inference requires students to choose a theoretical 

probability distribution and evaluate its fit for the given data.  

This section presents examples of each focused code, comparing and 

contrasting incidents across approaches. For each approach and each pair of students 
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(P1-P5), Table 3-3 outlines the conceptual content of the discussion; a check mark 

indicates the code was applied to that pair’s transcript. One salient trend revealed in the 

table is the absence of p-value interpretation codes among students using traditional 

inference methods; none of these five pairs of students explicitly mentioned the 

probability of observed data, tail probability, the source of randomness, or the 

assumption that the null hypothesis is true while conducting and interpreting a traditional 

significance test. Implications and limitations of this finding are discussed later in the 

paper. 

Table 3-3.  Incidence of focused codes in group interviews. 

 Traditional 
 

Simulation 

 P1 P2 P3 P4 P5 
 

P1 P2 P3 P4 P5 

Discussion of study design      
 

     

Specification of claims       
 

     

Choice of model       
 

     

Evaluation of model fit      
 

     

Comparison of results       
 

     

Decision about claims      
 

     

      
 

     

Use of graphical representation      
 

     

Use of tools      
 

     

      
 

     

Probability of observed data      
 

     

Tail probability      
 

     

Based on randomness      
 

     

Under null hypothesis      
 

     
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Students’ Discussion of Study Design 

Three of the five pairs of students mentioned study design in their discussion of 

this task – two while using traditional inference and one while using simulation-based 

inference. The pairs using traditional inference were both using the State-Plan-Do-

Conclude framework. As part of the Plan stage, students routinely check a list of 

conditions for inference, which includes the assumption that the data were randomized.  

Grace: Ok, so (reading), this was – it was a sample. 

Zoe: But there’s Random. 

Grace: Yea, but it was an experiment, because they were randomly assigned. 
Because like the treatments are the male and female interviewers. 

Only one pair of students mentioned study design while using simulation-based 

inference. William and Libby had just decided to use a model that re-randomized the 

original data, when William noticed that their model would always result in more 

subjects saying no than saying yes, because there were more nos than yeses in the 

original sample. The following quote raises a question related to the scope of inference 

in direct connection to the construction of their model.  

William: Oh, yea, but that doesn’t seem like a very efficient one, because what if 
the population is 50-50? I mean, this is just one sample. That’s basically – 
you’re taking the data from this sample and just shuffling it around. 

This led to a discussion about what generalizations are appropriate based on various 

study designs. 

Specification of Claims 

As they carried out traditional inference, four of the five pairs explicitly specified 

the claims to be tested. Of those, three used a formal inscription like the following: 
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𝐻0: 𝑝2 − 𝑝1 = 0, 𝐻𝐴: 𝑝2 − 𝑝1 > 0. These inscriptions are part of the State phase in the 

State-Plan-Do-Conclude framework.  

Ryan: So if we had a hypothesis for this, it would be that the amount who said 

yes – we could use that as a proportion out of 30, so p1 the number who 
said yes when interviewer male is equal to p2 the number who said yes 
when interviewer female. 

Eva: Nice. 

Ryan: The alternative, you would expect the male interviewer to get more yeses. 

Eva: Yeah, so p1 is less than p2. 

In contrast, only one pair explicitly stated their hypotheses while using a 

simulation-based approach. However, this may be a consequence of the groups 

choosing to carry out traditional inference first. Data from the larger dissertation study 

suggest that these students readily accepted traditional and simulation-based 

approaches test the same hypotheses (more details in Chapter 5).  

Choice of Model and Evaluation of Model Fit 

Comparing incidences of this code across the two approaches revealed 

substantive differences. Students using traditional inference methods chose models 

implicitly, by choosing a particular significance test.  The justification for the decision 

typically mentioned the type of data (categorical), the summary statistic (sample 

proportions), and/or the number of groups.  

Grace: So these are proportions because it’s like 11 out of 30 and then like 15 out 
of 30. 

Zoe: So a z-test. 

Grace: Yea. 

Zoe: Two proportion z-test. 
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Two pairs of students evaluated the fit of the theoretical probability model by 

checking conditions. Both did this as part of the State-Plan-Do-Conclude framework, 

and neither verbalized the connection to the shape of the sampling distribution. In the 

incident below, Alicia and Tianna try to remember how to check the Normal condition, 

and their discussion of these details continued beyond what is reproduced here.  

Alicia: Plan. Ok, if it’s Normal. 

Tianna: n is greater than 10. 

Alicia: Proportion is if it’s if np is greater than 10, right? 

Tianna: Right, yea, yea, yea. And then the n (p-1) or 1 minus… 

Alicia: No. Yea, n (1-p) 

Tianna: Yea. 

Alicia: Yea, that makes sense. Is it greater than or equal to 10? I think so. I think 
it’s greater than or equal to. It’s not going to be 10, chances [are]. 

Other data sources from the larger study confirm that difficulties with the technical 

details of checking conditions for inference were common throughout the course. Of the 

groups who did not check conditions, none expressed doubt about the validity of their 

eventual p-value based on concerns about model fit. 

The choice of model and evaluation of model fit were considerably different as 

students used a simulation-based approach to inference, which required them to design 

a physical simulation before using the applet. First, these two codes were likely to 

appear in a cyclical pattern as students proposed and evaluated models, rejected those 

that did not fit well, and proposed new models. Second this phase of the inference 

process often elicited conversations about the need to model the assumption of the null 

hypothesis. The incident below is Alicia’s justification to her partner for a model using 26 
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red cards to represent the subjects that said yes and 34 green cards to represent the 

subjects who said no. 

Alicia: Ok. So if you think about it we’re claiming that the gender of the 
interviewer doesn’t affect whether they say yes or no. So we’re claiming… 
Actually they’re claiming that gender does affect it. But we’re just trying to 
test the null. Ok, so we’re testing the null, and the null is that gender 
doesn’t affect the response. So we’re saying out of – according to the 
sample, out of 60 people, 26 said yes and 34 said no completely 
independent from the gender. 

Students also sometimes mentioned that the model chosen was based on 

randomness, though this was more difficult to code. Several pairs noted that their model 

was a representation of a “just by chance” explanation – a phrase used often in 

classroom instruction. However, it was not always clear if the phrase referred to the null 

hypothesis or the source of randomness; it is possible some students understand “just 

by chance” as shorthand for both of these components. Some students shuffled cards 

and dealt them into two groups, but did not explicitly link the dealing to random 

assignment. Implicit references to random assignment were marked in the transcript but 

were not coded as “based on randomness.” Other pairs made the meaning of “just by 

chance” more explicit, as in the incident below: 

Libby: We need 60 cards. So we should shuffle these together – shuffle these 
together so they’re in a random order. And then do male interviewer, 
female interviewer, male interviewer, female interviewer (mimes dealing 
cards). 

William: Or we could just do male interviewer, female interviewer whatever it is 
(mimes counting out 30 shuffled cards for the pile). Let’s see if we can get 
these results just by chance. 

Comparison of Results to Model 

While using traditional methods, only two pairs of students explicitly compared 

the empirical results of the experiment to the hypothesized model. In contrast, the 
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applet for carrying out simulation-based inference essentially requires it. Most instances 

of the “probability of observed data” and “tail probability” codes accompanied the 

comparison of the original experimental results to the distribution created by simulation. 

Devon and Isabella described both traditional and simulation-based methods in 

terms of comparing their results to a reference distribution. 

Devon: df = 1, chi-square = 1.0, p-value =0.29. And then you fail to reject the null 
hypothesis, because it might as well fall into this distribution. 

Unlike others who struggled with the applet, this pair immediately drew conclusions 

based on comparison of the original results to the simulated distribution. 

Decision about Claims   

After calculating a p-value, students made a decision about the claims being 

tested by comparing the p-value to a common significance level; in this example, they 

failed to reject, because the p-value was relatively large.  

Ryan: Okay, so our chi-squared value is 1.08. P value is 0.297, not negative. 
Degrees of freedom equals one. 

Eva: Yea. 

Ryan: So then if we set our hypothesis at alpha equals 0.05 then… 

Eva: Looks like it’s greater than that. 

Ryan: So then we fail to reject. 

Eva: We sure did. 

Ryan: There is insufficient evidence of response bias in this study. There you go. 

These final conclusions were nearly identical across approaches. Once students 

recognized the probability calculated as a p-value, they were quick to apply the familiar 

rule. In several cases, students initially misapplied the rule – they intended to reject the 

null, because the p-value was large – but they were always corrected by their partners. 
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As discussed above, many students discussed the components of p-value while 

evaluating model fit and comparing their results to the model, but they did not directly 

connect these components to the decision about claims. Only Isabella linked 

components of the p-value interpretation to a logical conclusion, but she shared this 

reasoning during the modeling phase before the p-value had been estimated.  

Isabella: So this is the null. So if this is like the – how would you say it – the 
distribution of the null hypothesis, then this wouldn’t matter, the gender of 
the interviewer. And so then if this – if the p-value out of this distribution is 
small, then that would mean that the gender of the interviewer does affect 
the answer that these male high school students would give. 

Use of Graphical Representations 

While carrying out traditional inference, only 

one pair of students made use of a graphical 

representation of the sampling distribution. Alicia 

drew a density curve to explain to Tianna how she 

remembers whether to reject or fail to reject when 

the p-value is small. As shown in the explanation 

below, Alicia’s memory aid makes an oblique 

comparison of the results to the hypothesized 

model, but it is not based on a conceptual 

interpretation of the p-value.   

Alicia: Oh, I just said like on a normal graph, you put wherever – if you’re trying to 
decide whether to fail to reject or just to reject the null, you put the alpha 
level on the graph, and then you write wherever the p-value is. So if the p-
value falls in the bigger part, you fail to reject. And I just thought of it like 
fail to reject is a longer sentence, like that’s longer to write. Or if it falls in 
the little part, then it’s just reject. 

Figure 3-3.  Student work.  
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To earn full credit on the AP Statistics exam, it is not necessary to create a visual 

representation of the p-value. These data suggest that students may not spontaneously 

use graphical displays to aid in their reasoning when such representations are not 

required. 

The applet used to carry out simulation-based inference automatically creates a 

dotplot of the simulated sampling distribution. The mere appearance of the graph on the 

screen does not constitute use of graphical representation, but verbal data suggests 

that students did incorporate the graphical display in their reasoning. 

Grace: So it would be like 4 over 30 would be the difference [in the sample 
proportions], and so we found that – oh, and that’s right there actually. 
And so that’s that. So we can put that here, because that’s the number 
we’re testing for to see if – see how likely it is just by chance. 

As shown in Table 3-3, all pairs of students explicitly referenced the graphical 

representation as they reasoned about the simulation-based approach. 

Use of Tools 

Although traditional inference was initially introduced in class using formulas for 

the test statistic, by the end of the year, all five pairs of students had transitioned to the 

use of calculators exclusively. Though some individual students had questions about 

how to use the calculator, all pairs were able to calculate a p-value without any support 

from the interviewer. The TI-84 Plus calculators include wizards that prompt students to 

enter all necessary information for a given statistical test. Beyond reducing syntax 

errors, the researcher observed that these wizards were sometimes used by students to 

help them choose a test. This use of the calculator to support the choice of test is 

confirmed by data from the larger study. For example, when asked a question about 

calculator use in his individual interview, Devon offered the following explanation:  
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Devon: I’d just keep trying a bunch of tests until I found, oh this one. And then it’ll 
be like between two tests, and then I’ll decide. 

Catherine: How do you know from the calculator? How does that help you decide? 

Devon: It has certain options, so I know it’s not a t-test. I can narrow it down. 
Because sometimes there’s like no way I can get a df or – I don’t know. 
There’s just ways to narrow it down on the calculator. Because sometimes 
you won’t have the information necessary. 

Further, the calculator wizard may prompt students to adjust their hypotheses in 

some cases. Originally, Alicia and Tianna had stated their hypotheses as 𝐻0: 𝑝 = 0.5 

and 𝐻0: 𝑝 > 0.5, where the proportion referred to the students who say they’re feminists 

if asked by a female interviewer. However, using the calculator as a guide, they chose a 

two-proportion test, and while entering their data into the calculator, Alicia recognized 

the need to modify the null hypothesis. 

Alicia: (speaking out loud as she uses the calculator) Then p1, we go to our 

alternative, p1 is greater than… oh, that’s what we’re missing! p1… So in 
our null we’re saying that p1 equals p2. So the proportion of people who 
say they are feminists to a male interviewer will be the same as the 
proportion of people who say they’re feminists to a female interviewer. So 
that’s our null. 

In other cases, the calculator allowed students to calculate a p-value without 

confronting uncertainty about the hypotheses being tested. In particular, two pairs of 

students who chose to use a chi-square test were able to calculate a p-value and come 

to a conclusion about response bias in the study, without correctly conceptualizing 

response bias in terms of proportions. Specifically, they did not recognize that a 

proportion of self-identifying feminists different than 0.5 is not, in itself, evidence of 

response bias. An illustration of this is given in the next section.  

As discussed previously, the applet often prompted students to discuss the p-

value as the probability of observed data or as a tail probability as they used the tool to 
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estimate a p-value. However, these students were not nearly as proficient with the 

applet as they were with the calculator. In addition to technical questions about the 

interface, some uses of the applet suggested substantively different conceptions. For 

example, the group interviews included incidents in which students interpreted a single 

simulated sample, treated simulated data as real data, and combined traditional and 

simulation-based approaches. These issues are described in detail in Chapters 4 and 5.  

Discussion 

Which Approach is “Easier”? 

Persuasive arguments have been made for the relative simplicity and 

intuitiveness of simulation-based inference as compared to traditional inference (e.g., 

Cobb, 2007; Lock et al., 2014). In particular, simulation-based inference methods do not 

rely on theoretical models for the sampling distribution – models which Cobb (2007, p. 

7) argues are “conceptually difficult, technically complicated, and remote from the logic 

of inference.” In fact, even in seemingly simple data settings, the statistical theory 

necessary to evaluate “the fit between model and reality” can be prohibitively complex. 

Nevertheless, the participants in this study carried out the traditional inference 

task more easily than the simulation-based inference task, and several expressed views 

on the relative ease of the two approaches that conflict with prevailing wisdom in the 

field. Analysis of the group interviews suggests that students were largely shielded from 

the technical details of statistical theory as they interacted with the models, tools, and 

representations of traditional inference. Choosing a statistical test based on basic data 

features and checking a memorized list of conditions may render the modeling process 

nearly invisible to students. In contrast, designing a physical simulation makes the work 

of selecting and evaluating model fit explicit, often prompting consideration of the four 
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components of a p-value interpretation. As students describe their preference for 

traditional tests, some teachers may hear reasons to include simulation-based inference 

in their courses.  

Isabella: Oh, man. See, I’m not good at simulations. I always go the other way. 

Catherine: What makes the simulations harder? 

Isabella: I don’t know. Just like planning it out, because there’s a lot of options to do 
simulations. It’s like the coin flip or the dice roll or the spinner.   

Devon: Yea, it’s more risky. It involves more thought. The test is just like – it does 
it for you, so you just put in the data. So if you know when to do the test 
and you know how to do the test, you don’t really have to understand what 
you’re doing. 

Use of Tools and Representations 

As teachers, it can be tempting to assume that students’ problem-solving process 

is linear. They first conceptualize the problem – consider a statistical question, plan an 

analysis approach, etc. – and then use tools to carry out their plan. However, these data 

suggest that the connection between students’ reasoning and tools is more complex: 

Not only do students use tools, they interact with them. For example, a data analysis 

tool may serve as a memory aid or as source of cognitive dissonance when the context 

is not fully understood; a tool may prompt students to discuss certain statistical 

concepts while enabling them to disregard others. In addition to other factors like 

availability and ease of use, the impact on student thinking is a nontrivial consideration 

in choosing tools. 

In traditional statistics courses that do not allow graphing calculators, students 

may be instructed to draw and shade a density curve before reading a p-value from a 

table. However, when using an inference-capable calculator, students can easily come 

to the p-value without considering any graphical representations. These interviews 
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suggest that when student-constructed graphical representations are not required, 

students may not spontaneously produce them. However, when graphical 

representations are presented through an applet, the same students can incorporate 

them productively, particularly in consideration of p-values as the probability of 

observed data and a tail probability. The larger dissertation study included an informal 

survey question asking students whether they believed experience with simulations had 

helped them understand z-tests and t-tests. Of the ten students who responded, seven 

said yes, and the most common reason given was appreciation for the visual 

representations.  

Making Modeling Explicit, Making Thinking Visible 

After comparing data and focused codes across interviews and across inference 

approaches, a salient pattern emerged.  Interactions with the models, representations, 

and tools of simulation-based inference often made modeling explicit, and thus made 

student thinking visible. The data presented in the previous section highlights how 

students made their thinking visible to each other through competing models, thus 

challenging existing statistical conceptions. The visibility of student thinking during 

interactions with simulation-based inference methods may also have implications for 

teaching and research. This is consistent with a models and modeling perspective, 

which posits that “an emphasis on models tends to render student thinking highly visible 

to teachers” (Lehrer & Schauble, 2006, p. 383) and “model-eliciting activities often 

function as thought-revealing activities that provide powerful tools for teachers and 

researchers” (Lesh & Doerr, 2003a, p. 31). The following section illustrates how 

statistical modeling can be leveraged as a thought-revealing activity. 
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Statistical Modeling as a Thought-Revealing Activity 

This section focuses on the interaction of one pair of students, William and Libby. 

Their interview was chosen for several reasons. Perhaps most importantly, these 

students were comfortable working together and disagreed with each other frequently 

and freely. They proposed and evaluated several competing models, and in doing so, 

articulated a number of important distinctions for statistical modeling. Further, as 

measured by a comprehensive course exam administered two weeks before the 

interview, William and Libby represented average achievement and below average 

achievement, respectively. The exam was an AP Statistics practice exam provided by 

College Board and scored according to their detailed rubric; on the AP scale of 1 to 5, 

William’s practice exam received a 3 and Libby’s received a 1. These students were 

engaged as they reasoned about the task and seemed open to revising their statistical 

conceptions over the course of the interview.  

Traditional Inference   

Libby and William first approached the task using traditional inference methods, 

choosing to use chi-square test. Their discussion of the task from beginning to end is 

reproduced below to allow for comparisons in context. In the transcript below, ellipses 

stand in for off-topic discussion; no interactions coded for statistical reasoning are 

omitted. 

