
 

 

UNDERGRADUATE STUDENTS’ INFORMAL NOTIONS OF VARIABILITY 

by 

OGUZ KOKLU 

(Under the Direction of Jennifer J. Kaplan) 

ABSTRACT 

 A robust understanding of variability is key to deeper conceptualization of other major 

statistical ideas, but many students have only naive notions of variability. Researchers have 

identified some of these informal notions, but existing research is limited with regard to how 

students reason when their preexisting informal notions are not applicable. Therefore, I 

investigated undergraduate students’ reasoning about variability when datasets or distributions to 

be compared (a) have equal ranges, (b) do not include extreme values, and (c) have 

approximately the same number of different values; and the ways, if any, providing a context 

supports students’ reasoning about variability in the preceding situations. 

Following the premises of the knowledge-in-pieces epistemological perspective (diSessa, 

1993), I designed statistical tasks and used them as homework questions. I analyzed students’ 

responses to homework questions following Arnold’s (2013) distribution framework. In addition, 

I conducted two or three task-based interviews with students using the similar statistical tasks. 

Using Powell, Francisco, and Maher’s methodology (2003), I analyzed four of these students’ 

video recorded interviews. 

The analysis of the homework data showed that the students addressed variability 

considerably less frequently than they addressed the shape of a given distribution. In addition, 



the students often provided limited responses in their homework questions. The interview data 

showed that three of the participants had informal notions of variability and employed them 

inconsistently across the tasks. Overall, the students’ reasoning about variability was often 

contingent upon the particular and more prevalent characteristics of the questions on which they 

were asked to work. Lastly, although the use of contextual information by the interviewed 

students was minimal, student responses to homework questions suggested that availability of 

context in a statistical question changed students’ choices from among the incorrect answer 

options.  

The study presents multiple directions to frame future research. The most pressing areas 

are exploring how statistical terms such as variability are used in introductory statistics courses, 

creating practical intervention tasks that could be used to underline the normative meaning of 

variability, and suggesting instructional designs to exploit students’ preexisting statistical notions 

in developing a more robust statistical knowledge. 
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CHAPTER 1 

INTRODUCTION 

 Statistical understanding, which has become more valuable due to its potential to enhance 

the quality of decision making (Graham, Pfannkuch, & Thomas, 2009), is highlighted using 

different terms, the more common ones being statistical thinking (American Statistical 

Association [ASA], 2005; National Governors Association Center for Best Practices [NGA] & 

Council of Chief State School Officers [CCSSO], 2010; Moore, 1990; Scheaffer, 2000), 

statistical reasoning (NGA & CCSSO, 2010; Franklin, 2013; Wild & Pfannkuch, 1999), and 

statistical literacy (ASA, 2005; Franklin et al., 2007; Gal, 2002, 2004). Although the emphases 

implied by each of these terms may diverge, a common theme is the need to consider variability 

when working with data (Graham et al., 2009). Variability is ubiquitous, and as Cobb and Moore 

(1997) suggested, without variability there would be no such discipline as statistics. Variability is 

a core concern in statistical investigations (ASA, 2005; Cobb & Moore, 1997; Franklin et al., 

2007), often addressed by understanding, quantifying, explaining, or, if possible, reducing it 

(such as by controlling for other variables in experimental designs) in data (Franklin et al., 2007; 

Graham et al., 2009, p. 681, Moore, 1990, p. 135; Wild & Pfannkuch, 1999).  

Suggesting a definition of variability that applies to all different types of variables is 

impossible. In the case of categorical variables, variability indicates the frequency by which 

“observations differ from one another” (Kader & Perry, 2007, p. 2) across the categories of the 

variable of interest. The variability of a univariate quantitative variable, on the other hand, 

suggests the degree to which observations deviate from the measure of center. That is to say, 
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variability of univariate quantitative data requires consideration of the central value and its 

distance from each observation in a distribution of the data. It should be noted that this 

requirement is not applicable to categorical variables because a typical measure of center does 

not exist for categorical data. In brief, variability for categorical data focuses on how often 

observations differ (from each other) and variability for quantitative data focuses on how much 

observations differ (from the mean). Thus, when a definition adequately describes variability for 

categorical variables, it lacks important aspects of the concept in quantitative variables (Kader & 

Perry, 2007). 

  Variability is also the unifying element of statistics instruction in Grades K–12 and at the 

college level (ASA, 2005, pp. 8–10; Kader & Mamer, 2008, p. 38). In addition to its essential 

role in investigations with data (Leavy & Middleton, 2011), a lack of comprehension of and 

attention to variability, especially in working with quantitative data, impedes the understanding 

of other statistical key ideas such as randomness, distribution, sampling, central tendency, and 

inference (Makar, 2016). Overall, understanding variability of quantitative data is a major goal of 

teaching and learning statistics (Wild & Pfannkuch, 1999), thus is a key to success in statistics. 

 Reasoning about variability is crucial but often challenging for students at any grade 

level. Previous studies (e.g., Garfield, delMas, & Chance, 2007; Lann & Falk, 2003) have shown 

that students tend to rely on their preexisting “basic notions of variability” (Pingel, 1993, p. 71). 

When students are asked about variability, their notions are often reflected in action as (a) 

comparing only ranges across datasets, (b) focusing only on individual values (usually the 

extreme ones), and (c) exploring the extent to which observations in a distribution are repeated. 

In brief, students’ overreliance on their preexisting informal notions of variability, and difficulty 
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in attending to how data values cluster around the central value, make reasoning about variability 

for numerical variables an overwhelming task for them. 

Problem Statement 

 Variability is a key idea in statistics and has a fundamental role in all aspects of data 

analysis (Leavy & Middleton, 2011), making the understanding of the concept one of the most 

important goals of statistics instruction (Franklin et al., 2007). The authors of such documents as 

Connecting Research to Practice in a Culture of Assessment for Introductory College-Level 

Statistics Report (Pearl et al., 2012), Guidelines for Assessment and Instruction in Statistics 

Education (GAISE) College Report (ASA, 2005), GAISE Pre-K-12 Framework (Franklin et al., 

2007), Common Core State Standards for Mathematics (CCSSM) (NGA & CCSSO, 2010), and 

Principles and Standards for School Mathematics (National Council of Teachers of Mathematics 

[NCTM], 2000) agree that, although reasoning about variability is crucial for understanding and 

practicing statistics, it is also multifaceted and complex for students.  

Students also have difficulty in reasoning about variability within a context (i.e., the real-

life circumstance or the scenario presented in a statistical question or an investigation). Instead, 

students form (and continue to rely on) some informal notions—which often reflect a naive and 

fragmented understanding of the concept—even after receiving instruction specifically on 

variability (delMas & Liu, 2007; Garfield et al., 2007). Such informal notions as relying on range 

or the individual values in a given distribution (Confrey & Makar, 2002; Garfield et al., 2007; 

Shaughnessy, 2007) and confusing what variability refers to in the case of categorical and 

numerical variables (Loosen, Lioen, & Lacante, 1985) usually cause partial or incorrect 

conclusions regarding variability in statistical investigations. In addition, they impede students’ 

development of a proper conceptualization of the concept itself (Lehrer & Schauble, 2002). 
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Because informal notions often result in limited attention to the core meaning of variability and 

are obstacles to the robust understanding of variability, it is essential to investigate how students 

reason when their informal notions are not sufficient to address variability.  

Statement of Purpose and Research Questions 

In this study, I focused on undergraduate students’ reasoning about variability for 

quantitative variables. I aimed to investigate how undergraduate students reason about variability 

when their informal notions of variability are neither applicable nor fruitful because of the 

particular characteristics of a given problem, situation, or dataset—both with and without a 

context. Each case listed in the first question below was formulated to contest the 

aforementioned informal notions; students are not able to apply these notions, or if they are, they 

do not find them to be helpful. Another area of focus for the study is whether and to what extent 

there is link between students’ informal notions and the presence or absence of a context. I 

sought answers to the following research questions:  

1. How do undergraduate students reason about variability when the datasets or 

distributions to be compared have 

a. equal ranges? 

b. no extreme values? 

c. approximately the same number of different values? 

2. In what ways, if any, does providing a context support or detract from students’ 

reasoning about variability in the preceding situations? 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, I elaborate on the research focusing on students’ understanding of 

variability, primarily in the case of univariate quantitative data. Although the population of 

interest in the study was students enrolled in undergraduate introductory statistics courses, I also 

reviewed studies that targeted middle and high school students’ (and occasionally preservice and 

in-service teachers’) understanding of variability. I assume that undergraduate students’ 

reasoning about variability might not be considerably different from that of middle and high 

school students.  

 Note that a robust comprehension of variability is challenging without attending to other 

statistical concepts (Watson & Kelly, 2007) because knowing variability involves understanding 

many “statistical big ideas” (Garfield & Ben-Zvi, 2005, p. 98; Watson & Kelly, 2007) and their 

multifaceted relationships with variability (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). 

Given that understanding variability hinges upon comprehending other statistical big ideas, it is 

challenging to include every aspect of research on variability in a literature review. 

Consequently, I reviewed the research studies that are more closely related to my study, which 

could be summarized as the literature pertaining to undergraduate students’ reasoning about 

variability for univariate quantitative variables.   

Discussion of the Key Concepts  

 The normative statistical meaning of variability, as understood by professional 

statisticians and as traditionally described in textbooks (e.g., Bock, Velleman, & De Veaux, 
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2012), refers to the measures that indicate how data values typically deviate from a center value. 

It should be noted that this description is appropriate for numerical data, especially univariate 

quantitative data. The meaning of variability for categorical variables is different. Below, I 

discuss variability for categorical variables before I focus on variability for univariate 

quantitative variables. 

 If the outcomes of a variable fall into categories, then the variable is called categorical, 

and the variability of categorical data indicates how frequently “the observations differ from one 

another [emphasis added]” (Kader & Perry, 2007, p. 2). Kader and Perry (2007) and Perry and  

Kader (2005) coined the term unalikeability, for the description. In their introductory statistics 

textbook, Gould and Ryan (2014) used the term diversity to introduce variability for categorical 

data. Although the term diversity seems to be more self-explanatory, unalikeability and diversity 

are consistent in ways they refer to variability, both suggesting that the variability of a 

categorical variable indicates how frequently the observations differ from each other in a dataset. 