Libby: Ok, so, here we have our case. 

William: I think we should do a chi-square test. 

Libby: I disagree. I’m just kidding. I think you’re correct. Do you want me to read 
the numbers to you? 

William: No, I think I can do it. (looking at the calculator) 
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…  

Libby: Are we categorizing the groups as like whether they were interviewed by a 
male or female interviewer or whether or not they say they’re a feminist? 

William: (working on the calculator) Does that look good? 

Libby: Yea. 

William: Let’s go with… So expected, how many are in each category? Like how 
many people? 

Libby: In total? 

William: No, just… Ok, so, 30, 30 would be 15, 15, 15, 15. (reading aloud as he 
navigates the calculator’s statistical functions). I gotcha. 

Libby: Wow. So we should probably record all that. 

…  

Libby: We have our chi-square value, we have our p-value, we have our degrees 
of freedom. … What do our – What does our chi-square value and what 
does our p-value mean? 

William: P-value means because it’s below … let’s do 0.05. The p-value 0.29 is 
greater than the alpha level which is 0.05 so I’d say that we can reject the 
null. And we should probably come up with a null. 

Libby: Our null would be – so we’re trying to see if students would be more likely 
to identify as a feminist if asked by a female interviewer. So the null would 
be they are not more likely to answer yes. The null would be there is no 
correlation. … I should say association (looking at interviewer). 

Catherine: Mmhmm, that’s better. 

Libby: So our p-value is greater than 0.05, so we reject the null. 

William: Fail to reject the null. 

Libby: Oh, yea, we fail to reject then null, and so that means that there could 
potentially be no association between whether or not they said yes when 
asked by a female interviewer. 

Notice that the chi-square test – with its corresponding use of the chi-square 

distribution as a model for chance outcomes – was chosen without much discussion or 

evaluation of model fit. Libby seemed to have questions about how the data were 
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“categorized,” but William proceeded with the calculations for the test without 

addressing her concerns. Further, notice that William asked about expected counts and 

went on to enter 15, 15, 15, 15 into the calculator. That is, he expected half of the 30 

subjects interviewed by a male interviewer would identify as feminists and half of the 30 

subjects interviewed by a female interviewer would identify as feminists if there were no 

response bias. As discussed previously, this is inconsistent with a null hypothesis of no 

response bias. No response bias implies that the proportion of subjects who identify as 

feminist is independent of interviewer gender; it does not imply that the proportion who 

identify as feminist is 0.5. Ultimately, this error did not affect their p-value, because the 

TI-84 Plus calculator does not require the user to enter expected counts for a chi-square 

test of association. Rather the expected counts appropriate for a chi-square test of 

association were calculated automatically, and the counts William typed in were 

overwritten. The p-value produced by the calculator corresponds to the appropriate 

expected counts. Initially, Libby misapplied the rule, rejecting the null hypotheses based 

on the large p-value, but William corrected her without explanation. Finally, the students 

arrived at a conclusion and interpreted the results of the test in context.   

Simulation-Based Inference 

While using traditional inference, William and Libby decided on a model without 

much discussion and proceeded quickly to a p-value and an interpretation. In contrast, 

they struggled considerably to choose an appropriate model to simulate outcomes that 

would occur due to random assignment alone. Several important modeling distinctions 

arose in their discussions. Data from other group interviews and entries in the teacher-

researcher’s journal confirm that each of the three issues described below appeared 

frequently among this group of students. 
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Representing outcomes versus representing treatment groups 

In one proposed model, Libby and William planned to use an equal number of 

cards of each color. Libby was concerned, because she noticed that the total number of 

subjects who say yes was not equal to the total number who say no; she was 

considering the row totals. However, William believed the model was appropriate, 

because equal numbers of subjects were assigned to the male and female interviewers; 

he was considering the column totals.  

 

Libby: Oh, wait I should probably use 60 [cards]. 

William: There’s 60 total. 

Libby: But but but but it’s not equal for like yes and no. It’s not the same number 
of people who say yes… 

William: It’s the same number of male and female interviewer. 30 were asked by 
the male, 30 were asked by the female. 

This incident calls attention to two similar but distinct random processes: 

the original random assignment of treatments to groups and the simulated re-

randomizing under a “just by chance” assumption.  

Data from the larger study confirm that students often struggled to decide 

whether to represent outcomes or represent treatment groups. In class, this issue was 

more visible when the sample sizes for the treatment groups were not equal. For 

instance, suppose the response bias experiment had been randomized by flipping a 

coin: heads, the subject was asked by male interviewer, and tails, the subject was 

Table 3-4.  Data for group interview task. 

Feminist? 
 Male          

Interviewer 
 Female 

Interviewer 
 

Total 

Yes  11  15  26 
No  19  15  34 
Total  30  30  60 
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asked by a female. This could result in unequal samples – say, 28 and 32. If students 

proposed a model using 28 cards of one color and 32 cards of another color, their 

confusion about whether to model outcomes or treatment groups would be visible to a 

teacher or researcher.  

Representing random assignment versus random selection 

In another proposed model, William and Libby were using a large stack of cards 

of two different colors (presumably, the same number of cards of each color, given how 

the cards were packaged). They let one color represent people who said yes and one 

color represent people who said no, assuming at this point in the interview that the two 

responses were equally likely under the null hypothesis. When they opened the applet 

and compared their model to the one shown on the screen, Libby called attention to the 

distinction between random assignment and random selection.  

Libby: (referring to their physical model) Is that what’s random? Like your 
response? [The applet] was testing for, the response doesn’t change, but 
like someone who’s a feminist might just randomly be placed with a male 
interviewer versus a female interviewer. 

By dealing from the large stack of cards, William and Libby were randomly 

selecting subjects with certain responses from a larger population. In contrast, the 

applet’s model, described earlier in this paper, assumed that the responses were fixed 

and subjects with these responses were randomly assigned to groups.  

This distinction is subtle, and in fact, traditional inference methods use models 

based on random sampling even when the study design is based on random 

assignment. Cobb (2007, p. 8) famously called this use of the sampling model “fraud”: 

“Do we want students to leave their brains behind and pretend, as we ourselves 
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apparently pretend, that choosing at random from a large normal population is a good 

model for randomly assigning treatments?” 

In this study, Isabella and Devon made visible the same thinking about 

randomization. They used a spinner divided into portions of 43% and 57% to model 

subjects’ responses, because in the original data 
26

60
= 43% of the subjects said yes. In 

their model, like Libby and William’s model above, the responses themselves are 

random, not just the assignment to groups. Data from the larger study also provide 

examples of students making the opposite error. In some cases, students built models 

that re-randomized the original sample, even when the original data were not produced 

through random assignment.  

“Just by chance” versus “equally likely” 

As they continued to examine the model provided by the applet, William finally 

addressed the conflict between two different conceptualizations of response bias. Up 

until this point, William had been conflating the concept of “just by chance” with “equally 

likely”. 

Libby: So [the applet model] would have been like if we took – if we said, ok, 26 
people in total say yes and we counted out 26 green cards (illustrates by 
counting out a few cards) and then we counted out 34 red cards. 

William: And then assigned them to groups. 

Libby: And then randomly assigned them to groups. 

William: Oh, no, that’s not at all what we were doing [in our physical model]. 

Libby: Right, so what’s the difference in what we were testing? 

William: Because that’s – your results, you’re always going to get more no than 
yes. Wait, let me see? Yea, you’re always going to get more no than yes 
in that. But in our thing, because it’s an equal number of cards you could – 
we’re testing for by chance – that one there’s always going to be bias. 
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Libby: But I think what [that applet] is testing for is that their response is 
something that doesn’t change based on – based on whichever gender. 
Like that person, no matter who they saw, would answer yes or no. 

William’s comments reveal his understanding that a “by chance” model should render 

both responses equally likely; in fact, he believes that a model where the two responses 

are not equally likely will introduce bias. Libby offers a different interpretation of “by 

chance” – the assumption that the gender of the interviewer didn’t matter. 

In other group interviews, students made this conception visible by choosing a 

coin to model the subjects’ responses. Devon and Tianna both proposed using a coin, 

but in each case, their partners recognized that “just by chance” is distinct from “equally 

likely” and proposed alternative models. The process of choosing and evaluating a 

physical simulation model can make students’ thinking about this important distinction 

visible to classmates, a teacher, or a researcher. 

Implications 

After a year of instruction in an AP Statistics class that employed both traditional 

and simulation-based inference methods, the participants interacted with the models, 

tools, and representations of the two approaches in qualitatively different ways. Pairs of 

students in a group interview setting were able to carry out a traditional significance test 

quickly and efficiently without intervention from the interviewer. Using tools such as 

textbook problem-solving frameworks, lists of conditions to evaluate model fit, and 

graphing calculators with wizards for statistical tests, they avoided the technical 

complications of traditional inference. However, they also avoided explicit discussions of 

modeling and of conceptual components of inference in their discussions. This does not 

imply that the participants were unaware of the theoretical underpinnings of the 

traditional model; rather their interactions with this inference task – similar to many they 
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completed in preparation for the AP Statistics exam – did not lead to spontaneous 

discussion of these concepts. In particular, the task did not provide many opportunities 

for the students to challenge each other’s statistical conceptions or for a teacher-

researcher to evaluate student thinking.  

In contrast, these students struggled to complete the inference task using 

simulation-based methods. Although they had completed many similar inference tasks 

over the course of the school year – a few in very similar data settings – they found the 

task of designing and interpreting a simulation challenging. As they struggled to find an 

acceptable model, they often discussed the assumption that the null hypothesis is true 

and the need to model a “by chance” explanation. As they interacted with the graphical 

representation provided by the applet, they often discussed the p-value as the 

probability of observed data and a tail probability. The simulation task required explicit 

attention to modeling and prompted students to make their thinking visible to each other 

and to the teacher-researcher.   

This study provides a naturalistic description of the use of models, tools, and 

representations in a single classroom environment; it is not an experimental design. 

Thus, the results presented do not provide a basis for comparing the effectiveness of 

traditional and simulation-based inference, since all participants were exposed to both 

approaches in instruction. However, this study may have implications for teachers as 

they consider which inference methods to include in their courses, which tools to 

provide to students, and which inference tasks to pose. Simulation-based methods 

present a considerable challenge to students, even after a substantial investment of 

instructional time; however, a simulation approach to inference tasks can prompt 
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students to make modeling explicit and make their thinking visible. When they make 

their thinking visible to teachers and classmates, opportunities arise for students to 

construct and revise conceptions of statistical inference.  
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CHAPTER 4 
COMMON ERRORS IN SIMULATION-BASED INFERENCE 

A rich understanding of inference is an important outcome of an introductory 

statistics course. The American Statistical Association’s Guidelines for Assessment and 

Instruction in Statistics Education: College Report (ASA, 2005) mentions understanding 

of statistical inference as a key feature of what it means to be statistically educated. 

Some statistics educators (e.g., Chance & Rossman, 2006; Cobb, 2007; Lock et al., 

2014; Pfannkuch, 2005) believe that simulations have the potential to develop a deeper 

conceptual understanding of statistical significance and p-values, and today simulation-

based inference methods are increasingly common in introductory statistics courses as 

a complement or substitute for traditional inference (ASA, 2016; Rossman & Chance, 

2014).  

Adoption of these methods is inspired by exciting proposed advantages and “a 

generation of adventurous authors” (Cobb, 2007, p. 13) who have published curricula 

and resources to support implementation of simulation-based inference methods. 

Further, developers of curricula that employ simulation-based inference as the primary 

means of teaching inference have published evaluations that suggest students in 

simulation-based courses compare favorably to students in traditional courses (e.g., 

Garfield et al., 2012; Tintle et al., 2012, 2011). However, simulation-based inference is 

not a panacea. This study identifies errors that commonly arise among students who 

use simulation-based inference methods and characterizes the statistical conceptions 

underlying those errors. This characterization of student conceptions necessitates a 

new framework for conceptualizing the logic of inference.  
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Literature Review 

To provide context for the present study, this section presents the proposed 

advantages and early empirical evaluations that have contributed to the popularity of 

simulation-based inference in introductory statistics classes. The section concludes with 

a list of errors that arise in classes that employ these methods; each will be explored 

more deeply in this study.  

Proposed Advantages of Simulation-Based Inference   

There are several proposed advantages of using simulation to teach statistical 

inference. First, the simulation-based approach requires less prerequisite knowledge of 

probability and no distributional assumptions (Cobb, 2007). Since a simulation-based 

approach avoids mathematical formulas and theoretical sampling distributions, students 

may see the connections between data production, model and inference more easily 

(Cobb, 2007; Lock et al., 2014). The relative simplicity of this approach also allows 

inference to be introduced early in an introductory course and reinforced in various 

contexts, whereas traditional inference cannot be introduced without the machinery of 

theoretical sampling distributions (Holcomb, Chance, Rossman, Tietjen, et al., 2010; 

Tintle et al., 2011). Second, it is trivial to change the statistic of interest (Holcomb, 

Chance, Rossman, Tietjen, et al., 2010) and the process easily generalizes to a large 

number of settings. Third, it incorporates modern computing power in a meaningful way.  

Not only does it take advantage of the pedagogical uses of technology, as it uses 

simulations to make abstract concepts more concrete (Chance & Rossman, 2006; Lock 

et al., 2014), but it modernizes the content of the introductory statistics courses to reflect 

technological advances (Cobb, 2007; Holcomb, Chance, Rossman, Tietjen, et al., 

2010). 
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Empirical Studies 

In addition to philosophical arguments, researchers have begun to empirically 

evaluate the impact of simulations on students’ understanding of inference. Evaluations 

of curricula that primarily use simulation-based inference find student performance  is 

similar for students who study simulation-based and traditional curricula (Chance & 

McGaughey, 2014; Garfield et al., 2012; Tintle et al., 2011). However, simulation-based 

curricula are linked to modest gains on certain topics including modeling and simulation 

(Garfield et al., 2012), study design and tests of significance (Tintle et al., 2011), and 

understanding tests of significance as a test of whether observed results plausibly 

occurred “by chance alone” (Chance & McGaughey, 2014). Though many find these 

results promising, not all proposed advantages of simulation-based inference are 

substantiated in these studies; in particular, many students continue to struggle with 

conceptual interpretations of p-values. 

The studies mentioned above feature quantitative analysis of student 

performance on multiple-choice assessments, specifically the CAOS assessment 

(delMas et al., 2007). Because the CAOS assessment is not specific to simulation-

based inference, it provides a useful metric for comparing the two approaches. 

However, it not does provide information about errors that commonly arise in courses 

that employ simulation-based inference. Though large-scale evaluations have not 

provided theory to explain how novices employ simulation-based inference, developers 

and users of these curricula have shared brief recommendations regarding errors that 

commonly arise. These have often been disseminated in the form of conference papers 

and presentations. Common errors and conceptions that have been reported include 

the following: 
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 Difficulty designing or identifying appropriate simulations (Chance & McGaughey, 
2014) 

 Misidentifying observational units in a simulated sampling distribution (Rossman 
& Chance, 2014; Saldanha & Thompson, 2002) 

 Conflating simulation and replication (Chance & McGaughey, 2014; Hodgson & 
Burke, 2000; Rossman & Chance, 2014) 

 Reasoning that the null hypothesis cannot be rejected because the simulated 
distribution is centered at the null value (Gould, Davis, Patel, & Esfandiari, 2010)  

 Failing to recognize the role of the null hypothesis in the simulation process or 
the purpose of the simulation (Chance & McGaughey, 2014) 

Chance and McGaughey (2014, p. 6) warn, “Don’t underestimate the difficulty 

students may have in the transition from one 50/50 proportion to other scenarios, 

including the distinction between sampling and assignment.”  Chapter 3 described the 

various ways student-designed models can reveal student thinking. This chapter 

focuses on errors that are common to all simulation-based tests, including tests of a 

single proportion. 

Methods 

Context   

This study was situated in the context of an AP Statistics course taught by the 

author at a public school in the southeastern United States. The AP Statistics course 

description includes four major topics (College Board, 2010): data analysis and 

exploration (20-30%), study design (10-15%), probability and simulation (20-30%), and 

statistical inference (30-40%). In addition to the prescribed AP Statistics curriculum, the 

course regularly incorporated simulation-based inference methods. Beginning on the 

first day of class, simulation-based inference activities were incorporated throughout the 

year. In total, the course included fourteen in-class experiences with simulation-based 
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inference, including multiple opportunities for groups of students to design their own 

simulations. More details about these activities are provided in Appendix E. 

Data Collection 

The data for this study were collected from AP Statistics students taught by the 

author in two different years. In the pilot study, seven students – selected to represent a 

range of statistical understanding – were interviewed individually in the weeks following 

the AP Statistics exam, and these interviews were audio-recorded and transcribed. Two 

years later, a more comprehensive dissertation study was conducted with a second 

class of AP Statistics students. In addition to individual interviews, data collection in this 

phase included student responses to targeted formative assessments, exam items, and 

survey items; daily field notes and journal entries written by the teacher-researcher; and 

transcripts and written work from group interviews. 

Individual interviews 

The individual interview tasks prompted students to conduct hypothesis tests to 

draw conclusions about the results of research studies. These tasks are reproduced in 

Figure 4-1 (task 1 and task 2). All students were asked to apply two different methods – 

a traditional test and a simulation-based test – to a single given context. All tools 

necessary to carry out the two approaches were provided to students; these included 

chance devices (e.g., coins, dice, and cards), computer applets, and graphing 

calculators. As students worked, they were encouraged to think aloud and provide any 

relevant visual representations. After carrying out both approaches, students were 

asked to compare and contrast the two approaches and describe any connections they 

saw between them. In addition to the transcripts of the task-based interviews, students’ 
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Interview Tasks 
Task 1: Helper vs. Hinderer 
 
In a study reported in Nature, researchers investigated whether infants take into 

account an individual’s actions towards others in evaluating that individual as appealing 

or aversive, perhaps laying the foundation for social interaction.  In one component of 

the study, 10-month-old infants were shown a “climber” character that could not make it 

up a hill in two tries.  Then they were shown two scenarios for the climber’s next try, one 

where the climber was pushed to the top of the hill by another character (“helper”) and 

one where the climber was pushed back down the hill by another character (“hinderer”). 

The infant was alternatively shown these two scenarios several times.  Then the child 

was presented with the two characters from the video (the helper and the hinderer) and 

asked to pick one to play with.  The researchers found that 14 of the 16 infants chose 

the helper over the hinderer. 

 
Task 2: Oil and Blood Pressure 
 
In a study reported in the New England Journal of Medicine, researchers investigated 

whether fish oil can help reduce blood pressure. 14 males with high blood pressure 

were recruited and randomly assigned to one of two treatments.  The first treatment was 

a four-week diet that included fish oil, and the second was a four-week diet that included 

regular oil.  At the end of the four weeks, each volunteer’s blood pressure was 

measured again and the reduction in diastolic blood pressure was recorded.  The 

results of this study are shown below.  Note that a negative value means that the 

subject blood pressure increased. 

 

Fish oil 8 12 10 14 2 0 0 

Regular oil -6 0 1 2 -3 -4 2 

 

Task 3: Response Bias  
 

In Chapter 4 we learned how characteristics of an interviewer can lead to response 

bias. Two AP Statistics students decided to investigate this issue. They speculated that 

students would be more likely to identify as feminists if asked by a female interviewer.  

A sample of 60 male high school students were asked, “Are you a feminist?” Half were 

randomly assigned to a male interviewer and half were randomly assigned to a female 

interviewer. Of the 30 asked by a male interviewer, 11 responded, “Yes.” Of the 30 

asked by a female interviewer, 15 responded, “Yes. 

 

Figure 4-1.  Inference tasks for individual and group interviews. 
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written work was collected. In total, the fourteen individual interviews were conducted – 

seven from each class. 

Group interviews 

Additionally, all eleven students enrolled in the second cohort were invited to 

participate in group interviews. Ten of these students were interviewed in pairs. (One 

was unable to participate because of absence.) Similar to the structure of the individual 

interviews, students were given the results of a study and were asked to work together 

to decide if the study provided convincing evidence. The task is reproduced in Figure 4-

1 (task 3). Schoenfeld (1985) suggests that interviews with multiple students produce 

rich data for investigating students’ problem-solving processes. Multi-person protocols 

ease the pressure to “produce something mathematical for the researcher,” thus 

eliciting more natural responses (Schoenfeld, 1985, p. 178). Further, discussions 

among students makes the reasoning behind their decisions more visible (Schoenfeld, 

1985). 

Student work 

Formative assessments and exam items were intended to assess students’ 

developing understanding of inference and associated concepts, such as sampling 

distributions and p-values. Additionally, some items prompted students to reflect on their 

use of models and representations or draw connections between inferential concepts. 

These assessment items are included in Appendix D.  

Teacher reflections 

Immediately after each lesson, the teacher-researcher wrote a journal entry to 

record her observations of student thinking. These journal entries were based on brief, 

informal field notes taken during the lesson. In addition to providing context, these 
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journal entries were intended to capture observations of classroom activity that may 

inform the research questions.  

Data Analysis 

Data analysis consisted of a process of systematic coding in multiple phases, 

according to the guidelines for grounded theory presented by Charmaz (2014). These 

guidelines provided a systematic yet flexible way to study the emerging data through 

constant comparisons among data, codes, and categories rather than a priori theory.  In 

the initial coding phase, each segment of data was assigned a concrete and descriptive 

code intended to reflect students’ actions. After comparing these initial codes to the data 

and looking for patterns in the codes across interviews, the researcher inductively 

constructed a set of focused codes to identify common errors. Data coded for common 

errors was then subjected to systematic comparisons. First, data assigned the same 

code were compared across participants. Second, data coded for common errors were 

compared to other work produced by the same participant. These comparisons aimed to 

contextualize the errors to better understand the conceptions they represent. Ultimately, 

these comparisons revealed error patterns, which provided the basis for a new 

conceptualization of the logic of inference. This framework is presented in the next 

section.  

Conceptualizing the Logic of Inference 

This study was informed by a by a models and modeling theoretical perspective, 

which begins with two assumptions: 

(a) People interpret their experiences using models. 
(b) These models consist of conceptual systems that are expressed using 
a variety of interacting media (concrete materials, written symbols, spoken 
language) for constructing, describing, explaining, manipulating, or 
controlling systems… (Lesh & Doerr, 2003a, p. 536) 
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Researchers working in this perspective are often interested in models that correspond 

to the “real world”, but the models and modeling perspective offers ontological flexibility; 

this is, the perspective does not make any claims about the nature of reality: “Following 

the pragmatists … models and modeling does not concern itself with truth. Models are 

adopted or rejected because they are useful...” (Lesh & Doerr, 2003a, p. 538). This 

pragmatic ontology is well-suited to the modeling process relevant to statistical 

inference; as will be discussed later in this section, the models used for inference 

represent the null hypothesis, not a best-guess representation of reality.  

Statistical inference involves questioning whether an observed result is surprising 

given a particular expectation or claim (Zieffler, Garfield, delMas, & Reading, 2008). An 

observed result that was unlikely to occur by chance under the given claim provides 

evidence against that claim. Thus, statistical inference employs a type of reasoning 

known as modus tollens, which tends to be difficult for students (delMas, 2004): 

Suppose statement p implies statement q. If q is not true, then it follows that p is not 

true.     

Formal inferential reasoning requires “an understanding of the interconnections 

between an underlying theory or hypothesis that is to be tested; a sample of data that 

can be examined; and a distribution of a statistic for all possible samples under the 

assumption that the theory or hypothesis is true” (Zieffler et al., 2008, p. 45). Note that 

coordination of the components mentioned by Zieffler et al. (2008) requires shifting 

between two different perspectives. The sample data were produced by a randomized 

process in the real world. On the other hand, the distribution of the statistic, or the 

sampling distribution, is constructed based on the assumption of a hypothesis that may 
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or may not be true. The hypothesized model was constructed, not as a best-guess 

representation of the real world, but as a model whose rejection might have explanatory 

power in the real world. The two perspectives – the real world and the hypothetical – are 

linked by the hypothesis that is being tested – the null hypothesis.  

The goal of statistical inference is to use a statistic calculated from a particular 

sample or experiment in the real world to draw inferences, often about a larger 

population or an underlying causal relationship. Because statistics vary, the observed 

data is not expected to reflect the true parameter or true relationship perfectly; 

consequently statistical inference is more complex than modus tollens logic in a 

deterministic scenario. In order to account for imperfect correspondence between the 

sample statistic and the population parameter, students must consider the distribution of 

statistics that could be generated by the hypothesized model. Thus, statistical inference 

methods entail consideration of three levels: the true relationship or population 

distribution, the distribution of a single sample, and the distribution of statistics 

calculated from multiple samples.  

As illustrated in Figure 4-2, the logic of inference requires coordination of two 

perspectives at three distinct levels. Consider the experiment described in task two, 

which tested the effect of fish oil on blood pressure. On average, men in the fish oil 

group saw larger reductions in blood pressure than men in the regular oil group. 

However these data may not perfectly reflect the unknown, real-world relationship 

between fish oil and blood pressure. It’s possible that fish oil has no effect on blood 

pressure and the difference in sample means for the two groups was due to random 

assignment alone; this possibility is called the null hypothesis.  
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In order to use real-world empirical results to evaluate the null hypothesis, students 

must consider possible empirical results that could be generated by the hypothesized 

model, shifting to a hypothetical perspective. A model is specified to approximate the 

variability in outcomes that would occur due to randomization alone if the null 

hypothesis were true. For example, in the fish oil experiment, random assignment to 

groups can be simulated using cards. The improvement scores are written on cards, 

then cards from both groups are shuffled together. The hypothetical dotplot1 in Figure 4-

2, shows the empirical results of one such simulated trial. Although this model uses 

real-world data, it requires a hypothetical perspective, since it assumes that the fish oil 

and regular oil had no effect and reductions in blood pressure were determined by 

factors unrelated to treatment.  

The process is then repeated many times to create distribution of summary 

statistics that shows which outcomes are typical under the specified model. The 

hypothetical histogram in Figure 4-2 shows a distribution of differences of sample 

means, calculated from 1000 simulated samples. The distribution is centered at zero, 

reflecting the assumption of the null hypothesis. 

Note that the term simulate is used differently here than it is used in other 

disciplines like science. In probability and statistics instruction, simulations tend to 

require a hypothetical perspective, since they begin with the assumption that a 

population parameter is known, as it would rarely be in the real-world. However, in other 

disciplines, simulation models may be constructed as a best-guess representation of 

reality and used to predict what would happen in the real-world. Thus, novices may not  

                                            
1 The http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2 
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Figure 4-2.  Levels and dimensions of inferential reasoning. 
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appreciate the subtle shift to the hypothetical perspective that occurs during statistical 

inference.  

In the final step, students evaluate the strength of evidence by comparing the 

observed statistic in the real world to the distribution of statistics produced under the 

assumption of the null hypothesis. In the fish oil example, the observed difference of 

means of 7.714 falls in the tail of the distribution. Because a difference of 7.714 would 

be very unlikely to occur by random assignment if the treatment had no effect, we reject 

the hypothesized model for the relationship between fish oil and regular oil. 

Of the six elements shown in the Figure 4-2, only one – the distribution of sample 

data – is observable in the real world. The true, real-world relationship between fish oil 

and blood pressure is never known. (Rejecting a “by chance alone” explanation does 

not deny that chance had some effect.) Further, we never see a distribution of statistics 

produced through real-world replication of the study, but as described in the next 

section, the concept of such a distribution can be a source of confusion for students. 

Common Errors and Underlying Conceptions 

Many of the common errors associated with simulation-based inference are 

associated with the challenge of coordinating multiple perspectives and levels 

simultaneously. This section describes errors that arise when student conflate or fail to 

make appropriate connections among the components shown in Figure 4-2.  

Distinguishing Samples and Sampling Distributions 

Some statistics educators have found that students struggle to distinguish the 

three levels: the parent population, the distribution of a single sample, and the sampling 
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distribution. Saldanha and Thompson2 (2002) investigated students’ reasoning about 

samples, sampling distributions, and margins of error in a high school statistics class. 

As part of the teaching experiment, students viewed computer simulations of repeated 

random sampling from a population. The study found that most students were not able 

to relate individual sample outcomes to a distribution of outcomes in ways that 

supported inferential reasoning; for example, some students interpreted probabilities 

calculated from a simulated sampling distribution in terms of the original experimental 

units (people) rather than simulated statistics (sample proportions) (Saldanha & 

Thompson, 2002).  

This challenge is not unique to high school students; Rossman and Chance 

(2014) note that some college students also struggle to identify the observational units 

in a randomization distribution. Ideally, students should recognize the units in a 

simulated sampling distribution as both a repetition of the random process and a 

simulated value of the statistic (Rossman & Chance, 2014).  

In the present study, no students explicitly referred to simulated statistics at the 

sampling distribution level as if they were sample data while using the applet to carry 

out simulation-based inference. However, confusion of samples with sampling 

distribution was made visible through confusion of the sample size with the number of 

trials. For example, when asked why we should repeat the simulate many times, 

students’ answers were often ambiguous; advantages like less variability or more 

                                            
2 Saldanha and Thompson (2002) describe the same challenges related to the “multi-tiered sampling 
process”, but they define their levels differently than levels were defined in the previous section. Namely, 
they define three levels in terms of processes: randomly selecting individuals and recording a statistic, 
repeating the process to accumulate statistics, and finding the proportion of statistics beyond a threshold 
value (p. 261).  
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accuracy could be interpreted as advantages of large sample sizes rather than a large 

number of trials. In other cases, the confusion was more clear-cut. In the incident below, 

Isabella and Devon compare the samples size to the number of trials as they reason 

about the slightly different p-value produced by traditional and simulation-based 

methods. 

Isabella: [In the traditional method], we also had a smaller sample than this. 

Devon: Oh, exactly.  

Catherine: Wait, what? 

Isabella: We had – like our [original] sample was smaller than that sample [of 
simulated statistics shown on the applet]. 

Devon: Yea, so [the p-value calculated using the applet] could be the true p-value. 

N=10 N=50 N=1000 

   
 
Figure 4-3.  Simulated sampling distribution of a sample proportion. 

Students in this study – who had encountered both traditional and simulation-

based inference in instruction – also experienced confusion about whether the 

Normality condition was related to sample size or the number of shuffles. This 

conception was first observed in class, with students using Normality as a kind of 

stopping condition as they added to the number of simulated trials. Consider the 

simulated sampling distribution of a sample proportion, where each trial includes 100 

flips of a fair coin. Because the sample size is large, the Normal distribution provides an 
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appropriate model for the sampling distribution; however, as shown in Figure 4-3, that 

only becomes evident when the number of simulated trials is also large. In the individual 

interviews, a few students expressed the belief that a large number of simulated trials 

would satisfy the Normal condition, somehow compensating for a small sample size.  

Transitioning from the Sample Level to the Sampling Distribution Level 

Although no students explicitly confused the units in the sample and the units in 

the sampling distribution while using an applet, some students struggled to envision the 

multi-level nature of inference when the applet was not open. Specifically, they 

struggled to transition from the sample level to the sampling distribution level. This issue 

was visible through student work in class and on exams as well as through task-based 

interviews.  

For example, in her individual interview, Eva designed a simulation using cards 

to re-randomize improvement scores, and the interviewer asked her what she would do 

after dealing the cards into two groups. Eva pointed to the graph of the sample data 

while describing her plan to repeat the process many times and graph the results. 

Eva:  I mean I would probably – you would put it on the graph wouldn’t you? 
You put like each – like this (referring to graph of sample data on sheet) … 
you would put that on the graph. You would just graph what you got a 
bunch of times. 

Catherine:  So you would have a bunch of graphs that look like this? 

Eva:  No, it would be the same graph. 

Catherine:  The same graph. So like what would – each dot on the graph, what would 
each dot be?  

Eva:  Each dot would be the improvement score. 

Catherine:  Improvement score for a single person? 

Eva:  Yeah. 
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At this point, Eva recognized the need to repeat the randomization process many 

times, but she did not envision the next level where the units on the graph are simulated 

statistics. However, later in the interview when the applet was introduced, Eva was able 

to reason with the graphical representation of simulated statistics, describing the units 

as a difference of means in context.   

Zieffler, delMas, Garfield, and Brown (2014) reported a similar phenomenon 

among students enrolled in the CATALST course – a college level course that uses 

simulation in TinkerPlots to carry out statistical inference. One student designed a 

model and described simulation of a single trial but was initially unable to explain how 

this information would be used. However, when using TinkerPlots software, the same 

student was able to complete the process and draw a conclusion about whether the 

observed result was surprising (Zieffler, et al., 2014). 

 In the individual and group interviews collected in this study, difficulty 

transitioning to the sampling distribution level sometimes led to inappropriate 

comparisons across perspectives at the sample level. For example, in her group 

interview, Eva again struggled to move from the level of sample to the level of sampling 

distribution. As Eva worked with her partner Ryan, they considered two approaches to 

compare the observed sample data with the results of a single simulated trial. The data 

from the original study (task 3) are reproduced in Table 4-1.  

 

Table 4-1.  Data for group interview task. 

Feminist?  Male Interviewer  Female Interviewer  Total  

Yes  11  15  26  
No  19  15  34  
Total  30  30  60  
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In the incident below, Eva and Ryan had just simulated one trial using their 

physical model; their simulated results are shown in Figure 4-4.  

Ryan: Now we compare it to our results here. That 
would be our observed counts. I mean, not our 
observed counts – that would be our expected 
counts. 

Eva: We don’t do another chi-square? 

Ryan: No… When you simulate, I’m pretty sure you 
just – because a chi-square test is an 
inference test. This is a simulation test.  

Eva: I trust you. 

Ryan: So does the proportion – so the proportion of people who said yes with a 
male interviewer was actually lower than who would have, if that makes 
sense. 

Eva: What this? 

Ryan: And then… By chance – if it was by chance then the people who said yes 
when they were interviewed by a female would have been 12, but the 
ones who did say yes was 15. 

Ryan treated the simulated counts as expected counts, because their model was 

designed to see what happens by chance. However, at this point in the interview, he did 

not acknowledge the need for a distribution of simulated statistics; instead, he used a 

single simulated sample as an indication of what would happen just by chance. Taking a 

different approach, Eva suggested that the simulated data be used as the basis for a 

chi-square test. This approach was common among the students in this study, who 

were exposed to both traditional and simulation-based tests in class. Students’ 

justifications highlight the challenge of coordinating real-world and hypothetical 

perspectives. Consider the following exchange from Libby’s individual interview, where 

she explains how to use the simulated data:  

 
Figure 4-4.  Student work.  
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Libby: Yea, so I plug this into L1 and this into L2 [on the calculator] and I would 
use a two-sample t-test and basically see what my t and p-value are. 

Catherine: So you’d do another t-test but on your simulated data? 

Libby: Yes. 

Catherine: What would it tell you? Like pretend you got a p-value of 0.3? 

Libby: It would tell me that this is – like this outcome with this data – if it was 0.3 
– is way more likely to occur just by chance. 

Catherine: Right, so this did occur just by chance, right? 

Libby: Yea, right, right. But the calculator doesn’t know that. 

Distinguishing Simulation and Replication 

Another set of common errors stem from students imagining a distribution 

produced through replication. In the real world, we never see a distribution of statistics 

estimated from a large number of studies, but it is common for students to conflate 

simulation with replication – shifting from a hypothetical perspective to a real-world 

perspective. This conception can manifest as a number of different errors.  

One problem that can arise is the belief that multiple samples are always 

necessary (Hodgson & Burke, 2000). In an activity intended to develop understanding of 

the Central Limit Theorem, students in an introductory statistic course repeatedly 

selected samples from a given parent population and constructed histograms of the 

resulting sample means. In an assessment given immediately after the activity, one-

third of students expressed the belief that multiple samples are necessary for valid 

statistical inference. Although the activity maintained a hypothetical perspective, where 

the parent population is somehow known, some students mistook the process for “a 

real-world strategy for finding a population parameter” (Hodgson & Burke, 2000, p. 94).  
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This issue also arises in simulation-based inference and may persist, even in 

courses that devote extensive time to simulation: “Some mistakenly believe that 

simulation aims to provide replication of the research study, in order to strengthen the 

findings through replication (Rossman & Chance, 2014, p. 218). This error appeared 

several times in the present study. Unlike the error described earlier, these students do 

not see simulated samples as a way to increase the sample size but as a way to 

replicate the entire study. Thus, students may believe that errors in the first study can 

be corrected in the replicated studies. For example, Laura obtained substantially 

different p-values from the two approaches because of a calculation error; she offered 

the follow explanation for the discrepancy: 

Laura: In the [traditional test], this was just one sample, so maybe since it was 
just one sample, there might have been factors that affected the fish oil 
and the regular oil, but since [the simulation-based test] was over time, 
maybe this kind of eliminates more of those factors. Or it – or yea, so it 
eliminates different confounding factors. 