Therefore, if the observations are spread more equally across multiple categories, then the 

variable of interest is more varied than if only a few observations are so spread. For example, a 

college with approximately equal numbers of Hispanic, Asian, and African-American students is 

more diverse, hence more variable in terms of the categorical variable ethnicity, than a college 

with a majority of students who are Hispanic but with few students of other ethnicities. In brief, 

students should recognize the difference between “how often the observations differ from one 

another” (to measure the variability of categorical variables) and “how much the values differ 

from the mean” (Kader & Perry, 2007, p. 1) (to measure the variability of quantitative variables).  

 A variable with a single numerical characteristic is called a univariate quantitative 

variable, and two approaches can be used for the variability of this kind of variable (Jones & 
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Scariano, 2014, p. 93; Kader & Jacobbe, 2013, p. 25). The first approach is based on the distance 

between two individual data values (i.e., observations) as in the case of range (Jones & Scariano, 

2014). Range, the numerical value of the difference between the maximum and the minimum 

values of a variable, provides the overall spread but ignores (the spread of) all other values in a 

dataset. In other words, in range, only the most extreme possible difference in a given dataset is 

considered (Kader & Jacobbe, 2013, p. 25; Tabor & Franklin, 2013, p. 130). Similarly, the 

interquartile range (IQR), which could be regarded as a refined version of range, ignores the 

extreme values and takes only the middle 50% of the data into consideration. Overall, 

comprehending the idea behind range and IQR is simple, and these measures can be useful tools 

to compare the variability of two or more datasets quickly, but in a simplistic way (Garfield & 

Ben-Zvi, 2005). The second approach to gauge variability, which is more representative of 

statistical norms, is based on the average distances of the observations in a dataset from a 

centrally located value, usually the mean of the observations (Jones & Scariano, 2014; Kader & 

Jacobbe, 2013). It is important to note that, in this approach, variability is the characteristic of a 

distribution (Ciancetta, 2007), and each value in the given distribution contributes to the property 

in different weights (Peck et al., 2013, p. 25): The farther a value from the mean, the greater its 

contribution to the variability. 

 The widely used formal numerical measures of variability are standard deviation (SD) 

and variance (Bock et al., 2012, p. 60; Pingel, 1993). Undergraduate students should understand 

variance as the average of the squared deviations from the mean, and SD as the square root of the 

variance. Similarly, mean absolute deviation (MAD) and, equivalently, sum of the absolute 

deviations (SAD), measure variability in a similar way that SD and variance do. MAD and SAD 

are usually taught in middle and high school (see NGA & CCSSO, 2010; Franklin et al., 2007) 
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but typically not in undergraduate statistics courses, and they are rarely used in the statistics 

profession (see ASA, 2005).  

Standard deviation—and also MAD—characterizes the average spread of the data from 

the measure of the center (Konold & Pollatsek, 2002). In other words, SD suggests the overall 

measure of how variable the values are, on average, from the mean (Peck et al., 2013, p. 17). 

Students should comprehend that most of the values need to cluster more closely around the 

mean in order for a distribution to have a relatively smaller SD, and thus smaller variability 

(delMas & Liu, 2007). Statistics instruction should be instrumental in students’ discovery that 

SD is a measure of the density of observations about the mean of a distribution (delMas & Liu, 

2005). Makar and Confrey (2005) and Peters (2010) suggested that students usually struggle to 

interpret these numerical measures in the context in which data are provided.  

 These two approaches to variability, distance between two points and average distance 

from the mean, emphasize different characteristics of distributions, making the conceptualization 

of variability challenging for students. Measures of variability such as range and IQR are 

appropriate to use if the aim is to achieve a rough estimation of variability. Although using range 

and IQR is practical if a dataset has only a few values and if there is no common pattern or 

clustering around a point in the dataset, these measures are less helpful if a distribution is 

approximately symmetric and bell-shaped (Bock et al., 2012, pp. 43–82). In addition, having 

equal ranges tells little about the dispersion of the datasets to be compared. On the other hand, 

although measures of variability such as SD and MAD prioritize information on how 

observations differ from the mean, use of these measures is less useful in skewed distributions 

because the mean and SD are distorted in a skewed distribution. On the contrary, students may 

erroneously think, “The standard deviation adequately quantifies the variability of every set of 
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scores” (Pingel, 1993, p. 70). To conclude, students need to recognize the difference between 

these distinct approaches (i.e., measures) to variability and build skills that are helpful in 

selecting and employing the most appropriate approach under particular conditions (Garfield & 

Gal, 1999, pp. 210–211).  

Understanding the concept of variability for univariate quantitative variables is 

instrumental in learning the concept as applied to other distribution sources (e.g., in the cases of 

chance and sampling variability) and types of numerical variables (e.g., variability of bivariate 

data) (Peck et al., 2013, p. 4). For instance, variability of bivariate data refers to a measure 

indicating how data typically varies from a line (or a curve) (Garfield & Ben-Zvi, 2005; Peck et 

al., 2013, p. 4). The more data points stray from the line or curve, the larger the variability will 

be, which constitutes the foundational idea to understand statistical covariation (Cobb, 1999).  

The scope of research on reasoning about variability is extensive (Lehrer & Schauble, 

2004). In this section, I described how I conceptualized the concept of variability and explained 

how I treat the concept throughout the study. In the next section, I focus on students’ 

understanding of variability. 

Students’ Understanding of Variability 

 Although statisticians and textbooks agree on a normative statistical meaning of 

variability, students do not necessarily understand this term in the ways it is used by expert 

statisticians or the statistical community. Students often have fragmented, incomplete, or even 

contradictory interpretations of the concept (Garfield et al., 2007; Lann & Falk, 2003; Loosen et 

al., 1985; Pingel, 1993, p. 71). In an extensive analysis of studies on variability, Shaughnessy 

(2006, pp. 92–93; 2007, pp. 984–985) identified eight conceptions of variability commonly held 

by students:  
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• Unusual values such as extremes or outliers: In a given distribution or dataset, students 

focus their attention on particular data values such as unusual values or tails of a 

distribution to account for variability. 

• Change over time: Students observe variability as the repeated measurement of a variable 

over time. 

• Whole range: Students focus on the spread of all possible values. They no longer see data 

as individual points that vary but begin to recognize that a whole dataset can vary. 

• Likely range of a sample: Students generalize the idea of relative frequency to samples. 

The variability within or across samples can be brought into focus with this conception, 

which can also help students understand sampling variability.  

• Difference or distance from a fixed point: Students perceive variability as measuring the 

distance between a point and a reference point (such as a mean) and then repeating the 

same calculation for all observations in a distribution. 

• Sum of residuals: Students understand variability as the measure of the total amount a 

distribution is spread out from a fixed value, usually the mean.  

• Covariation or association: Students regard variability as an interaction of variables such 

as how a change in one variable may co-occur with a change in another variable. 

• Distribution: Distributions vary. Students compare variability between or among 

distributions to help understanding data. 

It should be noted that the list may not be exhaustive, and Shaughnessy (2006, 2007) did 

not attempt to list these understandings in order from simple to more complicated. Variability is 

a multifaceted notion, and each conception suggested by Shaughnessy may be helpful in 

particular cases (Garfield & Ben-Zvi, 2005). For example, understanding that distributions vary 
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is a crucial observation for students to conceptualize variability. Students may benefit from the 

notion in understanding the more formal measures and normative interpretations of variability. 

As Ciancetta (2007, p. 41) and Lehrer and Schauble (2004, p. 638) suggested, students’ 

understanding of variation is directly related to their understanding of the overarching concept of 

distribution. Hence, in the following section I illustrate this relationship by elaborating on the 

unifying concept of distribution.  

Shape, Center, and Variability of a Distribution 

 The conceptual understanding of the shape, center, and variability of a distribution are 

linked (Ciancetta, 2007; delMas & Liu, 2005; Leinhardt & Larreamendy-Joerns, 2007, p. 187; 

Makar & Confrey, 2003; Reading & Reid, 2006). Distribution refers to “the arrangement of the 

observations along a scale of measurement” (Hardyck & Petrinovichas as cited in Leavy & 

Middleton, 2011, p. 235). A distribution of a variable is a visual representation that aids to show 

outcomes of a variable and the relative frequency of these outcomes (Bock et al., 2012; Tabor & 

Franklin, 2013, p. 120). A distribution of quantitative data reveals important features of the data 

through the distribution’s overall shape, location of its center, and its variability in the given 

context of the data (delMas & Liu, 2005).  

Understanding the statistical concept of distribution is an essential component of 

statistical reasoning (Arnold & Pfannkuch, 2014; Franklin & Kader, 2006, p. 1; Garfield & Ben-

Zvi, 2005; Lehrer et al., 2011). Studies on students’ understanding of distribution (e.g., Arnold, 

2013; Arnold & Pfannkuch, 2014; Bakker & Gravemeijer, 2004; Ben-Zvi & Arcavi, 2001; 

Garfield & Ben-Zvi, 2008; Konold, Higgins, Russell, & Khalil, 2015; Wild, 2006) suggested the 

importance of developing a global view of distributions (or, equivalently, a global view of data). 

Here, global view refers to the ability to investigate, recognize, and explain general, “discernible 
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patterns in the data” (Lehrer & Schauble, 2004, p. 636). Students are supposed to recognize the 

location around which values are centered and the overall pattern of the shape the individual 

observations collectively form (Ben-Zvi & Arcavi, 2001). In brief, the hallmark of a global view 

is recognizing the “features not inherent to individual elements, but to the aggregate [emphasis 

added] that they comprise” (Ben-Zvi & Arcavi, 2001, p. 38). Accordingly, Lehrer and Schauble 

(2004) reported that students become uncomfortable when they are pushed to adopt an aggregate 

view of data. The researchers hypothesized that the discomfort occurs because an aggregate view 

of data hides of the individual data values (such as when data are represented in histograms) and 

shows only groups of data values. Prior to aggregation, students can point to the area in the graph 

that represents data about each person or observation in the data set, but this is not possible after 

aggregation (Lehrer & Schauble, 2004).  