Conflating simulation and replication can also lead to misapplications of the logic 

of inference, which prevent students from rejecting the null hypothesis, regardless of the 

data.  Gould et al., (2010, p. 4) report that often “the null distribution of the test statistic 

is seen as the ‘real’ distribution, and students reason that because the distribution is 

centered at 0, the null hypothesis cannot be rejected.” A closely related error is to count 

how many samples are “more extreme” than the center of the sampling distribution. 

Maria made these errors as she considered whether 14 out of 16 babies choosing the 

helper toy provided convincing evidence of a genuine preference over the hinderer toy 

in task 1 (testing the alternative hypothesis 𝑝ℎ𝑒𝑙𝑝𝑒𝑟 > 0.5.) 
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Maria: I think you would take all of the ones – all of the numbers that are higher 
than 8, but since you did so many trials that seems like a lot, but it doesn’t 
look like there is convincing evidence, because it’s centered at 8. 

Other students who conflate simulation and replication do find the proportion of 

samples more extreme than the observed data. However, if that proportion is small, 

students reason that the original data must have been an outlier or a fluke – a result that 

is unlikely be replicated. Some students who follow this line of reasoning still employ “by 

chance” language. Notice how Anthony employs statistical terms as he reasons about 

the helper vs. hinderer study in task 1.  

Anthony: So again, just looking to see if there’s any data points at 14 and there’s 
not any or any past it, so it would be unlikely – it would be unlikely that this 
would occur – so we’d say it’d be statistically significant. … Based on this 
data, we’d conclude that the data would have occurred by chance. Given 
that there’s no – there is not much evidence at all for supporting that 14 of 
the 16 would have chosen the helper over the hinderer, because what 
we’re seeing is there’s more of an equal chance. 

Discussion 

Coordination of Levels and Dimensions 

Saldanha and Thompson (2002) described coordination of samples and 

sampling distributions among students in their teaching experiment as “unstable”: 

Most students experienced great difficulty conceiving the resampling 
process in terms of distinct levels … Their control of the coordination 
between the various levels of imagery was unstable; from one moment to 
the next their image of a number of samples (of people) seemed to easily 
dissolve into an image of a total number of people. (Saldanha & 
Thompson, 2002, p. 264) 

Disappointed with the results of the teaching experiment, they speculated that the 

simulation activities “were of such a complexity so as to essentially overshadow ideas of 

sampling variability” (Saldanha & Thompson, 2002, p. 268) While the present study also 
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identified difficulty with coordination between levels, students often resolved these 

issues and went on to reason about the statistical concepts under study. 

The present study also found that students’ coordination of real-world and 

hypothetical perspectives was “unstable” or transitory. For example, few students 

persistently reasoned that simulation was equivalent to replication. More often, the 

transcripts show students struggling to reconcile the hypothesized model with a 

conception of real-world replication. These findings are consistent with Lesh and Doerr’s 

description of students’ developing conceptual systems as “less like rigid and stable 

worlds than they are like … shifting collections of tectonic plates” (Lesh & Doerr, 2003b, 

p. 18). 

In some cases, students were able to design a simulation and justify their choice 

of physical model based on the null assumption, but later interpreted the empirical 

results from a real-world perspective. As illustrated above, Anthony treated the 

simulated distribution as a representation of real-world replication. However, earlier in 

the interview, he chose a coin as a physical model without prompting from the 

researcher, justifying his choice by reasoning that a coin would represent the “same 

chance of being picked by each infant.”  These inconsistent interpretations of a system 

may be associated with the use of representational media that emphasize different 

aspects of the underlying systems (Johnson & Lesh, 2003; Lesh & Doerr, 2003b).  

At one point in the individual interview, Eva’s reasoning was similar to Anthony’s. 

Because the observed statistic rarely occurred in the simulated distribution, she 

reasoned it must be a “just by chance guy” – an outlier or a fluke. However, in the same 
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breath, she acknowledged her expectation that the distribution would be centered at 8, 

because it was based on a fair coin; that is, she acknowledged the null assumption. 

Eva: Ok, so it’s looking like 14, which is what we had, doesn’t have that many – 
it’s not like it – it’s not skewed over there. This is a just by chance guy. 
And it happened – it’s centered at 8, so you know, it’s half. It’s what you 
would think with a fair coin. 

Catherine: So can you explain that other part? You said something about skew and a 
just by chance guy? 

Eva: It’s Normal, so it’s centered at what I drew before with the… It’s centered 
at 8, so that’s like the half mark of how many babies in the thing that would 
pick the helper. And because it’s centered at 8, that means that there is no 
difference between picking the helper or the hinderer. 

For Eva, this conflict of conceptions was temporary. First, she noticed that she 

had come to a different conclusion than the one she drew from the traditional test. 

When the interviewer pointed out that that she hadn’t used the original data, she 

remembered that the applet could be used to count samples as extreme as the sample 

data. 

Eva: (using the applet to count samples more extreme than 14 out of 16) That 
is so small. 

Catherine: 3 out of 1000 – what does that tell you? 

Eva: That getting 14 out of the 16 to choose the helper is very unlikely. 

Catherine: So if the question is, “Is this convincing evidence?”… 

Eva: Then yes, because you would – based off of this you would suspect that – 
if it was just by chance you expect that only 8 out of the 16 babies that 
were in the study would choose the helper, but because this is so unlikely, 
then you know that – because it’s unlikely, it’s not likely to happen just by 
chance. So if there’s that small of a percentage chance that you’re gonna 
get 14 babies to pick the helper then you know that your one little trial 
study thing is significant. 

Not only did Eva transition to a more productive conception of the simulated sampling 

distribution, but she was able contrast her new and previously held conceptions. Her 
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insights allowed the researcher to better understand the work of other students who 

conflated simulation and replication, making it possible to link common errors not 

previously seen as similar.  

The results of this study provide context for an inconsistency reported by Chance 

and McGaughey (2014): students seem to understand significance tests as a way to 

decide whether observed results could have happened by chance alone, yet they do not 

appreciate the role of the null hypothesis for estimation and interpretation of the p-value. 

First, this study substantiates a warning from Pfannkuch (2005) that the term “by 

chance alone” is not universally understood; in fact, students may incorporate this 

language into an alternative logic of inference. Second, students struggle to 

simultaneously coordinate the multiple perspectives and levels that compose the logic 

of inference. That is, they may recognize the foundational role of the null assumption at 

some points in the process but not others. 

Omnipresence of Uncertainty 

Statistics is often described as a set of tools for dealing with the “omnipresence 

of variability” (Cobb & Moore, 1997). Statisticians must account for variability from 

innumerable sources, including variability among individuals in a population, purposeful 

variation of conditions in an experiment, and particularly relevant for this study, 

variability in statistics due to random sampling and random assignment. The 

omnipresence of sampling variability results in omnipresence of uncertainty: although 

we make decisions about whether to reject the null hypothesis, the veracity of this link 

between the real-world and hypothetical perspectives is never known.   

The distinction between making a decision and proving a hypothesis is subtle 

and often difficult for students. In particular, it may be difficult for students to accept 
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uncertainty when inference requires an assumption that the parameter is known (from a 

hypothetical perspective). Further, some statistical definitions seem to presume that the 

true parameter is knowable. For example, type I error is defined as the probability of 

rejecting the null hypothesis when the null is really true. One student objected to this 

definition, because we can never prove the truth of the null hypothesis. The challenge of 

accepting uncertainty from a real-world perspective while assuming truth is knowable 

from a hypothetical perspective cannot be ignored. 

Two Approaches to Inference  

Some of the conceptions associated with errors in simulation-based inference 

also arise in courses that employ traditional inference alone. Whether constructed 

empirically or theoretically, sampling distributions always require a multi-level scheme 

that distinguishes between the population distribution, the distribution of a single 

sample, and the distribution of statistics calculated from multiple samples. Further, the 

logic of inference – which requires coordination of the real-world and hypothetical 

perspectives – remains unchanged across inferential approaches. As discussed in 

Chapter 3, simulation-based inference has the potential to make student thinking visible, 

so conceptions that lead to errors in simulation-based inference may go unnoticed in 

traditional inference. In short, the results presented do not provide a basis for rejecting 

simulation-based inference in favor of traditional inference, but they do serve as 

reminder that simulation-based methods are not a panacea.  

Some of the errors described in this article are specific to courses that employ 

both traditional and simulation-based methods to introduce the logic of inference. It is 

worth noting that some of the proposed advantages of simulation-based inference – 

e.g., avoiding mathematical formulas and theoretical sampling distributions – do not 
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apply to courses that use simulations in addition to traditional tests. In these courses, 

empirically-derived sampling distributions are yet another set of models to represent 

outcomes under the null hypothesis. As described above, additional models can lead to 

confusion as students make inappropriate connections between traditional and 

simulation-based approaches. However, these inappropriate connections must be 

weighed against the productive connections students make between approaches; this is 

discussed in more detail in Chapter 5. 

Summary 

Although simulation-based inference offers a number of proposed advantages 

over traditional inference alone, simulation methods give rise to a number of common 

errors. These errors can be described largely in terms of two challenges. First, students 

struggle to coordinate the multi-level scheme, which includes the population or true 

underlying relationship, the distribution of single sample, and the distribution of statistics 

collected from multiple samples. Second, students struggle to coordinate two 

perspectives: the real-world where the sample data was collected and the hypothetical 

perspective where the null hypothesis is assumed to be true.  

The logic of inference always requires coordination across multiple levels and 

perspectives, so these challenges are not unique to simulation-based inference. 

Further, the students in this study were exposed to both traditional and simulation-

based methods in instructions, so no conclusions can be drawn about the causes of 

their conceptions. However, the results of this study suggest that students demonstrate 

their conceptions in distinctive ways as they reason about inference tasks using 

simulation-based methods. Awareness of common errors provides an opportunity for 

teachers to recognize and challenge students’ emerging conceptions of inference.  
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CHAPTER 5 
TEACHING FOR CONNECTED UNDERSTANDING OF INFERENCE 

Many introductory statistics courses emphasize statistical inference as an 

important objective of the course. Significance testing is a widely used data analysis tool 

(Nickerson, 2000), and although no introductory course can include all hypothesis tests, 

“a conceptual understanding of the p-value and statistical significance opens the door to 

a wide array of statistical procedures that utilize this inferential logic” (Lane-Getaz, 

2007, p. 10). However, statistical significance and p-values are commonly 

misunderstood; specifically, many students in introductory statistics courses understand 

p-values as a tool for making decisions about the null hypothesis or a way to quantify 

the strength of evidence but lack an integrated conceptual understanding of what the p-

value represents (Aquilonious & Brenner, 2015; Holcomb, Chance, Rossman, & Cobb, 

2010; Taylor & Doehler, 2015). 

Some statistics educators (e.g., Chance & Rossman, 2006; Cobb, 2007; delMas 

et al., 1999; Pfannkuch, 2005) believe that simulations have the potential to develop a 

deeper conceptual understanding of statistical significance and p-values. Proponents 

have argued that these methods require less prerequisite knowledge, generalize easily 

to a large number of settings, incorporate modern computing power in a meaningful 

way, and support conceptual understanding of inference (Chance & Rossman, 2006; 

Cobb, 2007; Holcomb, Chance, Rossman, Tietjen, et al., 2010). Today, simulation-

based inference methods are increasingly common in introductory statistics courses 

(ASA, 2016; Rossman & Chance, 2014): some instructors have incorporated a few 

activities or modules, while others have completely reconceptualized their courses with 

simulation-based inference as the cornerstone.  
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Developers of curricula that employ simulation-based inference as the primary 

means of teaching inference have published rich descriptions of their inferential 

instruction (Garfield et al., 2012; Lock et al., 2014; Tintle et al., 2011). Further, many 

individual simulation-based inference activities have been shared through conference 

presentations and the practitioner literature. However, relatively little has been written 

about traditional courses that regularly incorporate simulation-based inference as a 

complement to theory-based methods. This article provides a detailed description of an 

AP Statistics course that used traditional inference as the primary means of data 

analysis but also included numerous experiences with simulation-based inference to 

develop concepts. 

Teachers who complement traditional inference with simulation-based methods 

hope to expand students’ capacity to reason about inference. The potential of this 

pedagogical approach seems to rest on the assumption that students make productive 

connections between the two models and representational systems. This chapter 

presents an investigation of that assumption, discussing which connections students 

tend to make readily and which require focused instruction.  

Complementing Traditional Instruction with Simulation-Based Inference 

This study is situated in the context of an AP Statistics class at P.K. Yonge (PKY) 

Developmental Research School. In addition to the prescribed AP Statistics curriculum, 

which relies on traditional inference methods (College Board, 2010), the course taught 

at PKY regularly incorporated simulation-based inference methods. However, students 

in this course had considerably more experience with traditional, theory-based methods 

by the end of the school year. This section describes how the course used simulation-

based inference activities as a complement to traditional inference in instruction.  
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Consider the following inference task, which necessitates an inference method to 

determine the statistical significance of experimental results. This task is based on an 

activity in the teacher’s edition of The Practice of Statistics (Starnes et al., 2013). 

In a study reported in the New England Journal of Medicine, researchers 
investigated whether fish oil can help reduce blood pressure. 14 males 
with high blood pressure were recruited and randomly assigned to one of 
two treatments. The first treatment was a four-week diet that included fish 
oil, and the second was a four-week diet that included regular oil.  At the 
end of the four weeks, each volunteer’s blood pressure was measured 
again and the reduction in diastolic blood pressure was recorded.  The 
results of this study are shown below.  Note that a negative value means 
that the subject blood pressure increased.  

Fish oil 8 12 10 14 2 0 0 

Regular oil -6 0 1 2 -3 -4 2 

 
This example will be used to illustrate the pedagogy specific to this course and the 

approach to inference embodied in the AP Statistics curriculum more generally.  

Traditional Inference Instruction 

The AP Statistics course description includes four major topics (College Board, 

2010): data analysis and exploration (20-30%), study design (10-15%), probability and 

simulation (20-30%), and statistical inference (30-40%). Because traditional inference 

requires substantial prerequisite knowledge, including knowledge of probability and 

theoretical sampling distributions, traditional inference is typically taught in the final third 

of the course (Malone et al., 2010). The course textbook, The Practice of Statistics 

(Starnes et al., 2013), adheres to this pattern, covering traditional inference at the end 

of the year. The AP Statistics curriculum includes nine tests of significance (College 

Board, 2010): large-sample test for a proportion; large-sample test for a difference 

between two proportions; test for a mean; test for a difference between two means 
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(unpaired and paired); chi-square test for goodness of fit, homogeneity of proportions, 

and independence; and test for the slope of a least-squares regression line.   

To help students organize statistical problems, The Practice of Statistics (Starnes 

et al., 2013) uses the same four-step process throughout the text. The four-step 

process, as applied to all significance tests, is as follows:  

 State: What hypotheses do you want to test, and at what significance level? 
Define any parameters you use. 

 Plan: Choose the appropriate inference method. Check conditions.  

 Do: If the conditions are met, perform calculations. 

o Compute the test statistic. 

o Find the P-value. 

 Conclude: Interpret the result of your test in the context of the problem.  (Starnes 
et al., 2013, p. 552, emphasis in original) 

 
This four-step process is applied to all traditional tests of significance in the course, and 

over a period of several months, students apply the process times in class, on 

assignments, and on tests.  

Following this framework, hypotheses are stated using formal inscriptions. The 

appropriateness of a particular inference method is determined by checking a list of 

conditions. Calculations are introduced through formulas, but later carried out largely by 

dedicated inference functions in the TI-84 Plus calculator. Conclusions based on the p-

value are always interpreted in context. For example, the written work in figure 

illustrates how a high-achieving student in the class might approach the fish oil 

experiment described above.  



 

134 

 

Figure 5-1.  Traditional inference using State-Plan-Do-Conclude framework.  

 
Cobb (2007, p. 2) points out, evaluating “the fit between model and reality” can 

be technically complicated, even in this seemingly simple case of a difference between 

two means. Cobb (2007, p. 8) also disputes the use of a sampling modeling to 

represent the outcomes of randomized experiments: “Do we want students to leave 

their brains behind and pretend, as we ourselves apparently pretend, that choosing at 

random from a large normal population is a good model for randomly assigning 

treatments?” However, this course does not expose students to all the details of 

theoretical models; the textbook (Starnes et al., 2013) streamlines the process of 

checking model fit by including lists of conditions for each test.  
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In this course, the calculations for a given hypothesis test are introduced using 

formulas for the test statistic and cumulative density functions in the TI-84 Plus 

calculator. Probability tables are never used in this course.  After using these tools a few 

times, students are introduced to functions on the TI-84 Plus that calculate test statistics 

and p-values using summary statistics or raw data as inputs. Note that the calculator’s 

inference functions allow students to calculate the test statistic and p-value, as required 

for the AP Statistics exam, without using formulas or creating visual representations of 

the sampling distribution.  

 

Figure 5-2.  Calculating a p-value using a TI-84 Plus inference function.  

 
Simulation-Based Inference Instruction 

In addition to traditional inference methods, the course taught at PKY regularly 

incorporated simulation-based inference methods. The use of simulation-based 

inference to complement traditional instruction was supported by the course textbook, 

The Practice of Statistics (Starnes et al., 2013); however, the course also used activities 

drawn from other sources. In 2015-2016, the class included fourteen in-class 

simulation-based inference activities; detailed information about these activities is 

provided in Appendix E.  

To help students recognize the unified modeling process of simulation-based 

inference, the teacher adopted the 3S Strategy used in the Introduction to Statistical 
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Investigations curriculum (Tintle, et al., 2013), applying the same approach to each 

inference task:  

1.      Statistic: Compute the statistic from the observed sample data. 

2. Simulate: Identify a “by chance alone” explanation for the data. Repeatedly 
simulate values of the statistic that could have happened when the chance model 
is true.  

3. Strength of Evidence: Consider whether the value of the observed statistic from 
the research study is unlikely to occur if the chance model is true. If we decide 
the observed statistic is unlikely to occur by chance alone, then we can conclude 
that the observed data provide strong evidence against the plausibility of the 
chance model… (Tintle, et al., 2013) 

This three-step process was applied to all simulation-based tests of significance. In the 

following sections, the process is used to outline how simulation-based inference was 

taught in this course.  

Statistic 

The data from the original experiment can be summarized by a difference of 

sample means: 𝑥̅1 − 𝑥̅2 = 6.57 − (−1.14) = 7.14. Unlike traditional methods, this 

approach does not require calculation of a standardized test statistic. There are two 

possible explanations for the observed difference of sample means: The first is a “by 

chance alone” explanation; it is possible that the treatments had no effect, and the 

difference between groups is due to random assignment. The second is that fish oil 

caused larger reductions in blood pressure than regular oil, on average.  

Simulate 

Random assignment to groups can be modeled using cards. First we write the 

improvement scores on blank cards. Then cards from both groups are shuffled together, 

assuming that the subjects’ improvement scores were determined in advance by factors 

unrelated to treatment. Then the cards are dealt into two groups to mimic random 
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assignment, and the difference in means for the two groups is recorded. We can use an 

applet to simulate many trials. The results of this simulation are shown in the Figure 2-3.  

Students may engage with the simulation in various ways: 

 Students physically carry out the simulation using cards; students may record 
their own simulated statistics on a class dotplot that can be used to determine the 
strength of evidence.  

 Students use technology to carry out the simulation; for example, students may 
use an applet on their tablets, phones, or computers.   

 Students design an appropriate simulation; the teacher may suggest a chance 
device (cards) or allow students to choose their own physical model.  

These modes of engagement are not mutually exclusive, and this course used them in 

varying combinations over the course of the year. The type of student participation in 

the simulation step largely determines how much class time is spent on each 

simulation-based activity.  

Figure 5-3. Applet to simulate random assignment.  
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Strength of evidence 

We evaluate the strength of evidence by comparing the outcome of the original 

study to the distribution of outcomes produced by the model. In the simulation shown in 

Figure 5-3, a difference of means of 7.714 or larger occurred in 11 out of 1000 trials – 

an estimated p-value of 0.0011. Because a difference of 7.714 would be very unlikely to 

occur by random assignment if the treatment had no effect, we reject the “by chance 

alone” explanation, and conclude that fish oil caused larger reductions in blood pressure 

than regular oil, on average.  

Sequencing of Topics 

Notice that the example above did not require knowledge of theoretical 

probability distributions. Because simulation-based inference requires less prerequisite 

knowledge, it can be introduced early in the year. In this class, simulation-based 

inference was introduced on the first day, and students had many experiences with 

these methods before traditional inference was introduced. When traditional inference 

was covered during the final third of the class, simulation-based inference activities 

were included as part of every chapter, so students used simulations to model a variety 

of study designs. Aside from a brief introduction to study design during the first few 

weeks, this class did not substantially alter the traditional introductory statistics 

sequence: it began with descriptive statistics, followed by probability, and concluded 

with statistical inference (Malone et al., 2010). Simulation-based inference activities 

were inserted to coincide with related topics in the AP Statistics curriculum, namely 

experimental design, probability, and traditional inference.  

Alternatively, a teacher might consider a spiral approach like the one employed in 

the Introduction to Statistical Investigations (ISI) (Tintle et al., 2013) curriculum. After an 
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introduction to inferential concepts, each chapter in the ISI curriculum is devoted to a 

particular data scenario, e.g., comparing two proportions. Each chapter begins with 

descriptive statistics, followed by a simulation approach, and concludes with a theory-

based approach; as the course progresses, the data scenarios become increasingly 

complex. This curriculum devotes less time to descriptive statistics than a typical course 

and does not cover formal probability rules (Tintle & Chance, 2014). Depending on the 

goals of the course, some teachers – in particular, AP Statistics teachers – may find it 

necessary to supplement the ISI instructional sequence.  

Fostering Connections across Approaches 

Lastly, the course taught at PKY aimsed to make the connections between 

simulation-based inference and traditional inference explicit. For example, traditional 

inference was first introduced as a modification to the 3S Strategy, where the simulation 

step was replaced by use of a theoretical sampling distribution. In particular, the 

transition began by summarizing the results of the original study with a new statistic – a 

standardized test statistic. 

Because of the conceptual challenge of this lesson, a simple data scenario was 

chosen: a test of one proportion, 𝐻0: 𝑝 = 0.5. On that day, students carried out the 

simulation by hand using coins to represent the assumption that a p-value is calculated 

under the null hypothesis and based on randomness. Students were asked to calculate 

two different statistics – a sample proportion and a standardized z statistic – for each of 

their simulated samples. As a class, they created dotplots to represent the sampling 

distribution of each statistic using stickers. Each sticker is labeled 𝑝̂ or 𝑧 as a reminder 

that each dot in the distribution represents a statistic calculated from a sample.  



 

140 

 
 
Figure 5-4.  Students’ simulations of sample proportions and z statistics. 

 
The visual building up of a bell-shaped distribution centered at 0 and ranging 

from -3 to 3 suggests that the standard normal distribution can be used to approximate 

the distribution of z statistics. The teacher reminded students that they calculated the 𝑧 

statistics based on samples of coin flips (𝑝 = 0.5); thus, the z distribution represents the 

outcomes that would occur when the null hypothesis is true.  

The p-value was estimated two different ways: first by counting the number of 

samples more extreme than the original data3 and then by using a density function to 

estimate the area in the tail(s). These side-by-side representations emphasize that the 

two approaches are two ways to do the same thing – quantify the strength of evidence 

against the null hypothesis. This step-by-step transition can be repeated as new tests 

are introduced to reinforce the connections between approaches.  

Lastly, this course used formative assessments that prompted students to reflect 

on the connections between approaches. For example, students filled out an exit ticket 

                                            
3 Figure 5-4 shows two ways a p-value was calculated from data collected in class. As it happened, the 
result obtained in the classroom experiment would almost never occur by chance. This can be 
problematic, because students can say that the outcome never occurred without calculating a p-value to 
quantify the likelihood. Teachers may want to avoid unpredictable classroom data for this important 
introductory lesson.  
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on the day z-tests were introduced (the lesson described above). Students were asked 

to explain how a z-test is similar to the 3S strategy and how it is different. Simple 

assessment like these led students to consider connections and provided the teacher 

with information about which connections to emphasize in instruction. A complete list of 

assessment items is provided in Appendix D.  

Methods  

Data Collection 

The data for this study were collected from AP Statistics two AP Statistics 

classes taught by the author in two different years. In the pilot study, seven students – 

selected to represent a range of statistical understanding – were interviewed individually 

in the weeks following the AP Statistics exam, and these interviews were audio-

recorded and transcribed.  Two years later, a more comprehensive dissertation study 

was conducted with a second class of AP Statistics students. In addition to individual 

interviews, data collection in this phase included student responses to targeted 

formative assessments, exam items, and survey items; daily field notes and journal 

entries written by the teacher-researcher; and transcripts and written work from group 

interviews. 

Student work. Formative assessments and exam items were intended to assess 

students’ developing understanding of inference and associated concepts, such as 

sampling distributions and p-values. Additionally, some items prompt students to reflect 

on their use of models and representations and draw connections between inferential 

concepts. The assessment items used to elicit student work are included in Appendix D.  

Teacher reflections. Immediately after each lesson, the teacher-researcher 

wrote a journal entry to record her observations of student thinking. These journal 
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entries were based on brief, informal field notes taken during the lesson. In addition to 

providing context, these journal entries are intended to capture observations of 

classroom activity that may inform the research questions.  

Individual interviews. The individual interview tasks prompted students to 

conduct hypothesis tests to draw conclusions about the results of research studies. 

These tasks are reproduced in Appendix C (task 1 and task 2). All students were asked 

to apply two different methods – a traditional test and a simulation-based test – to a 

single given context. All tools necessary to carry out the two approaches were provided 

to students; these included chance devices (e.g., coins, dice, and cards), computer 

applets, and graphing calculators. As students worked, they were encouraged to think 

aloud and provide any relevant visual representations. After carrying out both 

approaches, students were asked to compare and contrast the two approaches and 

describe any connections they saw between them. In addition to the transcripts of the 

task-based interviews, students’ written work was collected. In total, the fourteen 

individual interviews were conducted – seven from each cohort.  

Group interviews. Additionally, all eleven students enrolled in the second cohort 

were invited to participate in group interviews. Ten of these students were interviewed in 

pairs. (One was unable to participate because of absence.) Similar to the structure of 

the individual interviews, students were given the results of a study and were asked to 

work together to decide if the study provided convincing evidence. The task is 

reproduced in Appendix C (task 3).  

Data Analysis    

Data analysis consisted of a process of systematic coding in multiple phases, 

according to the guidelines for grounded theory presented by Charmaz (2014). These 
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guidelines provided a systematic yet flexible way to study the emerging data through 

constant comparisons among data, codes, and categories rather than a priori theory.  In 

the initial coding phase, each segment of data was assigned a concrete and descriptive 

code intended to reflect students’ actions. After comparing these initial codes to the data 

and looking for patterns in the codes across interviews, the researcher inductively 

constructed a set of focused codes to identify connections across approaches.  

Connections across Approaches 

Testing Hypotheses  

Students seem to readily accept that traditional and simulation-based 

approaches are ways to test the same hypotheses; of the 14 students interviewed 

individually, none expressed the belief that the claims being tested were different for the 

two approaches. Ideally, students will also make deeper connections related to the 

hypotheses. In particular, students should understand that both theoretical and 

empirical models are based on the assumption that the null hypothesis is true. Students 

with the highest achievement in the course often emphasized this connection. For 

example, when asked to describe how the two approaches were similar, Cameron 

mentioned the assumption of the null hypothesis first.  

Cameron: I mean, in the two approaches we both ended up using the null hypothesis 
as our like – like our base. I don’t know – that’s what I refer to it as, like 
what we used to sample things or to model off of. 

For some students, the assumption of the null hypothesis may seem abstract in 

traditional inference. Simulation-based inference makes the null assumption more 

concrete by providing a physical model for the “just by chance” explanation. 

Constructing a physical model requires consideration of the null hypothesis and the 

randomness inherent in the study design. Some students incorporated the language of 
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modeling even when they discussed traditional tests. For example, before testing the 

hypothesis 𝐻0: 𝑝 = 0.5, Devon drew a Normal distribution, but he described it as follows: 

Devon: It’s like a – the null hypothesis distribution. So a coin flip distribution, I 
guess. Like how often it would occur by chance. 

Modeling Chance Outcomes  

All students interviewed made connections between the dotplots and histograms 

used to represent a distribution of simulated statistics and the density curves used to 

represent theoretical sampling distributions. At the most basic level, students noticed 

their visual similarities, with many using the term “Normal” to refer to discrete and 

continuous bell-shaped curves alike. When comparing simulated distributions and 

Normal curves, students often described one as an approximation of the other. In some 

cases, students’ beliefs about the relationship between the two models shifted over the 

course of the year. Soon after theoretical sampling distributions were introduced, 

students often described them as an “estimate” or a “general overview” or even 

“imprecise” while simulated distributions were described as “exact results” or “the actual 

distribution.” By the end of the year, students were more likely to believe that an infinite 

number of shuffles would result in the theoretical distribution. That is, students began to 

treat 𝑧, 𝑡, and 𝜒2 distributions as the true sampling distribution – an infinite, theoretical 

construct rather than a fallible model.  

At a more advanced level, students made connections in terms of the outcomes 

being represented – for example, a distribution of statistics, or a “just by chance” 

distribution – or in terms of the distribution’s purpose in the larger inferential process. In 

his individual interview, Ryan made rich connections between the two sampling 

distributions after using both approaches to test a difference of means. The data came 
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from a randomized experiment that compared the effects of two treatments on blood 

pressure.  

Ryan: Well with both of them you end up with a bell-shaped distribution to 
compare what you got initially in the first sample to. Yea. I mean they’re – 
and both the distributions were centered at the difference being 0. So yea. 

Catherine: Why are they centered at the difference being 0? 

Ryan: Because the [t] distribution is shaped as if there is no difference … And 
then [in the simulated distribution], we just took that idea and put it into 
practice by just doing a bunch of samples of this assuming they had the 
same effect on blood pressure. And then we made our distribution out of 
samples instead of [pause] inference. 

Catherine: Ok, so [earlier] you said these are both sampling distributions. Are they – 
would these be pictures of the same thing? 

Ryan: No, because [the density curve] consists of t, the statistic of t, while [the 
simulated distribution] consists of the statistic of the mu difference (a 
difference of means). … Technically they’re not the same, but they’re both 
centered at 0, because a t distribution is kind of like a z distribution, where 
it measures the amount of standard deviations away. But a mu difference 
is just the actual difference between the two [means]. So it would be 
centered at 0. And this one makes sense that it’s centered at 0, because if 
it’s not different then it’s no standard deviations away. 

Ryan recognized that the t distribution represented a distribution of t statistics 

that could be obtained through repeated sampling; however, many students did not 

correctly identify the variable for a theoretical distribution. Although failure to identify the 

units in a randomization distribution is a concern in classes that employ simulation-

based inference (Rossman & Chance, 2014; Saldanha & Thompson, 2002) the 

participants in this study tended to be more confident describing simulated distribution 

than they were describing theoretical distributions. Compare Natalia’s descriptions of 

the two representations.  

Natalia: (describing the Normal curve): That represents the distribution of our data, 
and if we did the experiment over and over again, it like represents what 
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our results would look like. … The results of the test here when the child 
was asking being asked which thing it would choose. 

Natalia: (describing the dotplot produced by the applet): Um, this dotplot is the 
distribution of the number of heads that we simulated when we were doing 
the coin flip. So in our case that would represent the proportion who chose 
helper. 

When describing the Normal curve, Natalia seems to refer to a distribution of sample 

data rather a sampling distribution. Data like these confirm that the struggle to 

coordinate multiple levels, described in Chapter 4, is not unique to simulation-based 

inference.  

Calculating P-values 

When the applet counts the trials more extreme than the observed statistic, the 

resulting proportion can be interpreted as a p-value, and most students recognized the 

connection between theoretical and empirical p-values by the end of the year. Further, 

many students carried over the idea of counting samples when they described how the 

calculator found a p-value. For example, Grace described the calculation from both 

approaches as counting the results that fall beyond the sample data. Note she assumes 

the calculator is using the same statistic as the applet – the count of 14 successes in 

the original data – rather than a standardized statistic.  

Grace: They’re similar in that you’re looking for a p-value and it’s going to 
measure the same thing … They’re both counting from 14 since that’s 
what we’re testing for, but then that’s just counting the number of 
repetitions whereas this is assuming that it’s Normal so this is the 
probability of it happening with a Normal distribution. 

When asked how the calculator found a p-value, many students were able to 

draw a density curve and shade the area corresponding to the p-value; however, some 

students could not remember how a calculator found a p-value based on a test statistic. 
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These students often speculated that the calculator was doing the same thing as the 

applet. 

Libby: This is just taking more possibilities into consideration. But [the traditional 
test] is one specific outcome whereas [the simulation-based test] is taking 
100 different outcomes. Like they’re both calculating p-values-ish, but that 
just seems like broader scale. Except for maybe in the traditional test, I 
just don’t understand the magic of calculators and they’re actually doing all 
of this and then we’re just getting this – our t-value, our p-value, our 
degrees of freedom, all that. 

Failing to remember the details of the traditional test, Libby made connections from 

simulation-based inference, which supported a useful conception of the p-value. In her 

interview, she repeatedly demonstrated a working conception of the p-value as the 

probability that the observed results occurred by chance, though she could not 

remember the details of the traditional test.  

Although many students were unsure of how the calculator found p-values, they 

were nearly unanimous in the belief that the p-value given by the calculator was more 

accurate. They provided various reasons to support this belief. The quotes below come 

from a group interview with Ryan and Eva and individual interviews with Hannah and 

Hazel.  

Ryan: I guess because… Well, I think this p-value is calculated a different way 
than this one. This one was calculated literally by counting how many of 
the shuffles were that out of 10000, when this one was just (pause) was 
um… was true (laughs) – was the real one. The real – the real thing. 

Catherine: The real thing? 

Ryan: Yea, I don’t know how else to say it. 

Eva: The real deal. It’s calculated. 

Hannah: Well we used [the calculator] most this year. And I felt like it was more 
accurate than doing a simulation, because you get a number that has like 
– like [the applet] just says 0, but [the calculator] also has numbers behind 
the zero, so it kind of feels more accurate. 
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Hazel: Maybe because the law of large numbers, [the p-values] get closer as [the 
number of trials] get higher, but we’re not to infinity, so they’re not the 
exact same. 

Some students seemed to trust the p-value from the traditional test on the virtue of its 

being computed using a calculator, a trusted tool. Furthers, as Hannah pointed out, the 

calculator always produces a p-value to a large number of decimal places, which lends 

a (sometimes unwarranted) air of accuracy; in contrast, if a statistic is very unlikely, it 

may not appear at all in a set of simulated trials, resulting in an estimated p-value of 0. 

Lastly, beliefs like those expressed by Hazel were very common by the end of the year. 

Students correctly observed that empirically estimated p-values tend to be closer to 

theoretical p-values when the number of trials is large. However, it is important to note 

that both empirical and theoretical p-values are estimates; both empirical and theoretical 

models are imperfect representations of the underlying system.  

Implications 

Are These Connections Productive? 

The results of this study suggest that students can make connections across 

traditional and simulation-based approaches, but do these connections lead to deeper 

understanding of traditional methods or the core logic of inference more generally? 

Because this was not an experimental study, there is no controlled comparison of 

pedagogical practices, but some proposed advantages of simulation-based inference 

seem to be substantiated in the data.  

One oft-cited advantage of simulation-based inference is that it allows inference 

to be introduced early in the course and reinforced in various contexts, whereas 

traditional inference cannot be introduced without the machinery of theoretical sampling 

distributions (Holcomb, Chance, Rossman, Tietjen, et al., 2010; Tintle et al., 2011). On 
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the day z-tests were first introduced in class, students filled out an exit ticket prompting 

them to make connections to the simulations they had used previously. On the day t-

tests were introduced, students again filled out an exit ticket. Responses to these 

formative assessments suggest that students had already developed inferential 

conceptions by the point in the year when inference would be first introduced in a 

traditional course. 