In contrast to the global (or equivalently, the aggregate) view of distribution (Lehrer & 

Schauble, 2004; Makar, 2016), a local view is restricted to a focus on only the individual values 

within the data (Bakker & Gravemeijer, 2004; Konold & Higgins, 2003). Instead of aiming to 

capture what a distribution collectively suggests, students continue to consider only individual 

observations in the distribution. For instance, students who hold a local view tend to perceive 

mean as a property of a particular value or observation instead of considering the mean as a 

characteristic of the whole distribution collectively formed (Bakker, Biehler, & Konold, 2005). 

Hence, these students may find it perplexing when none of the observations in a distribution has 

the same value as the mean of the distribution. 

Distributions, through some sort of conventional graphs, provide visual representations of 

data in general, and variability specifically (Makar & Confrey, 2005; Noll & Shaughnessy, 2012; 

Peck et al., 2013). Students who accomplish the global view better understand that variability 
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can be observed in a graphical representation than students who do not have a global view of 

data (Arnold & Pfannkuch, 2014; Pfannkuch & Reading, 2006). Thus, understanding how data 

act visually is a fundamental task that students need to carefully practice in order to understand 

variability more thoroughly (Franklin & Kader, 2006, p. 1). 

Identifying important attributes and relationships from raw data is often challenging even 

for expert statisticians; hence graphical displays are used for exploring the features inherent to 

data. The ability to interpret distributions as represented by common graphical displays is an 

essential component of statistical literacy (ASA, 2005; Gal, 2002; Rumsey, 2002). Dot plots and 

histograms are two of the most common kinds of graphs used to depict the properties of the 

distribution of univariate quantitative variables (Arnold & Pfannkuch, 2014). A robust 

understanding of a distribution as displayed in these graphs should address shape, center, and 

variability as well as features such as gaps, clusters, and outliers in the context of the data 

(delMas, Garfield, & Ooms, 2005; Garfield & Ben-Zvi, 2005). The shape of a dot plot or 

histogram, for instance, implicitly indicates information about the variability of the distribution, 

because the shape presents the extent to which data values, in general, fall far or close to the 

center (Konold & Pollatsek, 2002), thus enabling one to see the pattern in a distribution (Wild, 

2006). In other words, a robust consideration of variability in a distribution necessitates 

important observations from the shape and center of the distribution. Cobb (1999) found that 

middle school students’ exploration of the shape of distributions could help them intuitively 

recognize the concepts of variability, sampling, and what data essentially suggest.  

 Although statistical graphs are introduced to students early at school (Friel, Curcio, & 

Bright, 2001), students generally fail to comprehend and use these graphical displays 

(Humphrey, Sharon, & Mittag, 2013). For example, students tend to limit their focus on 
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describing individual observations (i.e., data values) in a dot plot or bins in a histogram (Konold 

& Higgins, 2003) or as the center and ignore other essential features in a graph (Ben-Zvi, 2004). 

Students may also overgeneralize the role of shape in determining variability and, for instance, 

may assume that a symmetric distribution should always result in less variability (Kaplan, 

Gabrosek, Curtiss, & Malone, 2014, p. 3). In addition, Pingel (1993) claimed that students often 

fail to understand that “distributions with the same mean and standard deviation can have 

different shapes” (p. 70). To conclude, students, even at the undergraduate level, often neglect 

important components that are crucial in exploiting graphical displays (Bakker & Gravemeijer, 

2004; Konold & Higgins, 2003; Leavy & Middleton, 2011; Meletiou-Mavrotheris & Lee, 2010).  

 Students at various grade levels usually hold a limited understanding of variability, 

making the reasoning about variability in comparing distributions challenging (Ciancetta, 2007). 

Students also solely depend on their own informal ways of reasoning about variability (Jones & 

Scariano, 2014) even after exposure to formal statistics instruction. Thus, it is important to know 

some of these informal tools that students commonly employ. In the next section, I discuss 

students’ informal ways of reasoning about variability. 

Students’ Informal Notions of Variability 

Students usually hold a naive, cursory, or fragmented understanding of variability, which 

are called informal notions of variability in this study. These notions do not need to be incorrect; 

they may be locally or partially correct according to a (given) situation. In addition, they may 

occasionally work as helpful ways of reasoning. However, in my perspective informal notions 

are not robust enough overall for addressing variability thoroughly. In this section, I discuss the 

common informal notions students employ when reasoning about variability.  
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Students hold several primitive and intuitive ideas about variability (Jones & Scariano, 

2014), one of which is recognizing that things vary. By focusing on single data values (i.e., 

observations) one by one in a distribution (or, equivalently, by examining values of a variable in 

a dataset), a student recognizes that there may be differences among observations in the dataset 

under investigation (Canada, 2004; Garfield et al., 2007; Jones & Scariano, 2014). English and 

Watson (2015) and Garfield and Ben-Zvi (2005) suggested students’ recognition that 

observations vary from one to another is an essential understanding of variability especially in 

early school years. Similarly, Cooper and Shore (2008) found that students in early elementary 

grades could recognize that ideas, preferences, opinions, or qualities about the variable under 

investigation differ across observations. Overall, this type of understanding is particularly helpful 

in understanding the variability of categorical variables. Although this way of understanding 

variability is necessary for univariate quantitative variables, students additionally should include 

the measure of center and focus on how far each observation is away from the center.  

 In elementary grades mathematics, students collect data and visualize them using 

convenient methods, such as picture graphs (Franklin et al., 2007, p. 24). A statistical graph 

basically serves in visualizing the distribution of a variable, and students’ experience with graphs 

helps them see the presence of variability in a distribution. It is important for students to 

recognize that a variable of a dataset may have a “larger” or “smaller” variability, and that there 

can be no variation if, for example, each observation has the same value (Garfield & Ben-Zvi, 

2005).  

 Students’ data investigations in elementary grades, which are often investigations limited 

to categorical and discrete quantitative variables, indicate the presence of variability. When 

young students talk about variability, they usually mention: consistent, similar, different, 
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uncertain, typical, likely, more-or-less popular, common, and close to fair share. The expectation 

for students is to make the transition from their own colloquial understandings of variability—

things that change—to more normative understandings and uses over time (Ciancetta, 2007; 

Kader & Jacobbe, 2013).  

 Elementary grade students can generate understandings that are similar to standard 

statistical understanding (Lehrer et al., 2011). They can reason about variability in a considerably 

more robust way if appropriate and substantial intervention is provided (Watson, 2009). For 

instance, in their study with second-grade students, Jones et al. (2001) found that students were 

able to reason about variability using a schema that the researchers called “close-together or far-

apart”—reasoning that has a proximity to the normative statistical description for variability. 

Similarly, Lehrer and his colleagues’ study with fourth and fifth graders in the context of 

measurement and data modeling (see Lehrer et al., 2011; Lehrer & Schauble, 2002) found that 

students were able to express variability as originating from measurement error, recognize its 

role in the shape of a distribution, and quantify precision of a measurement by gauging how far 

away each data point is from the center. Lehrer and Schauble (2004) suggested that students can 

develop an understanding of variability in the context of measurement and data modeling as 

follows:   

The context of measurement provided strong support for students’ interpretation of 
statistical concepts related to distribution (Konold & Pollatsek, 2002). Measures of center 
corresponded to true scores, measures of spread to the tools and techniques employed by 
the measurers, and the overall shape of the distribution to the nature of error in this 
context. All of these qualities of distribution could be seen as emerging from students’ 
collective activity. (p. 638) 

 
 In the following three sections, I describe the most common informal notions that are 

listed in statistics education studies. I name these notions as (a) has a greater range, (b) has 

(more) extreme values, and (c) has fewer same (or similar) values.  
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Has a Greater Range 

When students are explicitly asked to consider variability of a distribution, they tend to 

equate variability with range (Ciancetta, 2007) and thus focus only on range differences among 

the distributions under investigation (Lann & Falk, 2003; Shaughnessy, 2007). For example, in 

their study with 354 first-year university students, Lann and Falk (2003) found that a greater 

proportion of students employed range than any other single measure of spread (i.e., MAD, IQR, 

and SD) when they were asked to compare the variability intuitively of given pairs of small raw 

datasets. Garfield et al. (2007) and Lann and Falk (2003) found students to be easily distracted 

by the differences in range values between datasets, which in turn, discourages students from 

investigating variability further. Lehrer and Schauble (2002) claimed that reliance on range is 

one of the impediments to the conceptual attainment of variability.  

Has (More) Extreme Values 

Students tend to put more emphasis on some of the values in a given dataset (or 

distribution) over other values, usually on the considerably smaller or bigger values. These 

values are usually called extreme values or outliers. According to Ben-Zvi and Arcavi (2001), an 

outlier is an individual data point (i.e., observation) that is beyond the overall pattern of a 

distribution. A similar description for outlier suggested by Agresti and Franklin (2015) is the 

“observation that falls well above or well below the overall bulk of the data” (p. 52). Although 

Ben-Zvi and Arcavi (2001) as well as many textbooks defined outliers as observations that fall 

outside of the overall trend, it should be noted that it is not precise description. Gould and Ryan 

(2014) support this claim by suggesting in their introductory statistics textbook that the term 

outlier has no precise definition in statistics. Gould and Ryan suggested that extreme values are 

outliers, thus extreme values also do not have a precise, commonly agreed-upon definition. 
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When asked to reason about variability, students, including most undergraduate students, 

appear to narrow their attention to only individual values in a distribution (Garfield et al., 2007; 

Shaughnessy, 2006, p. 88). In their study with middle-school teachers, Confrey and Makar 

(2002) found that when the research participants were asked to examine variability they limited 

their focus only to individual points and especially the extreme values. Noss, Pozzi, and Hoyles 

(1999) studied the ways pediatric nurses make sense of clinical data by focusing on average and 

variation. The study found that nurses pay attention only to outliers of the clinical data such as 

blood pressure, temperature, respiration, and pulse, perhaps because of the critical role outliers 

play from a clinical point of view.  