Hannah: z-test is similar to the 3S strategy, because they both have the same 
hypothesis and conclusion with p-value. They are also both Normal. Z-test 

is different in which it needed a formula; z =
p̂−p0

√
p0(1−p0)

n 

. Also it had three 

conditions it had to follow; random, normal and independent. Whereas, 3S 
didn’t. 

Isabella: z-test and 3S strategy are similar in that they both use the null hypothesis 
to check and see if the data happened by chance. Z-test and 3S strategy 
are different in that the 3S strategy does not test for Normal and 
Independent because the graph of the simulated data can show this. 

Devon: A t-distribution is the bell-shaped distribution of statistics – the mean 

divided by the standard deviation of the sampling distribution. (t =
x̅−μ

sx

√n

). 

This is similar to the problems that required z & t scores to find how far a 
value is from the mean & how often it occurs. 

Having previously applied the logic of inference – students were accustomed to 

considering whether observed results could have occurred just by chance – they were 

able to focus on aspects of the tests that were new, such as the formulas for test 

statistics and the role of theoretical probability distributions.  

Throughout the semester, students who provided the strongest conceptual 

descriptions of inference seemed to make connections to previous experiences with 

simulations. For example, in class periods two days apart, students responded to 

parallel formative assessment items. One asked students to describe the role of the 

simulation in SBI and the other asked students to describe the role of the z-distribution 
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in a z-test. The additional prompts given also mirrored each other. Note the structural 

similarities as Ryan and Grace describe the two approaches.  

Ryan: The simulation allowed us to see how often the Mythbuster’s simulation 
would occur by chance. The simulated distribution represented the 
experiment done multiple times when yawning wasn’t contagious. We 
make a decision about the hypothesis by seeing how likely to occur our 
result was. 

Ryan: The z-distribution allows us to see how often a certain result would 
happen if the null were true. It represents how many st. devs away from 
the true value a number is. If the p-value we get from our number placed 
in a z-distribution is very low, it is unlikely our result would happen by 
chance. 

 

Grace: The simulation was necessary b/c we needed to test if the results could 
happen “just by chance” or if they’re statistically significant. We use the 
simulation distribution to show what differences happen just by chance 
and compare that to our data… 

Grace: The z-distribution helps us gauge where our sample data lines up with the 
null (because the distribution assumes the null is true)… 

The first exam that assessed traditional inference included a survey question 

asking students whether they thought experience with simulations had helped them 

understand z-tests and t-tests. Of the 10 students who responded, 7 said yes, and the 

most common reason given was appreciation for the visual representations provided by 

the applet. Students were also asked to share if and how simulations made hypothesis 

testing more confusing. In response, they mentioned the fact that each simulation is 

different, that having more options complicates the choice of test, and that these 

methods take a lot of time. 

 In response to questions about whether simulations had helped or caused 

confusion, several students provided answers without clear connections to simulations. 

For example, when asked if simulations had helped, Alicia said, “No, because I am still 
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not sure what the differences between a z-test and a t-test are. I mean logically it 

doesn’t make sense to me.” This difficulty is certainly valid, but it is more closely related 

to traditional tests than simulation-based tests. Responses like this suggest that 

students do not always clearly distinguish the two approaches. 

On that early survey, Eva responded that simulations made it difficult for her to 

“grasp the concept” of inference. After encountering both approaches in class, 

participants in this study widely agreed that traditional tests were easier than simulation-

based tests. For example, the data for this study included 20 task-based interviews, and 

in each, students were given a choice of which approach to use first; only one student 

completed the simulation-based test first. This may not be surprising, given that 

participants in this study had considerably more experience with traditional methods. 

Although students found simulation difficult, several students volunteered statements 

about the value of simulation-based methods in their final interviews. The quote below 

illustrates how Eva’s position changed.  

Eva: But like when you just do [the traditional test], and you’re like, “Okay, p-
value.” I just rely on “p-value is less than this so reject the null.” Like I don’t 
actually think about it. 

Catherine: Mmhmm, you just sort of follow the rule. 

Eva: Yea, which I mean is a good rule for passing the AP test, but for actually 
thinking about statistics, it’s like [the traditional test] doesn’t really mean 
anything to me. And like making a conclusion, it’s just, I don’t know. [In the 
simulation approach], I’m like, “Okay, I understand why,” and [in the 
traditional approach], I’m just like, “Rules!” And write it. 

Quotes like these raise important questions for both teachers and researchers. 

What aspects of simulation-based inference lead to productive struggle for students? 

These students had considerably more experience with traditional methods. Did 

simulation provide a challenge simply because it disrupted students’ problem-solving 
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routines or is it beneficial in other ways? Further, traditional inference methods are not a 

monolithic pedagogical approach. How can teachers of traditional courses discourage 

over-reliance on rules and procedures? 

Hyperconnections 

In general, students are more comfortable describing the similarities between 

approaches than they are describing the differences. Several examples of these 

hyperconnections between approaches have already been mentioned. Some students 

are overly liberal with the term “Normal”. Some assume that all p-values are calculated 

by counting simulated trials. Some fail to recognize the role of standardized test 

statistics in traditional inference. The goals of the particular course may dictate the level 

of concern about these kinds of errors. Some teachers may be concerned by the failure 

to distinguish approaches yet pleased with connections between conceptually similar 

procedures. 

However, other hyperconnections between approaches are unambiguously 

problematic. While working on inference tasks, students commonly combined the two 

procedures, usually incorporating traditional procedures into a simulation-based 

approach. For example, after using their physical model to simulate one trial, students 

often tried to use the results of the simulation as basis for a traditional test. For 

example, on a chapter test, Isabella designed a simulation to test whether seagulls have 

a preference for where they land. In the study, the outdoor space was made up of 56% 

sand, 29% mud, and 15% rocks, and biologists recorded the landings of 200 seagulls.  

Isabella: First you would use a spinner and label 56% of it “sand”, 29% of it “mud”, 
and 15% of it “rocks”. Then we would spin the spinner 200 times. We 
would then count up how many of these spins landed on sand, mud, or 
rocks and organize them into 3 columns. To get the expected counts, we 
would multiple 56%, 29%, and 15% to 200 for sand, mud, and rocks. Then 
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we would enter the number of spins for sand, mud, and rocks we collected 
from the simulation and the expected counts into 2 different lists on a 

calculator. We would then calculate χ2, p-value, and df using the calculator 

function χ2 − GOF. 

Isabella’s model is appropriate for simulating where seagulls would land if they had no 

preference. However, instead of repeating the process many times, she used one 

simulated trial as the basis for her conclusion. In Chapter 4, errors like this are 

described as difficulty transitioning from the level of sample data to the level of the 

sampling distribution. 

Less commonly, students simulated many trials, but combined approaches as 

they calculated a p-value. For example, a few students simulated many trials to create a 

distribution of statistics, but started counting from the point of the z statistic or even the 

p-value obtained from the traditional test rather than the statistic recorded in the 

simulation. This error may only occur in situations where students are asked to use both 

approaches consecutively.   

These hyperconnections serve as a reminder that some of the proposed 

advantages of simulation-based inference – e.g., avoiding mathematical formulas and 

theoretical sampling distributions – do not apply to courses that use simulations in 

addition to traditional tests. As described, using two sets of inferential methods in 

instruction can lead to confusion as students make inappropriate connections between 

the traditional and simulation-based approaches. When deciding how to teach 

inference, teachers must weigh the benefits of productive connections against the costs 

of inappropriate connections.  
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Recommendations 

Over the course of several years, modifications have been made to the course 

taught at PKY in order to capitalize on potential connections between traditional and 

simulation-based methods. For teachers who choose to use simulations as 

complements to theory-based methods in instruction, the following recommendations 

may support productive connections between the two.  

Engage Students in Simulation 

The course description above mentions three ways to engage students in 

simulations: using physical chance devices to carry out simulation, using technology to 

carry out simulations, and designing simulations. Each may be beneficial, and there are 

a number of considerations for incorporating these modes of engagement strategically. 

 Many (e.g., Chance et al., 2004; Holcomb, Chance, Rossman, Tietjen, et al., 

2010) have recommended starting with hands-on physical simulations before 

transitioning to computer simulations within the same context. Chance et al. (2004, p. 

315) suggest that physical simulations “give [students] a meaningful context to which 

they can relate the computer simulations. Otherwise the computer provides a different 

level of abstraction and students fail to connect the processes.” Mills (2002) reports a 

general consensus in the literature that physical and computer simulations complement 

each other; however, few of the articles she reviewed were empirical studies. Teachers 

may choose physical simulations early in the year when students are less familiar with 

the process of randomization.  

 Although physical simulations are often recommended as a starting point, 

empirical p-values are not reliable estimates of the true likelihood unless the number of 

trials is large, which is more feasible using computer simulations. Technological tools 
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allow students to carry out the complete 3S process on their own in a relatively short 

period of time. Applets are free and relatively simple to use; these are particularly 

appealing advantages for courses in which simulation is not the primary means of 

conducting inference. Two popular sets of web applets are StatKey 

(http://lock5stat.com/statkey/), which is associated with the authors of Unlocking the 

Power of Data, and Rossman/Chance Applets 

(http://www.rossmanchance.com/applets/), which is associated with two authors of the 

Introduction to Statistical Investigations Curriculum. Other technological tools, such as 

Tinkerplots (C Konold & Miller, 2011), offer more flexible modeling capabilities but 

require a larger investment of class time to master the software and, in some cases, 

money for the software licensing fee.  

After participating in teacher-designed simulation activities, students may benefit 

from designing their own simulations. As discussed in Chapter 3, choosing and 

evaluating a design often leads student to consider the role of randomness and the null 

hypothesis. Further, student-designed models may be thought-revealing, allowing the 

teacher access to inferential conceptions not visible through more routine inference 

procedures.  

Be Intentional about Transitions between Approaches 

The course description above illustrates one way to transition from simulation-

based inference to traditional inference. At the 2015 United States Conference on 

Teaching Statistics, three authors of the textbook Statistics: Unlocking the Power of 

Data proposed another. After first conducting a simulation-based test, they find the p-

value using a Normal approximation, where the standard error is the standard deviation 

from the simulated distribution. Next they transition to a z statistic, still using the 

http://lock5stat.com/statkey/
http://www.rossmanchance.com/applets/
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standard error from the simulation. Finally, they introduce a formula for the standard 

error, demonstrating to students that all four approaches result in similar p-values. 

Whether you start by transitioning to a standardized z-statistic or to a Normal 

approximation, be intentional about the transition from a simulation-based approach to a 

traditional approach. Similarly, if you introduce formal language and inscriptions 

alongside traditional tests, be explicit about the connections to informal language. For 

example, students may not immediately realize that the null hypothesis is a formal name 

for the “just by chance” explanation. Providing students with a framework to make 

connections capitalizes on the inferential conceptions students have already developed. 

Further, formative assessments that prompt students to reflect on these connections 

may provide benefits to both teachers and students.  

Don’t Neglect Traditional Representations 

In classes that use inference-capable calculators to find p-values, students may 

not spontaneously produce graphical representations of the theoretical distribution. 

However, absent those representations, students may come to regard the calculator as 

a mysterious black box. Perhaps counterintuitively, lack of familiarity with the mechanics 

of p-value calculation is associated with a tendency to overrate the accuracy of p-values 

estimated using traditional methods. If the details of traditional inference are important 

goals of the class, it is worthwhile to continue using traditional representations – such as 

formulas for standardized test statistics and shaded density curves to represent p-

values – at least intermittently throughout the course.  

Emphasize Modeling in Both Approaches 

Both theoretical probability distribution and simulated sampling distributions are 

models for the outcomes that would occur just by chance under the null hypothesis. 
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However, students tend to view one as the true distribution and the other as an 

approximation; by the end of the year, most students in this study put more faith in the 

traditional approach. Thus, students may be very surprised to find that the p-values 

obtained from the two approaches are not exactly the same even when the number of 

trials is very large.  

A simulation-based approach offers many opportunities to discuss modeling, as a 

physical model is chosen to match the data scenario and the randomness inherent in 

the study design. However when using the traditional approach, students do not always 

recognize checking conditions as a way to evaluate the fit of a theoretical model. One 

issue is that the complicated guidelines for checking conditions can conceal the 

commonality across all traditional tests: namely, theoretical models only fit well when 

the sample size is reasonably large. When asked whether she checked the Normal 

condition for a chi-square test, Isabella gave the following response.  

Isabella: No. Because the χ2 statistic doesn’t depend on how small or large a 
sample or group size is. Instead it depends on if the expected counts are 
larger than 5. 

The expected counts will only be larger than five when the sample size is reasonably 

large, but the rule of thumb, expressed in terms of expected counts, obscured the 

connection to sample size. To avoid this confusion, refer to the “sample size condition” 

for all traditional tests.  

Perhaps related to broader misunderstandings about the conditions for inference, 

students often believe that the “Normal condition” applies to simulation-based tests and 

traditional tests alike. One way to address this confusion is to use a simulation-based 

test as an alternative when the conditions for a traditional test are not met. It is 

problematic to require students to check conditions but only provide data where the 
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conditions are met. Students may come to believe that the conditions are only a 

formality and that the theoretical distribution can be regarded as “true”, when in fact, the 

simulation-based model is sometimes a more appropriate model for the data.  

Summary 

 This article described an AP Statistics course that employed both traditional and 

simulation-based inference methods and aimed to emphasize the connections between 

the two. As illustrated, students enrolled in the course often made productive 

connections across approaches, which provides preliminary support for the idea that 

complementing theory-based methods with simulations can deepen conceptual 

understanding of inference. However, students were also prone to “hyperconnections” – 

overgeneralizing the characteristics of one approach to the other, or even combining 

traditional and simulation-based procedures. The article offered four recommendations 

to capitalize on potential connections between traditional and simulation-based methods 

in courses that employ both to introduce the logic of inference. However, considerable 

work remains for teachers and researchers as novel pedagogical approaches for 

teaching inference are implemented and refined.  
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CHAPTER 6 

CONCLUSIONS AND DISCUSSION 
 

Given its pervasiveness in the scientific research literature (Nickerson, 2000), 

rich understanding of statistical inference is an important goal for students in 

introductory statistics classes – both those who intend to produce their own statistical 

analyses and those who will engage with statistics primarily as critical consumers of 

data-based reports (ASA, 2016). Although significance testing is a ubiquitous data 

analysis tool, there is evidence to suggest it is misunderstood by many who use it 

(Nickerson, 2000). Thus, statistics educators have devoted considerable effort to 

reforming inferential instruction in recent years; in particular, many have proposed 

simulation-based inference methods as a means to improve understanding of inference 

(e.g. Cobb, 2007; Garfield et al., 2012; Lock et al., 2014; Tintle et al., 2011). As 

enrollments in statistics courses grow and simulation-based inference methods gain 

popularity (ASA, 2016), a research-based understanding of the impact of simulation-

based inference becomes necessary.   

This dissertation examined how students used traditional and simulation-based 

inference methods to understand inference in the context of an AP Statistics course. 

Using a modified grounded theory methodological approach (Charmaz, 2014), the 

conclusions of this study were drawn from systematic, inductive analysis of data 

collected in an AP Statistics course. Data collection and analysis were informed by a 

models and modeling perspective (Lesh & Doerr, 2003a), which assumes that reality is 

accessed through models and representations that emphasize different aspects of the 

underlying system. This theoretical perspective supported the study’s focus on 
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representations, like mathematical equations, graphs, concrete materials, and notation 

systems (Seel, 2014) as mediators of inferential understanding.   

The study was situated in the context of an AP Statistics course taught by the 

author at P.K. Yonge Developmental Research School (PKY). The AP Statistics 

curriculum prescribes traditional inference methods and includes nine tests of 

significance (College Board, 2010). In total, statistical inference – which includes tests 

of significance and confidence interval estimation – constitutes 30-40% of an AP 

Statistics course (College Board, 2010). In addition to the prescribed AP Statistics 

curriculum, the course taught at PKY regularly incorporated simulation-based inference 

methods; thus all students in the study were exposed to both inferential approaches. 

The course incorporated simulation-based inference throughout the year and added 

traditional inference later in the second semester. In total, the course included fourteen 

in-class experiences with simulation-based inference, including multiple opportunities 

for groups of students to design their own simulations and carry out simulations using 

physical chance devices and applets. However, because the AP Statistics course 

description emphasizes traditional inference, students had considerably more 

experience with traditional, theory-based methods by the end of the school year.  

Data were collected in two phases. First, a pilot study was conducted at the end 

of the 2013-2014 academic year. In this first phase, individual task-based interviews 

(Maher & Sigley, 2014) were conducted with seven students, selected to represent a 

range of statistical achievement in the class that year. In the second phase, data were 

collected from all eleven students enrolled in the course in the 2015-2016 academic 

year. Data collected in the second phase included student responses to targeted 
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formative assessments, exam items, and survey items; daily field notes and journal 

entries written by the teacher-researcher; and transcripts of individual and group 

interviews. Because grounded theory encourages simultaneous data collection and 

analysis, data collection was informed by the analysis, as the researcher aimed to 

saturate emerging categories.  

Data analysis entailed a process of systematic coding in multiple phases, 

according to the guidelines for grounded theory presented by Charmaz (2014); these 

guidelines provided a systematic yet flexible way to study the emerging data. In the 

initial coding phase, each segment of data was assigned a concrete and descriptive 

code intended to reflect the students’ actions. After comparing these initial codes to the 

data and looking for patterns in the codes across interviews, the researcher inductively 

constructed a set of focused codes to “sift, sort, synthesize, and analyze” the large 

amounts of data (Charmaz, 2014, p. 138). The codes reflect the “sensitizing concepts” 

of the models and modeling perspective, but these concepts were not accepted into the 

analysis until they could be substantiated in the data (Charmaz, 2014; Corbin & Strauss, 

1990). Throughout the study, memos were used to document the process of coding and 

to draft descriptions of conceptual categories. Ultimately, the focused codes were 

grouped into categories, which were presented in three articles in Chapters 3, 4, and 5. 

This chapter synthesizes the findings of those articles, interpreting the results in relation 

to the overarching research question. Limitations, implications, and directions for future 

research are also discussed.  

Synthesis of Results 

The central research question of this study asked how students use traditional 

and simulation-based inference models to understand inference. The data suggest that 
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the participants interacted with the models, representations, and tools of the two 

approaches in qualitatively different ways. Using the tools made available in this course 

– including a four-step problem-solving framework, a memorized list of conditions for 

inference, and a graphing calculator with wizards for statistical tests – many students 

were able to carry out a traditional significance test quickly and efficiently by end the of 

the year. However, when students were probed for details about the underpinnings of 

the traditional, theory-based approach in individual interviews, some revealed 

incomplete knowledge of the computational mechanics or perhaps more concerning, the 

underlying logic of inference. Further, traditional inference tasks, similar to tasks these 

students had completed in preparation for the AP Statistics exam, rarely led to 

spontaneous discussion of statistical modeling or the logic of inference. Thus, these 

tasks did not provide many opportunities for students to challenge each other’s 

conceptions or for a teacher/researcher to evaluate student thinking. 

Additionally, students’ use of tools and representations for traditional inference 

sometimes differed from the expectations of the teacher-researcher. For example, 

graphing calculators served multiple purposes, not only as a data analysis tool, but also 

a memory aid to help students choose a significance test or revise their hypotheses. On 

the other hand, when not required to draw a density curve as a representation of the 

theoretical sampling distribution, graphical representations were used less than 

expected for traditional inference. Individual interviews suggest that some students do 

not recognize the referent of the density curve graph, which may explain why they do 

not routinely employ them in their reasoning. 
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In contrast to the relative ease with which they carried out traditional inference, 

many students struggled to design a simulation and use the simulation-based model to 

draw conclusions about statistical significance. At the design stage, students sometimes 

proposed and evaluated multiple models before settling on one suitable for a “just by 

chance” explanation of the data. As evident from discussions among students, these 

modeling decisions often prompted consideration of the null hypothesis and the source 

of randomness in the study design. In some cases, student-designed models revealed 

student thinking that had been obscured in their more successful use of traditional 

methods.  

After choosing an appropriate physical model, some students still struggled to 

carry out simulation-based inference. The common errors that arose at this stage can 

be described largely in terms of two challenges. First, students struggled to coordinate 

the multi-level scheme, which includes the population or true underlying relationship, the 

distribution of single sample, and the distribution of statistics collected from multiple 

samples. For example, some students confused the sample size of a single sample with 

the number of samples in an empirical distribution of statistics. Others did not easily 

transition from the sample level to the sampling distribution level, which sometimes led 

to inappropriate interpretations of a single simulated sample. Second, students 

struggled to coordinate two perspectives: the real-world where the sample data was 

collected and the hypothetical perspective where the null hypothesis was assumed to 

be true. This led some students to imagine a distribution produced through simulation 

based on the null hypothesis as a distribution produced through replication in the real-

world. This conception was manifested as a number of different errors. Despite these 
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difficulties, finding an empirical p-value using the applet as a tool prompted many 

students to consider the p-value as a probability of observed data and a tail probability.  

Students often demonstrated incomplete understanding of inference through their 

use of simulation-based methods, but the findings do not imply that these methods 

caused confusion; all participants in the study were exposed to both traditional and 

simulation-based methods in instruction, so no conclusions can be drawn about the 

causes of their conceptions. However, there is some evidence to suggest that students 

exposed to both traditional and simulation-based methods in instruction can make 

productive connections across approaches. For instance, students who find theoretical 

probability models and their representations opaque may describe statistical concepts in 

terms of more accessible empirical models. Although students consistently chose 

traditional methods when offered the choice between approaches, several students 

stated that they found simulation-based approaches useful for understanding why 

inference methods work.  

The data in this study include numerous examples of productive connections 

between traditional and simulation-based approaches. However, students tend to be 

more comfortable describing similarities between approaches than they are describing 

differences. Students sometimes overgeneralize, attributing characteristics of one 

approach to another. Even more problematic, students sometimes combine the 

traditional and simulation-based approaches as they carry out a single inference task. 

These inappropriate “hyperconnections” serve as a reminder that some proposed 

advantages of simulation-based inference – e.g., avoiding mathematical formulas and 

theoretical sampling distributions – do not apply to courses that use simulations in 
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addition to traditional tests; instead, simulations add more models and representations 

for students to consider. When deciding which inference methods to include in 

instruction, teachers must weigh the benefits of productive connections against the 

costs of inappropriate connections. 

Prior to this study, the statistics education literature provided little description of 

how students employ the tools and representations of traditional and simulation-based 

inference models. In particular, little had been written about the pedagogical approach 

of complementing traditional inference with simulation-based methods or the use of this 

approach in a high school setting. Thus, the findings of this study represent a 

contribution to the research literature in statistics education. 

Interpretation of Results 

In contrast to the statistical generalizability of quantitative studies, this qualitative 

study  aims for analytical generalizability, which involves “a reasoned judgment [on the 

part of the reader] about the extent to which the findings from one study can be used as 

a guide to what might occur in another situation” (Kvale, 1996, p. 233). Even in the field 

of statistics education, which has traditionally favored quantitative methodology 

(Gordon, Reid, & Petocz, 2010), there have been calls for qualitative research that 

produces “vivid descriptions that … represent a researcher’s well-formulated 

perspective rather than an objective reality that cuts across a tightly specified range of 

context” (Groth, 2010). Accordingly, this dissertation describes how students used 

traditional and simulation-based inference to understand inference in the context of an 

AP Statistics class; the study’s conclusions are supported by data co-constructed by the 

teacher-researcher and participating students. This section provides recommendations 
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for how the study’s results might be interpreted in light of the study’s design and 

epistemological position.  

First, all data were collected in AP Statistics classes taught by a single teacher-

researcher at a single school. It is not reasonable to assume that the results of the study 

will generalize to all introductory statistics courses that complement traditional inference 

with simulation-based inference. Factors including the teacher, the textbook, the school 

environment, and individual student traits likely affected how the participants in this 

study used traditional and simulation-based inference models to understand inference. 

In order to help the reader “discover the extent to which the theory does apply and 

where it has to be qualified for the new situations” (Corbin & Strauss, 1990, p. 15), this 

dissertation includes thorough descriptions of the context, participants, and the 

inferential instruction used in class.  

Second, the study provides a naturalistic description of the use of models, tools, 

and representations in a single classroom environment; it is not an experimental design. 

Thus, the study does not provide a basis for comparing the effectiveness of traditional 

and simulation-based inference, as all students were exposed to both approaches in 

instruction. Further, the study does not provide a basis for comparing simulation-based 

inference with other possible uses of class time, such as additional practice with 

traditional methods. However, this study may nevertheless inform the choice of 

curriculum by providing detailed descriptions that illuminate the reasoning processes 

each approach elicits. 

Lastly, the research process in this study is subjective. In contrast to the positivist 

leanings of early grounded theorists, this study acknowledges the subjectivity of both 
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data collection and analysis. Recognizing that data are not merely collected but co-

constructed by the researcher and the participants, this dissertation described how the 

data were elicited with attention to the role of the researcher and the influence of 

concurrent analysis. Specifically, three facets of the study’s subjectivity merit mention.  

First, the researcher’s dual role as teacher necessarily influenced the study. The 

teacher-researcher chose to use simulation-based inference in her class, which 

suggests a certain pre-existing belief in the potential of these methods. Second, the 

researcher was familiar with views of inference shared among statisticians and statistics 

educators before she began this study. This lens of disciplinary knowledge likely 

influenced the researcher’s perceptions of the students’ modeling practices. Third, 

incidents in the data were coded by a single person, so there is no indication of inter-

rater reliability. This highlights the importance of the teacher-researcher’s perspective in 

constructing the final analysis. Thorough documentation of data analysis and clear, 

detailed examples “invite the reader to appraise [the researcher’s] interpretations and 

think about other ways the data could have been interpreted” (Kalinowski et al., 2010, p. 

30).  

Implications and Future Research 

The findings of this study have implications for teachers and researchers 

interested in the teaching and learning of statistical inference. At the same time, the 

study raises further questions to be answered in practice and through research.  

First, this study provides a qualitative description of the use of traditional and 

simulation-based inference as complements in instruction. This description may be of 

use to teachers as they consider which inference methods to include in their courses, 

though as mentioned above, this study does not constitute a comparison of approaches. 
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In addition to existing quantitative comparisons of student achievement across curricula, 

there is a need for qualitative comparison of the two approaches. However, this study 

suggests that such comparisons will present a methodological challenge. In particular, 

how will future studies account for the different ways in which students interact with the 

two models? Future work should acknowledge that a study pitting pedagogical 

approaches against each other necessarily imposes assumptions about the learning 

processes and outcomes that are valued. Further, it is not accurate to talk about 

traditional, simulation-based, or complementary approaches as if they are monolithic 

pedagogical styles that can be applied uniformly in any classroom context. Future work 

should attend to context, as students’ understanding of inference is likely influenced by 

many factors working in concert.  

Second, this study highlighted the complex relationship between student 

reasoning and tools for inference: Not only do students use tools, they interact with 

them. For example, a tool may serve as a memory aid or as a source of cognitive 

dissonance; it may prompt students to discuss certain statistical concepts while 

enabling them to disregard others. These findings have implications for teachers, as 

they decide which tools should be made available to students. In addition to other 

factors like availability and ease of use, the impact on students’ reasoning is a nontrivial 

consideration in choosing a tool, and there is need for future work that investigates the 

impact of specific tools on student reasoning.  

Third, this study identifies errors that commonly arise in courses that employ 

simulation-based inference and characterizes the conceptions underlying those errors. 

Awareness of these issues may have implications for instruction, both in proactive 
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instructional design and reactive responses to students. However, there is need for 

future work to explore how to address these errors effectively.  

Lastly, whether used alone or as a complement to traditional inference, 

simulation-based methods represent a substantive disruption of the status quo in 

introductory statistics courses. Thus, most teachers who undertake these methods – by 

choice, because of their inclusion in the standards, or because of an administrative 

decision – will be implementing methods dramatically different from those they were 

taught. Further, as illustrated throughout this report, simulation-based methods do not 

eliminate the difficulties of statistical inference. Thus, there is need for work by 

statisticians and teacher educators to support teachers as they implement new 

inference approaches and meet the challenges that subsequently arise.  

In summary, this dissertation provided a qualitative description that informs our 

understanding of how students use traditional and simulation-based inference models to 

reason about inference in a class that employs both in instruction. In particular, the 

study identified common errors that arise in simulation-based inference and discussed 

the connections that students make between the two models and representational 

systems. The data collected substantiate the educative potential of simulation-based 

inference methods. However, use of simulation-based methods – alone or as a 

complement to traditional inference – is not a panacea. Considerable work remains for 

teachers and researchers as various pedagogical approaches are implemented and 

refined in classrooms. 
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APPENDIX A 
DATA COLLECTION TIMELINE 

Table A-1.  Data collection timeline. 

Academic year 2013-2014 Teaching of AP Statistics using both traditional and 
simulation-based methods to introduce the core logic 
of inference 

  
May 2014 Pilot study: Task-based interviews with 7 AP 

Statistics students  
  
Academic years 2014-2016 Modifications to instruction based on the results of the 

pilot study 
  
Spring 2016 Targeted formative assessments collected about    

     once per week 
Five chapter tests that included assessments of  
     simulation-based inference 
Daily journal entries 
On-going analysis of data with memos to  
     document the process of coding and theory 
development 

  
May 2016 Task-based interviews using piloted interview 

     protocol 
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APPENDIX B 
INFORMED CONSENT FORM 

Informed Consent 

Please read this consent document carefully before you decide to participate in 
this study. 

 
Purpose of the Research Study: 

The purpose of this study is to describe how students reason about statistical inference. 
More specifically, we have used two kinds of inference methods in class this year: 
traditional methods (e.g., z-tests and t-tests) and methods based on simulations.  This 
study explores how students use traditional and simulation-based inference methods to 
understand the logic of inference and what connections students see between the two 
methods. 
 
What students will be asked to do in the study: 

Near the end of the school year, students will be asked to participate in a group 
interview and an individual interview. During the interviews, students will be asked to 
“think aloud” as they use traditional and simulation-based inference methods. Students 
will also be prompted to compare and contrast the approaches, describing the 
connections perceived between the two.  
 
Time Required: 
Each interview will take 30-45 minutes to complete. The group interview will be 
conducted during class time, and the individual interview will be conducted outside of 
class.  
 
Risks and Benefits: 

There are no risks associated with participating in this study. 
 
Compensation: 
There is no compensation for participating in the study. 
 
Confidentiality: 

Student identity will be kept confidential to the extent provided by law. Student 
information will be assigned a code number or pseudonym. Student names will not be 
used in any report. 
 
Voluntary Participation: 
Participation in this study is completely voluntary. There is no penalty for not 
participating. 
 
Right to withdraw from the study: 
Students have the right to withdraw from the study at any time without consequence. 
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Whom to contact if you have questions about the study: 
Catherine Case, Doctoral Candidate, School of Teaching and Learning, University of 
Florida phone: 256-454-5348; e-mail: ccase@ufl.edu 
 
Whom to contact about your rights as a research participant in the study: 
UF IRB Office, PO Box 112250, University of Florida, Gainesville, FL 32611 
phone: 352-392-0433; email: irb2@ufl.edu 
 
 
 
Signatures: (Please place an X on the appropriate lines.) 
 
____ I have read the procedure described above. I voluntarily give my consent for my 
child, ________________________________, to participate in the study. I have 
received a copy of this description. 
 
____ I have read the procedure described above. I do not give my consent for my 
child, ________________________________, to participate in the study. I have 
received a copy of this description. 
 
Parent/Guardian: _________________________________ Date: _______________ 
 
 
 
 
____ I have read the procedure described above. I voluntarily give my assent to 

participate in the study. I have received a copy of this description. 
 
____ I have read the procedure described above. I do not give my assent to 
participate in the study. I have received a copy of this description. 
 
Student: ________________________________________ Date: _______________ 
 

 

 

 

 

 

 

  

mailto:ccase@ufl.edu


 

173 

APPENDIX C 
INTERVIEW PROTOCOLS AND TASKS 

Individual Interview Protocol 

[Let the student choose inference technique—traditional or simulation-based inference.] 
 

 Why did you choose do use this approach (traditional/simulation-based) first? 

 While you’re carrying out the test, think out loud so I can understand what you’re 
doing. 
o What does this part mean? 
o How did you know to do that? 
o Can you draw a picture to show me what you mean? 

 What did you conclude about the results of the study? 

 Write down an interpretation of the p-value in the context of this problem.  What 
is it the probability of? 

 
[Ask the student to work through the problem again using the alternative inference 
approach.] 
If the student is unable to complete the task provide assistance.  If they struggle with 
traditional inference, remind them of the State, Plan, Do, Conclude framework.  If they 
struggle with simulation-based inference, guide them with prompts like the following: 
 

 What claim are the researchers trying to find evidence against? What are they 
trying to find evidence for? 

 Which of these two claims should we try to model? 

 How can we model this claim using chance devices like coins, dice, or cards?  

 What would you expect to happen if we continued with this process? 

 Let’s use a computer applet to make this process faster. 

 How do we use the information given by the applet to draw a conclusion? 
 
After the task has been completed using the two different approaches, prompt the 
student to make connections between the two. 
 

 How are the two approaches you used similar? 

 How are the two approaches you used different? 

 After they’ve compared and contrasted the two on their own, direct their attention 
to specific parts of their work and ask if they see further connections between the 
two approaches. 
o Claims/hypotheses 
o Conditions 
o Calculations needed to find the p-value 
o Representations of the sampling distribution 
o P-values 

 Are there any revisions you’d like to make to your p-value interpretation? 

 Why do you reject the null when the p-value is small? 
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Group Interview Protocol 

Instructions: 
 

 Make students aware of the available tools (formula sheet, graphing calculator, 
chance devices, and computer). 

 Introduce the inference task.  
o Does this result provide convincing evidence of response bias? Work together 

to decide.  
o Let the student choose an inference technique—traditional inference or 

simulation-based inference. 

 If students ask what to write down: “Paper is here so you can show each other 
what you’re thinking. You don’t have to write anything down for me.” 

 
After completing the first inference approach: 
 

 So you used a [traditional/simulation] approach to decide if these results provided 
convincing evidence of response bias. Can you show me a different approach 
using a [traditional test / simulation]? 

 
After completing both inference approaches: 
 

 Now you have used two different inference approaches to analyze this data. 
Were the outcomes of the two tests consistent with each other? Is this 
surprising? 

 
Prompts specific to simulation-based inference: 
 

 Before you use the computer, can you show me how to use a physical simulation 
in this context? 

 The applet shows a simulation using cards. Is this equivalent to the one you 

designed?  
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Interview Tasks 

Task 1: Helper vs. Hinderer 

In a study reported in Nature, researchers investigated whether infants take into 

account an individual’s actions towards others in evaluating that individual as appealing 

or aversive, perhaps laying the foundation for social interaction.  In one component of 

the study, 10-month-old infants were shown a “climber” character that could not make it 

up a hill in two tries.  Then they were shown two scenarios for the climber’s next try, one 

where the climber was pushed to the top of the hill by another character (“helper”) and 

one where the climber was pushed back down the hill by another character (“hinderer”). 

The infant was alternatively shown these two scenarios several times.  Then the child 

was presented with the two characters from the video (the helper and the hinderer) and 

asked to pick one to play with.  The researchers found that 14 of the 16 infants chose 

the helper over the hinderer. 

 
Task 2: Oil and Blood Pressure 

In a study reported in the New England Journal of Medicine, researchers investigated 

whether fish oil can help reduce blood pressure. 14 males with high blood pressure 

were recruited and randomly assigned to one of two treatments.  The first treatment was 

a four-week diet that included fish oil, and the second was a four-week diet that included 

regular oil.  At the end of the four weeks, each volunteer’s blood pressure was 

measured again and the reduction in diastolic blood pressure was recorded.  The 

results of this study are shown below.  Note that a negative value means that the 

subject blood pressure increased. 

 

Fish oil 8 12 10 14 2 0 0 

Regular oil -6 0 1 2 -3 -4 2 

 

Task 3: Response Bias  

In Chapter 4 we learned how characteristics of an interviewer can lead to response 

bias. Two AP Statistics students decided to investigate this issue. They speculated that 

students would be more likely to identify as feminists if asked by a female interviewer.  

A sample of 60 male high school students were asked, “Are you a feminist?” Half were 

randomly assigned to a male interviewer and half were randomly assigned to a female 

interviewer. Of the 30 asked by a male interviewer, 11 responded, “Yes.” Of the 30 

asked by a female interviewer, 15 responded, “Yes. 
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APPENDIX D 
TARGETED ASSESSMENTS 

Targeted Assessments (by date) 

Research Questions 

1. How do students use traditional inference models and simulation-based 
inference models to understand inference?  

2. What conceptions of inferential topics do students hold, and how are these 
related to commonly occurring student errors? 