Previous studies also reported that students might consciously neglect extreme values 

from their investigations with data (Lehrer et al., 2011, p. 732). It should be noted that handling 

extreme values in a dataset is usually critical in statistical investigations. Statisticians and 

statistically expert people flexibly handle extreme values in multiple ways such as using their 

expertise and according to the context or the goal of a statistical investigation. In some cases, 

extreme values can be evidence of an extraordinary incidence, whereas in other situations, they 

may be simply because of a measurement error; hence it is better to remove them from the 

dataset in the latter case. The key point to remember when handling extreme values is that the 

focus on extreme values should not undermine attending to the global characteristics of a 

distribution (Konold & Pollatsek, 2002; Lehrer & Schauble, 2004). To conclude, focusing only 

on individual data points results in failing to consider the overall characteristics of a distribution, 

thereby concluding an insufficient assessment of variability (Confrey & Makar, 2002; Garfield & 

Ben-Zvi, 2005; Lann & Falk, 2003; Peck et al., 2013, p. 25; Shaughnessy, 2006, p. 88).  
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Has Fewer Same (or Similar) Values 

This informal notion of variability is related to students’ confusion between the 

interpretation of variability in categorical and quantitative variables. As I discussed in previous 

sections, the core meaning of variability for categorical and univariate quantitative variables are 

different, and students usually fail to distinguish what variability specifically means in each case. 

For instance, students in Hammerman and Rubin’s (2004) study focused on heterogeneity in 

their investigation of univariate quantitative variable, and they concluded that the distribution 

with same values repeating more often were less variable. Loosen et al. (1985) investigated 154 

undergraduate students’ intuitive ways of understanding variability of quantitative variables 

before the students began learning statistics, and the researchers found that students usually base 

their choice on an informal notion: how much the values differed from each other. The study 

clearly showed that students often fail to focus on deviations from the measure of center. 

Similarly, Lann and Falk (2003) found that students claimed repetitions of the same value in a 

dataset as indicative of less heterogeneity, thereby, an implication of smaller variability.   

As Loosen et al. (1985) suggested, students’ intuitive perceptions of variability may not 

be compatible with the idea behind the variability of univariate quantitative variables. According 

to the heterogeneity notion, a dataset with values, say, 1, 4, 4, 10, 10, 10 is more variable than a 

dataset with values 2, 2, 2, 15, 15, 15 because there are more different values in the first dataset 

(1, 4s, and 10s) in total as compared to the latter dataset, which has only two different values (2s 

and 15s only). Similarly, a dataset with values 10, 10, 10, 10, 60, 60, 60, 60 may seem less 

variable to the students than a dataset with values 30, 31, 32, 33, 33, 34, 35, 36 although the 

latter dataset clearly indicates a clustering around the mean value of 33. In brief, the notion lacks 

clustering around the center.  
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Loosen et al. (1985) claimed the existence of this notion to be partially due to the way 

variability is introduced in textbooks. According to the researchers, when textbook authors 

introduce variability, they usually emphasize variety among the data values as leverage but stress 

the deviation from the central value considerably less, which, in turn, delivers an incorrect signal 

to students about what variability means for quantitative variables.  

 In this section, I reviewed students’ common informal notions about variability. These 

notions were based on overreliance on range, a focus only on extreme values, and exploration of 

same (or similar) values in a dataset. In the next section, I discuss the common student 

misconceptions about variability. 

Misconceptions Literature on Variability 

Previous studies have shown that students at various grade levels hold misunderstandings 

about variability (e.g., Ciancetta, 2007; delMas et al., 2005; Kaplan et al., 2014; Meletiou & Lee, 

2002; Meletiou-Mavrotheris & Lee, 2010). An important aspect to note is that variability is 

connected to and contingent on understanding various other statistical concepts. Often, the 

misconceptions about variability have components that also account for the limited 

understanding of a concept other than the variability. Therefore, claiming a common 

misunderstanding as solely as a misconception about variability may potentially hinder the 

intricacy of the issues with students’ understanding. 

 Graphical displays are commonly used in the discipline of statistics (Garfield & Gal, 

1999); hence, they also have a significant place in teaching and learning statistics. However, 

elementary, secondary, and undergraduate students often demonstrate difficulties understanding 

and using statistical graphs (Humphrey et al., 2013). For example, K–12 mathematics and 

introductory statistics curricula commonly include bar graphs and histograms as graphical 
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summaries respectively for categorical and quantitative variables (Arnold & Pfannkuch, 2014). 

Many students often treat bar graphs (that show category counts or percentage through bars) as if 

they were histograms and draw incorrect conclusions (Humphrey et al., 2013). According to 

delMas et al. (2005), students confuse bar graphs and histograms because of their visual 

similarity (each uses bars to represent data) and because the y-axis in both graphs represents the 

frequencies of each bar (bars in bar graphs and bins in histograms). To be able to distinguish bar 

graphs and histograms from each other, students need to recognize that bar graphs are used to 

display the counts or percentages of categorical data (Bock et al., 2012, p. 67), whereas 

histograms are used to visualize the global characteristics of univariate quantitative data (Arnold 

& Pfannkuch, 2014; Humphrey et al., 2013, p. 72).  

Students should also understand that reasoning about variability based on these 

commonly used graphs is different. When investigating for greater variability in histograms, 

students are expected to choose the one that has the least central clustering. Clustering more 

closely around the mean indicates less spread from the center, therefore a relatively smaller SD 

(delMas & Liu, 2007, p. 112). However, clustering around the center is inapplicable in bar 

graphs because a typical center value does not exist in categorical data (unless there are two 

categories and the proportion of success or failure could be regarded as a measure of center). The 

heuristic for bar graphs is that “the closer the distribution is to the uniform distribution (all 

categories having the same relative frequency) in a bar graph, the more variability there is in the 

data” (Kader & Jacobbe, 2013, p. 18). 

 Problematically, students often fail to coordinate the information presented in the 

frequency axis (i.e., the y-axis) and the variable values axis (i.e., the x-axis) of histograms 

(Cooper & Shore, 2008, p. 7). In other words, students confuse the information the vertical and 
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horizontal axes of a histogram provide about variability. The horizontal spread provides the 

primary source of information about variability; thus students should recognize that the key 

aspect to consider in a histogram is the horizontal dispersion (Gould & Ryan, 2014, p. 83; 

Vermette & Gattuso, 2014, p. 3). Although the horizontal spread indicates some information 

about variability of a distribution by displaying the deviation from the central tendency, students 

often tend to mistakenly think that vertical dispersion could be used directly to reason about 

variability. For instance, students often claim that presence of clusters of bars of different size in 

a histogram implies larger variability. In other words, they claim that an approximately uniform 

distribution would indicate less variability because of the similar frequencies. This lack of 

understanding is typically conveyed in students’ expressions such as, “It is most evenly (or 

uniformly) spread out, thus less variable.” In relation to students’ reckless use of vertical 

dispersion, many students assume that existence of more “bumps” in a histogram indicates that 

the distribution is more variable (Cooper & Shore, 2008; delMas & Liu, 2005, 2007; delMas, 

Garfield, Ooms, & Chance, 2007; Kader & Jacobbe, 2013; Meletiou & Lee, 2002). Students 

think that a histogram with a larger number of different bin values—which are basically intervals 

of the value of a quantitative variable—should imply a larger standard deviation (delMas et al., 

2007). Interviews and large-scale surveys conducted by Meletiou and Lee (2002) with college 

students provided evidence that students think that a bumpier histogram should indicate larger 

variability even though such histograms imply the inverse in reality. In sum, students often fail to 

see that larger differences in frequencies (heights) of the bins of histograms does not directly 

relate to a larger variability (Garfield et al., 2007). 

 A common source of students’ misunderstandings is applying a rule, property, or concept 

beyond “its range of legitimate applicability” (diSessa, 1993, p. 116). An example of this type is 
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the use of the information that the shape of a graph could provide beyond its applicability. For 

instance, some students assume that a bell-shaped distribution should always imply less 

variability (Kader & Jacobbe, 2013). It is commonly true that a bell-shaped distribution indicates 

a relatively smaller variability when compared with distributions that are not bell-shaped. This is 

not always the case, however; a uniform distribution with a smaller range, for example, may be 

less variable than a normal distribution with a larger range. In addition, a distribution with all the 

same values indicates no variability. In sum, students should be careful when generalizing the 

information that the shape of a histogram can convey about variability. 

 In this section, I have discussed the most commonly reported variability misconceptions. 

In the following section, I briefly discuss the work of Garfield et al. (2007) and Lann and Falk 

(2003) because they provide a relevant foundation for my research problem. Based on the 

analysis of literature, I then suggest the direction that research should lead in order to provide 

more insight on students’ reasoning about variability. 

Reasoning about Variability: What Is Missing? 

 Research studies on students’ reasoning about variability have suggested important 

conclusions. In one of those studies, Garfield et al. (2007) investigated the development of 

undergraduate students’ understanding of variability in an upper division statistics course, and 

examined students’ understanding of the concept with pre- and post-instruction assessments. The 

researchers found that given a distribution, students tended to rely on the idea of range and 

individual observations to reason about variability. The researchers also suggested two informal 

notions that are foundational in students’ understanding of variability: “Variability is represented 

by overall spread and differences in data values (e.g., not all values are the same)” (p. 142). The 
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researchers concluded that students often fail to focus on where most of the data in a distribution 

are located relative to its center.  

 Learning variability is challenging for students at all grade levels. In order to address the 

problem, Garfield et al. (2007, p. 142) proposed a hypothetical learning trajectory for developing 

an understanding of variability. According to the trajectory, statistics instruction should begin 

with addressing the basic recognition that data vary. Students then should be directed to explore 

some of the possible sources of variability, such as measurement, natural, and chance variability. 

Next, the instruction should enable students to investigate commonly used graphical 

representations in order to compare variability among different datasets. This step could also 

help students examine the effects of bumps and clumps (in a histogram) on variability and begin 

to recognize the importance of overall spread and clustering in variability. The instruction then 

should focus on building connections between measures of center and measures of variability. 

Finally, students should be able to understand the characteristics of the measures of variability, 

such as whether or not a measure is resistant to extreme values (e.g., range is resistant, whereas 

SD is not resistant, to extreme values). Understanding these characteristics can help students 

cultivate the ability to select the optimal measure of variability in particular situations. 

Although Garfield et al. (2007) claimed the steps mentioned above as a hypothetical 

learning trajectory, their work more closely resembles a curricular plan that one could follow in 

teaching variability. In other words, these steps essentially focused on the work related to 

teachers, but did not provides insights on how students could potentially learn the concept. In 

addition, the researchers were not able to provide research-based evidence or a well-framed 

rationale for their “trajectory,” and they did not implement the trajectory to verify whether 

folllowing the suggested steps substantially improves students’ understanding of variability. 
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Although more work is needed, the steps that Garfield and her colleagues proposed may be 

helpful in investigating students’ informal notions about variability. 