3. What connections do students see between the two models and representational 
systems? 

 

Date Assessment (brief version) RQ 

1/15 Individual exit ticket 
 

 In your own words, what is a sampling distribution? 
 

 
 

2 

1/22 Individual exit ticket 
 

 In your own words, what is a sampling distribution? 

 Today we used an applet to simulate a distribution of means. 
How is that simulation related to the Normal distribution? 
 

 
 

2 
3 

1/29 Ch. 7 exam, item 1 – Interpreting German tank simulation 
 

 Label the three parts of the model 

 In the dotplot in part 2, there is a dot at 149. What does this 
dot represent? 

 
In the dotplot in part 3, there is a dot at 151.5. What does this 

dot represent? 
 

 Is 𝑁̂ = 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅 an ideal estimator for the number of 
German tanks in the population? Why or why not? 
 

 
 

2 
2 
 
 
 
 
 

2 
 

1/29 Ch. 7 exam, formative assessment (ungraded) 
 

 In class, we used an applet to simulate repeated sampling 
from a candy machine with 50% orange candies. Explain what 
the dotplot below represents. 

 Your textbook uses the image below to represent the 

sampling distribution of 𝑝̂. Compare and contrast these two 
graphical representations – one a dotplot and one a smooth 
curve. How are they similar? How are they different?  

 
 

2 
 
 

3 
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2/12 Individual exit ticket 
 

 Explain how a z-test is similar to the 3S strategy we’ve used 
before. 

 Explain how a z-test is different from the 3S strategy. 

 
 
 

3 
 

3 

2/17 Group activity 
 

 Your class notes show computer output for a z-test. Now use 
the 3S Strategy to test the same hypotheses. Add notes that 
explain how this process compares and contrasts to a z-test. 
 

 
 

1 
3 

2/19 Individual exit ticket 
 

 In your own words, what is a t distribution? 

 Is it related to anything we’ve already learned? 
 

 
 

2 
3 

2/26 Ch. 9 exam, survey (ungraded) 
 

 On Item 3, you had the option to use simulation-based 
inference or traditional inference to test a claim. How did you 
decide which one you wanted to use? 

 All year, we’ve been using simulations to test hypotheses. In 
this chapter, we learned about two traditional tests – a z-test 
and t-test. Do you think experience with simulations helped 
you understand z-tests and t-tests. If so, how? 

 Do simulations make hypothesis testing more confusing in 
some ways? If so, how? Be as specific as you can.  

 
 

1 
 
 

3 
 
 
 
 

3 
 

2/29 Individual in-class assessment 
 

 Based on their experiment, the Mythbusters confirmed that 
yawning is contagious. 1 minute survey: “I agree with their 
conclusion, because…” or “I’m skeptical about their 
conclusion, because…” 
 

 
 

2 

2/29 Individual exit ticket 
 

 Today we did a hypothesis test about the difference between 
two proportions using the 3S Strategy. Write a few sentences 
about the role of the simulation. 

 The following questions may help you get started: Why is it 
necessary? What does the simulated distribution represent? 
How do we use the simulation to make a decision about the 
hypotheses? 
 

 
 

1, 2, 3 
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3/2 Individual exit ticket 
 

 Today we did a hypothesis test about the difference between 
two proportions using a z-test. Write a few sentences about 
the role of the sampling distribution (the z distribution). 

 The following questions may help you get started: Why is it 
necessary? What does the z-distribution represent? How do 
we use the simulation to make a decision about the 
hypotheses? 
 

 
 

1, 2, 3 

3/12 Ch. 10 exam, item 3 
 

 Suppose you want to use simulation-based inference to 
answer this question. Describe the simulation you would use 
to estimate the sampling distribution. Be sure to mention the 
device (e.g. coins, dice, cards), how you would identify 
outcomes (labels), and what variable or statistic you would 
record each time.  

 Suppose you want to use a t-test to answer this question. 
Describe the theoretical sampling distribution you would use. 
Be sure to mention the shape, center, and spread1 of the 
distribution.  

 The p-value for this study is 0.064. A p-value is a probability. 
What is it the probability of? Explain in context. 
 

 
 

1 
 
 
 
 
 

3 
 
 
 

2 

3/14 Group activity 
 

 Design a simulation to find out what values of 𝜒2 are likely to 
occur by chance. 

 Your design can use anything you want: spinners, bags of 
beads, dice, coins, cards, calculators, … 
 

 
 

1 

                                            
1 This question is flawed, because we had not learned the standard deviation of the t distribution. 
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4/1 Ch. 11 exam, item 2, part 3 
 

 Did you check the Normal condition before performing this 
test? Explain why or why not. 

 
Ch. 11 exam, item 4 
 

 Suppose you want to use simulation-based inference to 
decide whether seagulls show a preference for where they 
land. Describe the simulation you would use to estimate the 

sampling distribution of the 𝜒2 statistic. (Your design can use 
any device you choose: spinners, beads, dice, coins, cards, 
calculators,… ) 

 Describe the distribution of statistics that would be generated 
by your model. What would it look like? 
 

 
 

2, 3 
 
 

 
 
 

1 
 

 
 
 

2, 3 

4/4 Individual exit ticket 
As a class, we designed a simulation to test the association between 
row number and test score. I summarized student ideas on the board 
and numbered the steps.  
 

 For each step, write one or two sentences explaining why. 
(instructions given verbally) 
 

 
 
 
 
 
 

1, 2 

4/15 Ch. 12 exam, item 1 
Context: Students are given a scatterplot and a regression line 
summarizing the effect of sugar on the life of cut flowers. A 
description of a simulation and 12 simulated slopes are also 
provided. 
 

 The average of the simulated slopes is near 0. Is that 
surprising? 

 Use the results of their simulation to estimate the p-value. Do 
you think this is a good estimate? Why or why not? 

 Interpret the p-value as a probability. (What is it the probability 
of?) Make sure your answer is in context. 
 

 
 
 
 
 
 

2 
 

2 
 

2 
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APPENDIX E 
SIMULATION-BASED INFERENCE ACTIVITIES 

Date Analogous 
Test 

Activity (Source) Context Physical Simulation Applet or other 
technology 

8/24 Exact 
binomial test 

Coke vs. Pepsi  
 
(adapted from this 
article by Floyd 
Bullard) 

Each student tastes two unlabeled 
cups of soda and writes down 
whether think the cups contained 
Coke or Pepsi. The number of 
correct guesses is recorded. Do 
the results of the class taste-test 
provide convincing evidence that 
the students weren’t just 
guessing? 

Chance device: coins 
 
 Heads – correct 

identification of soda 
 Tails – incorrect 

identification 
 Flip coin once for 

each student in the 
original taste-test. 

 Record the number 
of correct guesses. 

Applet: 
One 
proportion 
inference 

9/4 t-test for 
difference of 
independent 
means 

Sleep deprivation 
 
(Holcomb, 
Chance, 
Rossman, Tietjen, 
et al., 2010) 

21 subjects were randomly 
assigned into two groups: 𝑛1 = 10 
in the unrestricted sleep group, 
𝑛2 = 11 in the sleep deprivation 
group. Data provided show the 
subjects’ improvements between 
pre-test and post-test on a test of 
visual discrimination? Do the data 
provide convincing evidence that 
sleep deprivation caused the 
scores to be lower? 
 

Chance device: cards 
 
 Write improvement 

scores on blank 
cards. 

 Put cards from both 
groups together and 
shuffle.  

 Deal cards into two 
piles to mimic 
random assignment.  

 Record the 
difference in means 
for the two groups. 

Applet: 
Randomization 
test for two 
means 

 
 
 

http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/31458.html
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/31458.html
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
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9/9 t-test for 
difference of 
independent 
means 

Memorizing 
letters 
 
(Zieffler & 
Catalysts for 
Change, 2013) 

Each student is randomly 
assigned to receive one of two 
lists of letters. Students are given 
30 seconds to memorize as many 
letters as they can; when time is 
up, the students lists as many 
letters they can from memory. 
The number of correct letters in 
the written list before the student 
made a mistake is recorded. Do 
the results of the class 
experiment provide convincing 
evidence that one list is easier to 
memorize than the other? 

Chance device: cards 
 
 Write number of 

letters correct on 
blank cards. 

 Put cards from both 
groups together and 
shuffle.  

 Deal cards into two 
piles to mimic 
random 
assignment.  

 Record the 
difference in means 
for the two groups. 

Applet: 
Randomization 
test for two 
means 

http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
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11/9 z-test for 
difference of 
proportions 

Distracted drivers 
 
(Starnes et al., 
2013) 

48 subjects were randomly 
assigned to two groups. One 
group drove in a simulator while 
talking on a cell phone, and the 
other group drove in a simulator 
while talking to a passenger.  
One outcome of interest was 
whether the driver would 
remember to stop at a rest area 
that was specified by researchers 
before the simulation started. The 
number who remembered in each 
group was recorded. Do the 
results of the study provide 
convincing evidence that talking 
on a cell phone is more 
distracting than talking to a 
passenger? 

Chance device: cards 
(two colors) 
 
 Let one color 

represent drivers 
who stopped and 
one color represent 
drivers who didn’t 
stop.  

 Put cards from both 
groups together and 
shuffle.  

 Deal cards into two 
piles to mimic 
random 
assignment.  

 Record the 
difference in the 
proportion who 
stopped for the two 
groups. 

Applet: 
Randomization 
test for 
categorical 
response 

http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
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11/16 N/A Hot hand 
 
(Starnes et al., 
2013) 

A basketball announcer believes 
that a certain player is streaky. 
That is, the announcer believes 
that if the player makes one shot 
then he is more likely to make his 
next shot. As evidence he points 
to a recent game where the 
player took 30 shots and had a 
streak of 7 shots made in a row. 
Assume the player makes 2/3 of 
his shots. Is this convincing 
evidence of “streakiness”?   

Chance device: dice 
 
 Let 1-4 represents 

shots that he made. 
Let 5-6 represent 
shots he missed.    

 Roll die 30 times to 
represent a game 
with 30 shots. 

 Record the longest 
streak for each 
game. 

 

None 

11/18 N/A Picking teams 
 
(Starnes et al., 
2013) 

At a department party, 18 
students in the 
mathematics/statistics 
department at a university decide 
to play a trivia game. 12 of the 
students are math majors and 6 
are stats majors. To divide into 
two teams of 9, one of the 
professors put all the players’ 
names in a hat and drew out 9 
players to form one team, with the 
remaining 9 players forming the 
other team.  
The players were surprised when 
one team was made up entirely of 
math majors. Does this outcome 
provide convincing evidence that 
the names weren’t mixed well in 
the hat? 

Chance device: cards 
 
 Write M on 12 cards 

to represent math 
majors and S on 6 
cards to represent 
stat majors.  

 Shuffle the cards 
then draw 9 card to 
represent the 
selection of a team. 

 Record the number 
of math majors on 
the team that had 
the higher number 
of math majors.  

TI-84 Plus: 
 Let 1-12 

represent 
math majors 
and 13-18 
stat majors 

 Use 
randIntNoRep 
to shuffle the 
integers 

 Students 
corresponding 
to first 9 
integers are 
form a team. 
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11/18 Exact 
binomial test 

1 in 6 wins 
 
(Starnes et al., 
2013) 

A soft drink company printed a 
message on the inside of each 
bottle cap. Some of the caps 
said, “Please try again!” while 
others said, “You’re a winner!” 
The company advertised the 
promotion with the slogan “1 in 6 
wins a prize.” 7 friends each buy 
a bottle, and 3 of them won a 
prize. Is this convincing evidence 
that the company’s claim 
inaccurate?   

Chance device: dice 
 
 Let 1-5 represents a 

loss and let 6 
represent a win. 

 Roll die 7 times. 
 Record the number 

of wins. 
 

Applet: 
One proportion 
inference 

12/2 z-test for 
difference of 
proportions  

Dolphin therapy 
 
(Zieffler & 
Catalysts for 
Change, 2013) 

30 subjects with a clinical 
diagnosis of depression were 
randomly assigned to one of two 
treatment groups. Both groups 
engaged in swimming and 
snorkeling each day, but one 
group did so in the presence of 
bottlenose dolphins and the other 
did not. 10 of 15 subjects in the 
dolphin therapy group showed 
substantial improvement, 
compared to 3 of 15 subjects in 
the control group. Does these 
results provide convincing 
evidence that dolphin therapy is 
effective? 

Chance device: cards 
(two colors) 
 
 Let one color 

represent subjects 
who improved and 
one color represent 
subjects who didn’t.  

 Put cards from both 
groups together and 
shuffle.  

 Deal cards into two 
piles to mimic 
random 
assignment.  

 Record the 
difference in the 
proportion who 
improved for the 
two groups. 

Applet: 
Dolphin study 
applet 

http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/ChiSqShuffle.html?dolphins=1
http://www.rossmanchance.com/applets/ChiSqShuffle.html?dolphins=1
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1/15 – 1/29:  Simulations were used extensively to develop understanding of sampling distributions. However, these 
activities did not require the full logic of inference; specifically, students were not required to compare the results of a 
study to a simulated sampling distribution. Thus, they are not included in this appendix. 

2/12 z-test for one 
proportion 

Facial prototyping 
 
(Tintle et al., 
2013) 
 
Ch. 1 available 
here 

Students are shown two faces 
and asked to identify which one 
was Tim and which one was Bob. 
The proportion of students who 
identify Tim as the man on the left 
is recorded. Do these data 
provide convincing evidence that 
the class is using facial 
prototyping (not just guessing)? 

Chance device: coins 
 
 Heads – identifies 

the man on the left 
as Tim 

 Tails – does not 
identify the man on 
the left 

 Flip coin once for 
each student in the 
class. 

 Record the 
proportion who 
identify the man on 
the left as Tim 

Applet: 
One proportion 
inference 

2/22 z-test for one 
proportion 

Innocent until 
Proven Guilty 
 
(Case & Whitaker, 
2016) 

In a two-player trivia game, a 
spinner is used to decide which 
player gets the first shot at 
answering the question. Player A 
had access to the spinner before 
the game, and player B suspects 
that he may have tampered with it 
to get more chances at answering 
questions. In groups, students 
test the spinner to see if they can 
convict player A of cheating. 

Chance device: 
spinner 
 
Three spinners are 
used each with a 
different fraction 
corresponding to 
player A. See article 
for more details.  

Tinkerplots: 
Model is 
available here 

http://www.math.hope.edu/isi/Chapter%201_5_20_14.pdf
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
file:///C:/Users/Rino/Google%20Drive/Research/Dissertation%20Research/Draft%20chapters/tinyurl.com/RiggedGame
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2/29 z-test for 
difference of 
proportions 

Is yawning 
contagious? 
 
(Starnes et al., 
2013) 
 
A short version of 
the episode is 
available here.  

The Mythbusters team assigned 
50 subjects to two groups. Two-
thirds of the subjects were given 
a yawn seed; that is the 
experimenter yawned in the 
subject’s presence. The 
remaining subjects were given no 
yawn seed. Of the 34 subjects 
who received a yawn seed, 10 
yawned. Of the 16 who received 
no yawn seed, 4 yawned. Do 
these results provide convincing 
evidence that yawning is 
contagious?  

Chance device: cards 
(two colors) 
 
 Let one color 

represent subjects 
who yawned and 
one color represent 
subjects who didn’t.  

 Put cards from both 
groups together and 
shuffle.  

 Deal cards into two 
piles to mimic 
random 
assignment.  

 Record the 
difference in the 
proportion who 
yawned for the two 
groups. 

Applet: 
Randomization 
test for 
categorical 
response 

3/4 z-test for 
difference of 
means 

Sleep deprivation 
(revisited) 

   

http://www.discovery.com/tv-shows/mythbusters/videos/is-yawning-contagious-minimyth/
http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
http://www.rossmanchance.com/applets/ChisqShuffle.htm
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3/14 chi-square 
goodness of 
fit test 

Favorite subject 
 
(original activity) 

A Gallup survey asked American 
teens about their favorite subject 
in school; assume these 
percentages are population 
values. Compare these 
percentages to data we collected 
through a SRS of students at this 
school (n=42). Do our data 
provide convincing evidence that 
the distribution of favorite subject 
at this school is different from the 
Gallup results? 

Student designed 
physical simulation 
but it was not carried 
out. 
 
One possible chance 
device: spinner 
 
 Areas 

corresponding to 
the Gallup results. 

 Spin 42 times. 

 Calculate 𝜒2 
statistic for each 
trial.  

Tinkerplots 

4/4 t-test for the 
slope of the 
regression 
line 

Seat location 
(Starnes et al., 
2013) 

An AP Statistics teacher 
randomly assigned 30 students to 
seat locations in his classroom 
(rows 1-7) for a particular chapter 
and recorded the test score for 
each student at the end of the 
chapter. The slope of the 
regression line relating score to 
row was -1.12. Does this provide 
convincing evidence that sitting 
closer causes higher 
achievement? 

Chance device: cards 
 
 Write scores on 

cards. 
 Deal into seven 

rows to mimic 
random 
assignment. 

 Calculate the slope 
of the regression 
line relating score to 
row.  

 

Applet: 
Analyzing two 
quantitative 
variables 

http://www.rossmanchance.com/applets/RegShuffle.htm
http://www.rossmanchance.com/applets/RegShuffle.htm
http://www.rossmanchance.com/applets/RegShuffle.htm
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5/6 Exact 
binomial test 

Juice preferences 
 
AP Exam 2006B 
#6 

Sunshine Farms wants to know 
whether there is a difference in 
consumer preference for two new 
juice products – Citrus Fresh and 
Tropical Taste. In an initial blind 
taste test, 8 randomly selected 
consumers were given unmarked 
samples of two juices; of these, 6 
preferred Tropical Taste. Does 
this provide convincing evidence 
of consumer preference? 

Chance device: coins 
 
 Heads – preference 

for Tropical Taste 
 Tails – preference 

for Citrus Fresh 
 Flip coin once for 

each subject in the 
original taste-test. 

 Record the number 
who preferred 
Tropical Taste. 

Applet: 
One proportion 
inference 

 
 

http://apcentral.collegeboard.com/apc/public/repository/_ap06_frq_statistics__51654.pdf
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
http://www.rossmanchance.com/applets/OneProp/OneProp.htm
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