Lann and Falk (2003) explored first-year university students’ selection of measures of 

variability by asking students to intuitively choose the dataset that had more heterogeneity and 

inequality. The researchers consciously avoided using expressions that could hint at the idea of 

clustering about the mean, gap, or extreme values and technical terms, such as variance, SD, and 

range. The study suggested that a greater proportion of students used range (without explicitly 

using the term in their responses) more than any other single measure of spread (e.g., MAD, 

IQR, or SD). However, Lann and Falk’s study presented two problematic aspects. First, the 

researchers intentionally attempted not to use standard terminology, such as range; as a result, 

students also did not explicitly say that they had used the idea of range in assessing heterogeneity 

and inequality in given datasets. Instead, the researchers inferred the results based on the fact that 

students more commonly selected the datasets that in fact had a larger range. Next, asking 

students to explore heterogeneity and inequality in order to investigate students’ intuitive 

judgment of variability for univariate quantitative variables does not seem to be an appropriate 

approach. As Loosen et al. (1985) pointed out, seeking heterogeneity in univariate quantitative 

data provides limited information about the quantitative dispersion of a dataset. As discussed 

when introducing variability for different types of data, variability for categorical data is 

summarized as how many, variability for quantitative data is summarized as how much, and 

heterogeneity refers to the how many approach. Overall, although Lann and Falk (2003) 

overlooked these problems in their study, the instruments used in the study and findings of the 

study were useful in my investigation of students’ reasoning about variability. 
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As mentioned before, studies have shown that when asked to reason about variability, 

students often use such informal notions as reliance on range, individual values (especially the 

extreme ones), and the degree to which data values are similar to each other. These informal 

notions could contribute to students’ development of a more robust understanding of variability. 

An important question to investigate then is to what extent could these notions be exploited in 

students’ development of the normative meaning of variability. If a particular type of informal 

reasoning has potential to develop an understanding of variability, then it warrants effort to 

uncover and investigate the ways in which students might benefit from the notion as they learn 

variability. 

Students often fail to follow standard ways of reasoning; instead, they follow strategies 

that are more meaningful or appropriate for their intuitions. My review of the literature suggests 

that previous research studies have not closely examined students’ informal notions. For 

example, there has been no research study setting in which students could not use range—

because the given datasets to be compared had equal ranges—when exploring variability. 

Investigating students’ reasoning when datasets have equal ranges but have different 

distributions may help researchers diagnose other possible reasoning mechanisms that students 

use and whether those mechanisms support a more standard understanding of variability. In 

addition, little is known about how students reorganize their reasoning when their informal 

notions remain ineffectual.   

 Although previous studies yielded important results about students’ particular ways of 

reasoning about variability, much work remains to be done in the study of students’ 

conceptualization of variability. Previous studies failed to consider to what extent the 

particularities of a dataset or distribution are influential in students’ reasoning. In other words, 
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researchers often did not address the relationship between students’ reasoning and the prevalent 

characteristics of distributions that students were asked to reason. For example, a student might 

have a heuristic that if a distribution has extreme values then the distribution should be more 

variable; but what if the student is asked to reason about the same distribution with the extreme 

values removed? Similarly, the literature fails to provide enough evidence to conclude that the 

only reason for students to rely on range is simply because it is easy to use. Therefore, the 

question that merits further investigation is how do students reason about variability in situations 

in which the datasets to be compared (a) have equal ranges; (b) have no extreme values; and (c) 

have the same (or similar) number of repeating values.  

ASA (2005) and Franklin et al. (2007) highlighted the overall role of context in statistics 

keeping it “alive” throughout any statistical investigation. Much of students’ intuitive knowledge 

consists of loosely connected pieces of knowledge, the activation of which is highly dependent 

on context (Elby, 2000). Meletiou and Lee (2002, p. 33) claimed that students’ reasoning about 

variability is heavily reliant upon the type and context of statistical activities, materials, and 

tasks. My review of the literature, however, found no study that delineated the role of context on 

students’ understanding of variability. Therefore, another necessary question to seek answers is 

the role of context in terms of students’ ways of reasoning about variability. 

Statistics education research should investigate how to promote student-generated 

understanding in the classroom (Lehrer & Schauble, 2004, p. 670; Leinhardt & Larreamendy-

Joerns, 2007; Shaughnessy, 2007). Few research studies envision how students could develop a 

formal understanding of variability based on their own informal notions. Hence, informal notions 

about variability warrant efforts to uncover and investigate how they are mediated as students are 

exposed to instruction on statistics. For example, a formal introduction to measures of center 
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(e.g., mean, median) and measures of spread (e.g., SD) could build on students’ intuitive notions 

of center and variability (Jones & Scariano, 2014; Shaughnessy, 2006, p. 94). We should learn 

more about how students use and revise their informal notions when they encounter different 

situations and, in particular, when more standard meanings and measures of variability seem 

more appropriate for students to use. 

By exploring the ways students’ reasoning associates with particular aspects of the 

distribution or data (on which they are asked to work), a research study may shed light on 

undergraduate students’ reasoning about variability. Such a study has the potential to inform the 

extent to which undergraduate students are able to reason about variability when the informal 

notions they hold are not applicable. The study may also provide more information on possible 

learning trajectories for understanding variability. In addition, such a study has the potential to 

offer more information about the role of context in students’ ways of reasoning.  

Theoretical Framework 

I begin this section with a clarification of terminology, specifically, the use of the terms 

context and situation. In this study, context refers to the real-life circumstance or a scenario 

presented in a statistical question. Situation pertains to particular aspects of a statistical question 

(e.g., whether raw data or a conventional graph is provided for exploration) or characteristics of a 

distribution (e.g., whether the datasets to be compared have equal ranges). 

Additionally, I define informal notions of variability as pieces of knowledge that students 

construct and reconsider as they encounter any new data, graphical display, or context. Students’ 

informal notions can (a) be regarded as loosely connected pieces of knowledge that play a role in 

their conceptualization of variability, (b) be valuable and convenient tools for students to use 

depending on a particular question, dataset, or distribution, but (c) have definite limits in 
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application. Informal notions might have a disparate impact depending on the situation. In other 

words, although some informal notions dominate in particular situations, they may become 

misleading or insufficiently rigorous in others. As a result, students may apply to their informal 

notions in different ways and weights.   

Considering the goals of the present study, I developed the theoretical framework for this 

study using diSessa’s (1988, 1993) knowledge-in-pieces (KiP) epistemological perspective and 

its core components. In the following, I explain my understanding of the perspective and the way 

I adapted it for this research study.   

Knowledge-in-Pieces Epistemological Perspective 

Andrea diSessa (1993) proposed the knowledge-in-pieces epistemological perspective to 

explain students’ development of knowledge in the learning and understanding of Newtonian 

physics. According to diSessa, actual knowledge elements are more diverse and smaller than a 

typical textbook presentation would suggest. In addition, although knowledge elements may be 

loosely connected to each other, they are strongly tied to particular situations so that novices can 

make sense of these elements. Conceptual change and knowledge growth—useful terms to study 

novice-expert knowledge—can occur by constructing new knowledge elements, coordinating 

and reorganizing both emerging and prior elements, and extending and constraining the use of 

particular elements of knowledge according to certain situations (Izsák, 2005, p. 5).   

It is important to note that diSessa (1993) used the terms knowledge elements and 

knowledge resources to explain his theory of knowledge growth, but not as terms or constructs 

with specific meaning in the knowledge-in-pieces epistemological perspective. Moreover, 

diSessa also used the terms novice and expert with their common meanings. The term novice 

usually refers to a student or a person who is new to a subject or concept, and expert refers to a 
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scholar or an experienced professional within a field who holds a profound understanding of that 

subject or concept. According to this description, undergraduate students beginning to learn 

statistics can be regarded as novices of the statistics subject.  

Core components of KiP. One of the core constructs of KiP is phenomenological 

primitives (p-prims), described by diSessa and Sherin (1998) as the “explicit treatment of 

representation, origins, and development of intuitive knowledge” (p. 1187). P-prims are 

elementary knowledge structures that novices abstract from their experience in order to explain 

and give meaning to a phenomenon and justify their decisions (Wagner, 2006). According to 

diSessa (1988, 1993), p-prims are often abstracted from common experiences, and they are 

relatively primitive. DiSessa (1993, p. 112) also posited that p-prims usually need no further 

justification from the novice’s point of view, and consequently, novices will not seek further 

clarification for their p-prims.  

DiSessa and Sherin (1998) claimed that different p-prims may be evoked in different 

situations. Similarly, Wagner (2006) suggested that novices may utilize different combinations 

of p-prims or other knowledge resources to make interpretations in different situations or for 

different aspects of a particular situation. In a case of conflict, novices usually have no 

mechanisms that lead them to decide which p-prim should be applied (diSessa, 1993, p. 114). 

Also, a hierarchy among different p-prims starts to form as students gain more experience and 

move toward expertise.  

These ideas align with the way I defined informal notions of variability for the present 

study. Similar to diSessa (1993), I claim that, although students may hold a number of informal 

notions, these notions tend to activate “in appropriate circumstances” (p. 112), such as when a 

particular characteristic is highlighted in a distribution. For example, if a student is given raw, 
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unordered data with some data values repeating (i.e., having the same numerical values more 

than once in a distribution), the student may interpret variability as difference and compare 

variability across distributions according to the difference notion. In this specific case, the 

student may find comparing ranges across datasets to be inconvenient and inappropriate. The 

same novice student, however, might also decide to use range if the observations in datasets to be 

compared are ranked in order, assuming that reporting a comparison of ranges across datasets 

sufficiently addresses variability. One possible motivation for employing range is that ordering 

data values foregrounds the difference between range values; thus, using range may seem 

convenient from the student’s perspective. In conclusion, as students develop an understanding 

of variability, they should begin to see that one or two characteristics (Wagner, 2006) of a 

distribution, such as having a larger range or extreme values, might be inadequate to support the 

claim that the distribution has a larger variability. 

Another core component of KiP is coordination classes. DiSessa and Sherin (1998) 

proposed coordination classes as complex sets of methods and strategies novices use to gather 

substantially more information from their observations and experiences. A coordination class is 

the competence of an individual to see a particular class of information in the world. According 

to diSessa and Sherin (1998, p. 1185), learners use coordination classes to understand how 

scientific concepts function in forming explanations and problem solving. Overall, the purpose of 

a coordination class is to specify the nature of knowledge structures (structures here being used, 

as is common in knowledge-in-pieces literature, in its ordinary sense) that are assumed to 

underlie complex conceptual understanding.  

Coordination classes have two primary structural components: readout strategies and the 

causal net (diSessa & Sherin, 1998). The first component, readout strategies, deals with 
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determining “how characteristic attributes of a concept are attended to or seen in a given 

situation” (Wagner, 2006, p. 7). According to diSessa and Sherin (1998), different problems 

require using a combination of notions, and multiple readout strategies may be needed to reason 

about a concept. The other structural component of coordination classes, the causal net, is “the 

set of inferences that lead from observable information to the determination of things that may 

not be directly or easily observable” (diSessa & Sherin, 1998, p. 1174). An individual’s causal 

net is the “general class of knowledge and reasoning strategies that determine when and how 

some observations are related to the information at issue” (diSessa & Sherin, 1998, p. 1176).  

The expectation is that the particular aspects of a person’s readout strategies and the 

causal net will be unique to that person. This expectation suggests that novices (which would 

include most students) depend primarily on their p-prims, which could provide different 

coordination strategies for novices when they are compared to the coordination strategies that 

experts use. Considering p-prims and coordination classes together, diSessa and Sherin (1998) 

claimed that p-prims are “too small and isolated to constitute a coordination class” (p. 1179). The 

existence of a coordination class in someone’s reasoning implies that various p-prims play a role 

in his or her causal net.  

Coordination classes are more applicable to more robust and relatively stable student 

understanding over an extended period of time (diSessa, Sherin, & Levin, 2016). Because the 

present study was more focused on relatively brief segments of students reasoning but not on the 

complex conceptual understanding, I did not attempt to incorporate coordination classes into the 

study.  
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KiP in Investigating Reasoning about Variability 

Previous research studies suggested that students, who are generally considered to be 

novices, reason about variability incoherently and inconsistently across different situations. The 

knowledge-in-pieces epistemological perspective supports the observation and delineation of 

these types of situations (Jacobson & Izsák, 2014, p. 49). I predicted that the use of diSessa’s 

perspective for my study could be helpful in focusing on the knowledge resources students could 

depend on as they make judgments about variability.  

Wagner (2006) suggested that different situations have their own affordances and 

facilities with respect to students’ reasoning about a concept. Similarly, Meletiou and Lee (2002) 

claimed that students’ reasoning about variability is heavily reliant upon both the particularities 

of the task explored, which refers to situations and the contexts in which the tasks are situated. 

For instance, undergraduate students usually find working with raw data (even for small datasets) 

more difficult than working with graphical displays. Use of knowledge-in-pieces perspective 

may be instrumental to investigating ways in which the characteristics of distribution, graphical 

representation, and statistical context cue different ways of reasoning (Wagner, 2006). Moreover, 

Gould and Ryan (2014) advised in their introductory statistics textbook that the choice of most 

appropriate measure of variability to use in describing a distribution should be based, in part, on 

the shape of a distribution. Accordingly, I expect students to be more inclined to use the idea of 

central clustering and standard deviation in situations modeled by a normal distribution and to 

fail to consider these ideas when the distribution of data has a different shape.  

The research studies mentioned in the present chapter agreed that students’ reasoning 

about variability is lacking in multiple ways. In addition, students may switch to a different way 

of reasoning depending on the type of data and graphical representation that are given (Perry & 
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Kader, 2005). As a result, comparing and contrasting ways in which students recruit their 

informal notions of variability when they reason about graphical displays with different 

characteristics can provide new insights about students’ statistical understanding (Perry & Kader, 

2005). Characteristics of the problem, situation, or contexts are important in students’ reasoning. 

Therefore, I considered these premises when creating tasks for students to work on for this study. 

Overall, by attending to the forms and types of knowledge crucial in knowledge growth, the 

knowledge-in-pieces epistemological perspective has the potential to provide a fine-grained way 

to investigate students’ informal notions of variability.  

It is necessary to investigate how students reorganize their reasoning when elements of 

their reasoning about variability are inconsistent with and in direct contradiction of each other. 

Cognitive conflict, which was coined by Strike and Posner (1992), occurs when one recognizes 

that his or her experience or informal notions are not consistent with his or her other notions. 

Experiencing such a situation may yield opportunities for students to refine their existing 

conceptions. For instance, it merits investigating, from a knowledge-in-pieces epistemological 

perspective, how students reason about variability if using range and focusing only on extreme 

values yield conflicting conclusions.  

One potential drawback of the use of the knowledge-in-pieces epistemological 

perspective is relates to its assumption that physical observations and prior experience constitute 

an important part of novice learning. On the one hand, one can claim that the assumption could 

be invalid when learning statistics in general and understanding the notion of variability 

specifically are considered. In other words, students may have little scholarly experience with 

statistics and with the concept of variability prior to taking a statistics course, making the 

comprehension of fundamental statistical ideas inaccessible. On the other hand, it is also 
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reasonable to think that although students may not have much experience with scholarly 

statistics, they may still accumulate experience, because they are constantly exposed to data and 

graphical displays everywhere along with various clues to variability. Therefore, students may 

unconsciously try to coordinate their experiences with statistics in reasonable ways. As a result, 

whether or not statistics learning and reasoning about variability can be rigorously scrutinized 

with a knowledge-in-pieces epistemological perspective is an open question that was 

investigated in this study. 
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CHAPTER 3  

METHODS 

 In this chapter, first, I describe the research setting and context for the study by providing 

information about the introductory statistics course and how the course is run. Next, I introduce 

the research participants of the study, as well as the recruitment process followed for the 

interviews. Then, I explain the data sources and the data collection procedures. The chapter ends 

with a description of the analysis of data. 

Research Setting 

The data for the study came from students taking STAT 2000, a multi-section, 4-credit, 

introductory statistics course offered each spring, fall, and summer semester at the University of 

Georgia (UGA). The university bulletin describes the outline of the course as “the collection of 

data, descriptive statistics, probability, and inference. Topics include sampling methods, 

experiments, numerical and graphical descriptive methods, correlation and regression, 

contingency tables, probability concepts and distributions, confidence intervals, and hypothesis 

testing for means and proportions” (UGA, 2015).  

During the time of the study, there were approximately 1,200 students enrolled in the 

various sections of the course. The course had both lecture and computer lab components. 

Students selected their lecture and the computer lab sections when registering for the course. The 

weekly 150-minute lecture component was divided evenly into two class sessions (on Tuesday 

and Thursday) or three (on Monday, Wednesday, and Friday). Lecturers and teaching assistants 

who were statistics graduate students (graduate teaching assistants, or GTAs) taught the sections 
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of the course in a lecture format to large classes with approximately 200 students in each section. 

Teaching assistants (TAs), who were also statistics graduate students, delivered the weekly 50-

minute computer lab component. TAs usually taught several sections of these computer labs. 

Overall, approximately 4–6 lecturers and GTAs taught the lecture component, and 10–12 TAs 

taught the computer lab component of the course. A coordinator from the Department of 

Statistics oversaw the course. I henceforth refer to GTAs, lecturers, and TAs as teaching 

personnel, without maintaining a distinction among them because such a distinction was not 

crucial for this study. 

 The course included several assessments assigned throughout a semester. These 

assessments included five tests (the last one being optional), twenty homework assignments, and 

ten computer lab assignments. Students could complete the computer lab assignments during 

their assigned lab hour. The tests constituted 80% of the final grade of the course, and the 

remaining 20% was distributed between homework and computer lab assignments in differing 

weights (for more information, see Jennings, 2014; UGA, 2015).  

Students were required to use a course assignment platform called WebAssign 

(https://webassign.net/) to take the tests, to access computer lab assignments and homework, and 

to input their responses. Tests, homework, and computer lab questions either were in multiple-

choice format or asked for a single numerical answer. Students received slightly different 

assignments from each other, which was achieved by randomizing (a) the numbers used in the 

questions, (b) the order in which the questions appeared in the tests, and (c) the order in which 

answer choices appeared on multiple-choice questions. The WebAssign provided immediate 

feedback for homework and computer lab assignments. It allowed three attempts for each 

question before a final credit was awarded to a response. On tests, however, students were 
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limited to one attempt for each question. The WebAssign performed the grading automatically; 

no human scoring existed in the then-current delivery of the course.  

Participants 

The population of interest in this study was undergraduate students who enrolled in the 

introductory statistics course during the spring, summer, and fall 2016 semesters. Students who 

registered for the course usually had different backgrounds and profiles, for example, in terms of 

the number of years in college, intended majors, quantitative reasoning courses taken, and prior 

experience with statistics.  

Students’ responses to homework assignments were collected from all of the enrolled 

students in the course who submitted their assignments during the Spring 2016 semester. For the 

second source of data, a series of two to three interviews were conducted with students who were 

enrolled in the course. Six students were recruited for interviews, but only four of those students’ 

interviews were included in the analyses. Interview studies typically yield a large amount of 

data; thus, keeping the number of interview participants to four appeared to be an appropriate 

choice in order to engage in in-depth analysis.  

For the recruitment of interview participants, I first contacted the TAs of the course. My 

request for interview participants included the recruitment letter (Appendix A) in which I 

explained the research study and what was expected from interview participants. The inclusion 

or exclusion of the students for a subsequent interview was based on their performance in the 

first interview and their openness to thinking aloud. Fulfilling any of the criteria was challenging, 

especially for recruiting students for the first interview, because there were limited opportunities 

to become acquainted with the students before the first interviews were conducted. Therefore, 
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recruiting more students for the first interview seemed to be an appropriate strategy to meet the 

selection criteria and assure that the data were rich enough to investigate the research questions.  

I started the interviews with two students in Summer 2016. One of those students was not 

able to give extended answers to the interview questions and explain his way of thinking. As a 

result, I did not invite him to the second interview. The other interviewed student was able to 

work on the interview tasks and explain his reasoning, so I continued to interview him. I was 

able to ask him all of the interview tasks in three 1-hour interviews. Then, I started to conduct 

interviews with four students in Fall 2016, and was able to continue interviewing these four 

students during the semester. Although the second interview participant I interviewed during 

Summer 2016 provided extended answers, I decided not to include his data in the analysis for 

two reasons: (a) the other four interview participants were enrolled in the introductory statistics 

course in the same semester except this student, and (b) including the student’s interview data 

did not seem to substantially increase the overall richness of the data that I expected to have by 

including the other four students’ data. Overall, I decided to use four of the students’ interview 

data from the same academic semester in the final analysis for their richness and clarity in 

demonstrating the construct of interest for the study. Table 1 provides background information 

about these students (real names replaced with pseudonyms) who were female and all in their 

second year at UGA. 
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Table 1 

Interview Participants 

Name Major Statistical Experience 

Ocean Biology, Pre-dentistry Took an AP Statistics course in high 
school but not the exam 

Karen International Affairs, minor in 
Women’s Studies 

Took an AP Statistics course at high 
school 

Chloe Political Science, minor in 
Philosophy 

Took an AP Statistics course 

Britney Exercise and Sport Science No experience 

 

Data Collection 

Utilizing multiple data sources gives access to forms of information that are more 

effective in addressing research questions than single sources would be (Maxwell, 2013). The 

first data resource was in the form of student responses to homework questions in the 

introductory statistics course during the Spring 2016 semester. The data consisted of student 

responses to a combination of eight open-ended and multiple-choice homework questions 

collected through WebAssign. The second source of data was the video recordings of the 

interviews and written artifacts that the interview participants produced during the interviews. I 

individually interviewed the selected students during the summer and fall semesters of 2016. In 

the following sections, I explain the details of both data sources and the data collection 

procedures.  

Homework Assignments 

The first stage of the data collection involved gathering student responses to eight 

multiple-choice and open-ended questions embedded in the online homework assignments (see 
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Appendix B). The data were collected from all of the students in the statistics course who 

submitted their responses to the assignments in the Spring 2016 semester. The approximate 

number of students enrolled in the course was 1200, and usually the majority of the students 

submitted responses to the assignments.  

Among the eight questions in total, Questions 1, 3, and 7 (as listed in Appendix B), were 

originally created and piloted by a statistics education research team led by Jennifer J. Kaplan, 

who is a statistics education researcher working at the same university. These three questions 

were included in the study because they essentially asked students to compare variability of 

distributions as visualized in various dot plots and histograms. The distribution of data in these 

dot plots and histograms limited the use of some of the aforementioned informal notions of 

variability. Hence, it was my expectation that responses to those questions had potential to shed 

light on the first research question of the study.  

In order to have more questions that could be helpful in answering the research questions, 

I generated new questions. For new questions, first, I examined the statistics education literature 

(especially dissertations, research and practitioner journal articles); research project materials 

such as LOCUS (Jacobbe, Case, Whitaker, & Foti, 2014), ARTIST and CAOS (delMas et al., 

2007); college introductory statistics textbooks (such as the Intro Stats by Bock et al., 2012; 

Introductory Statistics: Exploring the World through Data by Gould & Ryan, 2014); and 

curricular and report type documents (such as ASA, 2005; Franklin et al, 2007; Franklin et al., 

2015). Then, I located pertinent materials such as datasets, graphs, questions, or contexts and 

modified them to write new questions. The statistics education research team at UGA inspected 

these new questions and suggested modifications as necessary. I revised the questions further to 

give them their final form. Then, I included these questions in the online homework assignments. 
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Table 2 shows how each question targets the research questions of the study and whether or not 

without-context version exists for a question. 

Table 2  

Overview of Homework Questions 

Item 
Research 

questions addressed 
Had also a version 

without context 
Had a multiple- 

choice component 

1 General No No 

2 1.a Yes Yes 

3 1.a & 1.b No No 

4 1.b No No 

5 1.a & 1.c Yes No 

6 1.a & 1.b No Yes 

7 1.a & 1.c No Yes 

8 1.c No Yes 

Note. Question 1 did not specifically address any of the research questions of this study but was 
included for the reason provided in Appendix B.  
 

These research-related questions were different from the rest of the questions of the 

homework assignments for the STAT 2000 course in three ways. First, each of these questions 

involved an open-ended component in which students were asked to explain or justify their 

choice. Second, in contrast to the three attempts provided for students to resubmit their responses 

in typical homework questions, students had only one attempt on these research-related 

questions. Finally, students earned points automatically upon uploading their responses to these 

questions irrespective of the correctness of their answers. 
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Interviews  

In-depth access to student reasoning is essentially more possible in an interview 

environment because of the dynamic and interactive nature of interviews (Maxwell, 2013). 

Hence, I incorporated interviews into the research study by recruiting students for a series of 

“task-based interviews” (Goldin, 1997, 2000). In these interviews, students were asked to think 

aloud while working on statistical tasks.  

I decided to use the same questions in both homework assignments and interview tasks so 

that the findings from the data gathered in one could corroborate those of data gathered in the 

other. Therefore, the development of the interview protocols was based on the eight questions 

that were employed as homework questions. In brief, I was able to develop interview tasks 

through modifying the homework questions by considering the privileges and opportunities that 

a typical task-based interview environment could potentially provide. For example, although 

students were presented with one of two versions of a question, such as the one with (or without) 

a context in a homework assignment, both versions could be asked in an interview. In addition, 

interviews provide opportunities to ask multiple follow-up questions based on the type of 

responses students elaborate during the interviews. The final form of the interview protocols is in 

Appendix C. 

The first interview with each participant usually started with a short conversation about 

the educational background of the interview participant, such as major and the number of years 

spent in college. Students who take the introductory statistics course could also have different 

prior experience with statistics. In order to gain insight into that aspect, I also asked the 

interviewees to talk about their experience with statistics at the high school and college levels.  
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After this short conversation, I asked each interviewee to describe variability and suggest 

terms and words that they could use to explain variability (see Appendix C). Next, I asked the 

interviewee to start working on the statistical tasks. I explained that the main goal of the 

interviews was to have students provide as detailed an explanation of their reasoning as possible. 

I reiterated during the interviews that I was more interested in the interview participants’ ways of 

reasoning rather than whether or not their responses were correct. I asked clarifying and follow-

up questions and encouraged the participants to talk freely. During the interviews, I actively 

questioned each participant’s reasoning by pointing out the apparent inconsistencies in her 

approach, but I refrained from taking an evaluative role. Each interview lasted approximately an 

hour, was video recorded with a single camera pointed at the paper on which the interview 

participant put her work, and were audio-recorded with a second voice-recording device. 

Data Analysis 

In this section, first I explain the data analysis method for the video recordings of the 

interviews. Next, I describe the analysis of student responses to homework questions. I follow 

this order also in reporting the results in the next chapter. 

Analysis of Interviews  

The mathematics education literature includes many methodological approaches to the 

analysis of the video data. These approaches commonly follow verbatim transcripts, line-by-line 

analysis, and less direct use of video recordings. In the following paragraphs, I explain the 

analysis method I employed in this study by first providing a rationale for it. 

 It is common to rely on transcripts in analyzing video data. Powell, Francisco, and Maher 

(2003), however, asserted that relying on transcripts in analysis “makes it difficult to keep 

contact with one’s theoretical perspective while sampling” (p. 411); thus Powell et al. suggested 
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working directly from the video recordings instead of verbatim transcripts. The researchers 

provided a seven-step analytical model to analyze video data. The phases are (a) viewing the 

video attentively, (b) describing the video, (c) identifying critical instances, (d) transcribing 

(selectively), (e) coding, (f) building a storyline of the issue under investigation, and finally (g) 

composing narrative. Powell et al. claimed these phases to be “interacting” and “non-linear” (p. 

413). In the next paragraphs, I explain how I adapted Powell and colleagues’ model to my data 

analysis.  

 For the analysis of the interviews, I focused on capturing aspects underpinning 

participants’ informal notions of variability in relation to the research questions and the 

theoretical framework for this study. As the first step to the analysis, I viewed the videos to 

become familiar with the approaches the participants used when working on the interview tasks. 

Findings of the previous studies and examples I discussed when introducing the theoretical 

framework were indicative to some extent of what to expect from interviewees’ responses.  

For the second step of the analysis, I wrote descriptive portraits with time stamps for 

reference. This step included my description of how the interview participant approached the 

tasks and responded to follow-up questions. In brief, in this step I created a running summary of 

each interviewee’s ways of reasoning about variability, which included direct quotes if 

necessary. This step provided an effective way to deal with interview data compared to the 

difficulty of managing the high volume of information video recordings could potentially 

present. According to Powell et al. (2003, p. 416), it was important to note that a written 

description created in this step should be more descriptive in nature and not interpretive in order 

to be open to other possible interpretations of the data in the next steps. 
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Powell et al. (2003) suggested that it is crucial to transcribe the parts of the video 

recordings appearing to offer the richest information about the research question of a study. 

Hence, the next step was identifying critical instances of students’ reasoning in the interviews. 

As Wagner (2006) suggested, the focus was on the type of knowledge resources the interviewees 

depended on when reasoning about variability. For instance, an aspect of knowledge pieces on 

which interview participants relied such as an explicit attention to extreme values on a given 

dataset might be counted as a critical instance. In addition, any tension that arose because an 

interviewee’s different ways of informal reasoning conflicted with each other (e.g., across 

different tasks of the same interview and across the interviews) might be regarded as a critical 

instance. Identifying these instances was important because they provided insights into students’ 

reasoning that has not been documented in the literature. Aspects of problem situations or tasks 

across different problem types and contexts that led students to focus on central clustering were 

also counted as critical instances. 

Makar and Confrey (2005) argued that students may articulate their understanding of 

variability by using nonstandard language. Hence, students’ use of language was regarded as 

indicative of their informal ways of reasoning about variability. As Makar and Confrey (2005) 

and Ciancetta (2007) suggested, students may use expressions such as evenly distributed, bulk of 

the data, bunched up, clustered, spread out, or overall spread to talk about variability. Although 

use of these words indicates evidence for addressing the concept, they are not indicative of 

whether or not students take into account a measure of center. Use of expressions such as spread 

from the center or clustering to the center, however, more clearly indicates the consideration of 

the center of a distribution in reasoning about variability. In brief, robust reasoning about 
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variability should include students’ use of language that includes the idea of clustering around 

the center. 

Detecting some of the patterns and inconsistencies of reasoning and determining how the 

interview participants reframed their ways of reasoning as they worked on different questions, 

datasets, and distributions were crucial. In addition, I attempted to focus on participants’ repeated 

patterns of argument and interpretations that were not consistent with normative statistical 

reasoning. I was particularly interested in the relationships between participants’ approaches to 

tasks and the characteristics of the tasks. This step also included writing summaries that captured 

each interviewee’s main ways of reasoning. I used these summaries to identify reasoning 

strategies that interviewees used in the subsequent interviews.  

The interview participants’ particular ways of reasoning about variability were noted, and 

related parts of the videos recordings were transcribed. Next, the coding of the video segments 

took place. In addition, critical events were transcribed and coded in order to achieve a more 

detailed review of students’ reasoning. The codes were refined based on a repeated review of the 

video recordings.  

The next two steps of the analysis, building a storyline and composing a narrative, took 

place after the coding procedure. Some of the transcribed events were kept as episodes in order 

to exemplify students’ reasoning in the results sections. I built a story line for each research 

question of the study. As Makar (2016, p. 9) suggested, the whole interview video recording may 

not be possible to report. Instead, a coherent story could enable the reader to follow the 

theoretical ideas presented through interpretations of what is observed in interviews.  

Crucial issues to remember when writing in this phase concerned sources of an 

interviewee’s ways of reasoning, evidence and counterevidence, and alternative interpretations 



48 

 

one could make based on the same data. As a result, I looked for additional data that might 

support, undermine, or improve my interpretations. In addition, I discussed a small part of my 

preliminary results with a capable colleague (who was also studying students’ statistical 

reasoning) and asked him to suggest counterarguments to or alternative interpretations of my 

findings.  

Analysis of Homework Questions 

The analysis of student responses to homework questions was based on investigating the 

major reasoning strategies and the notions students presented in their responses. Overall, I 

attempted to examine student responses for each question in order to explore the extent to which 

common types of reasoning existed in the larger student population.  

 For this purpose, I aimed to code at least 100 randomly selected student responses for 

each question using Arnold’s (2013) distribution framework, which I introduce in the following 

paragraph. Because students addressed variability less frequently than expected in their 

responses, I needed to code more than 100 responses for some of the homework questions. 

 Arnold (2013) developed a framework for analyzing students’ descriptions of 

distributions. According to the framework, features of a distribution can be organized under five 

overarching statistical concepts; (a) contextual knowledge, (b) distributional, (c) graph 

comprehension, (d) variability, and (e) signal and noise. Arnold enumerated 28 specific features 

of distributions in her study, and each of these features, such as overall shape, modal groups, or 

whether gaps or outliers exist, could be categorized as belonging to one of the five main 

concepts. Because I focused on students’ reasoning about variability in this study, I employed the 

features that Arnold proposed specifically for the overarching statistical concept of variability in 

her framework. Table 3 presents the variability dimension of Arnold’s distribution framework. 
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Table 3  

Variability in the Distribution Framework in Arnold (2013)  

Overarching 
statistical concept 

Characteristics of 
distribution 

Specific features 
measures/depictions/descriptors 

Variability 

Spread 

16. Range,  

17. IQR 
18. Range as an interval 

19. Interval for high and/or low values 
20. Interval for groups 

Density 
21. Clustering density 
22. Majority (mostly, many) 

23. Relative frequency 

 

I started to code student responses based on the features given in the framework. After 

the first trial of coding was completed, I often needed to collapse similar features into one 

category, such as giving the same code to the responses that mentioned either range (code 16) or 

IQR (code 17) because there were only a few instances of each across the large set of student 

responses. At other times, I needed additional categories in order to code responses such as the 

ones that discussed the role of extreme values on variability. Overall, Arnold’s framework served 

as a first step in the analysis of student responses, but its influence was less prevalent in the 

subsequent iterations of coding. The framework was especially useful in coding the responses to 

the first, fourth, sixth, and seventh questions. For the remainder of the questions, the categories in 

Arnold’s framework were considered, but the coding was held open to the new codes, especially 

because the characteristics of the distributions in these questions could trigger different ideas for 

students to explain their reasoning. In addition, as Makar and Confrey (2005) claimed, students 

often articulate their reasoning using nonstandard language. Accordingly, I did not limit the 
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coding procedure to Arnold’s (2013) categories. Overall, I repeated the coding procedure for 

each question at least twice for the reasons I discuss here and to increase the reliability of my 

coding. Table 4 shows the total response given by students and the number of coded responses 

for each question. 

Table 4 

Summary of Homework Data	
   

Item 
Total number 
of responses 

Number of 

coded 
responses 

1 1,156 250 

2.a 531 100 

2.b 541 100 

3 314 100 

4 1,048 100 

5.a 533 50 

5.b 532 50 

6 987 100 

7. 990 100 

8 1,004 100 

Note. 2.a and 5.a are the versions of the question without a context.  

Since each question in the study (except the first question) was formulated so that one or 

more informal notions would not be useful (see Table 2), analysis of student responses had the 

potential to provide information on students’ alternative ways of reasoning about variability. For 

instance, the second question in Appendix B was designed to elicit students’ alternative ways of 
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reasoning when the datasets to be compared have equal ranges. The three datasets have equal 

ranges, so a common student response could be that these three datasets have equal variability. 

Students may also suggest some informal notions, such as the last dataset is more variable 

because the data values are “evenly” distributed. Alternatively, students may correctly identify 

the set with the most clustering around the center.  

In addition to these informal notions, I also focused on the role of the presence of a 

context in this analysis. I investigated whether or not there was a difference in the sophistication 

of students’ reasoning in tasks with a context versus those without a context. Thus, half of the 

students in the course (chosen randomly) took some of the questions (see Table 2) with the 

context, and the remaining half took them without a context. I reported the results of the analysis 

in terms of variety and frequency of common ways students reasoned variability in each 

question, and an accompanied summary of the general trend in students’ answers. 

Pilot Study 

For piloting the interview part of the study, I contacted one of the teaching assistants in 

the Department of Statistics during Spring 2016 and asked her to announce my research study to 

the students in her introductory statistics course sections. A few days later, she sent me a list of 

students who were willing to participate in my research. I contacted those students and arranged 

times for the interviews. I was able to pilot my first interview protocol with three students in the 

week of March 28, 2016 and the second interview protocol with two students in the week of 

April 4, 2016.  

The interview protocols of the pilot study included background questionnaire and open-

ended questions on variability, and different statistical tasks for each interview. The interviews 

started with a brief conversation about the interview participant’s educational background, 
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followed by the participant’s descriptions of variability, and eventually focused on the statistical 

tasks. The interviews were both audio and video recorded. Four of the interviews lasted 60 to 70 

minutes; only one student needed less than 50 minutes in order to complete all the tasks. The 

pilot study suggested that the interview tasks could generate valuable data for me to seek 

answers for the research questions of the study.  

The next task after conducting interviews was viewing the video recordings in order to 

examine how each participant reasoned about variability. Based on this experience, I revised  

some of the tasks and follow-up questions. For example, I generated additional distributions for 

tasks, calculated summary statistics for the distributions to be given to the participants upon their 

request, added more follow-up questions, and reordered the tasks. Overall, the pilot study 

provided insights about the data collection and the appropriateness of interview tasks and follow-

up questions for the study. For instance, I found that the interview participants became less 

reluctant to discuss their statistical learning in their classes after they observed that I was not 

evaluating their performance. Because of the same observation, they also seemed to be more 

relaxed and comfortable in answering the follow-up questions and noticing that they held some 

contradictory notions about variability.
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CHAPTER 4 

RESULTS 

In the previous chapter, I introduced the research setting, participants of the study, data 

resources, data collection process, and finally, data analysis. In this chapter, I present the results 

of the study. First, I provide an overview of the results. The results specific to each research 

question are described after the overview. Finally, additional findings on students’ reasoning 

about variability for categorical data and bar graphs are provided. 

Overview of the Results 

 This section begins with an overview of the results of the analysis of students’ responses 

to homework questions. Next, I summarize the findings from the analysis of the interview video 

recordings.  

The analysis of homework data suggested that students often included information about 

the shape of the distributions in their responses, but the responses fell short in addressing 

variability specifically. I present the results of the first homework question to exemplify the 

overall approach that students in STAT 2000 demonstrated in their responses to homework 

questions.  

 In the first homework question, students were asked to describe a histogram that showed 

the distribution of the number of ounces of coffee that had been drunk by each of a random 

sample of 237 college students. The goal in asking the question was to investigate the extent to 

which students addressed variability in a typical “describe the distribution in a histogram” 

question. Students were expected to mention the shape, center, and variability of the distribution 
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in the context in which the data were given. According to the histogram, the majority of the 

observations were clustered between zero and 30 ounces of coffee. The distribution was right-

skewed and bimodal. Two distinct groups were evident in the distribution: one large group of 

observations in which most of the students consumed coffee less than 30 ounces, and a second 

smaller group of observations in which the amount of coffee consumed by students were 

clustered between 60 and 90 ounces. Variability of the distribution could be addressed 

specifically by including explanations based on the range of the distribution and determining 

whether the observations, on average, took similar values or excessively deviated from the 

average coffee consumption.  

My coding of a randomly selected sample of 100 student responses according to Arnold’s 

(2013) distribution framework suggested that students rarely mentioned variability in their 

descriptions. The student responses often included information only about the shape of the 

distribution: 62 out of 100 students mentioned that the distribution was right-skewed. Another 

common observation among responses was that the distribution was bimodal (15 out of 100 

responses). Although the terms skew and bimodal could suggest some indirect information about 

the variability of the distribution, I found the use of these terms by the students to be more about 

the shape of the distribution than about its variability. It might, however, be the case that students 

had assumed that providing explanations about the shape of the distribution also implies 

information about the variability of the distribution. For example, students might believe that if a 

distribution is skewed, then it also is more variable. From the perspective of such students, 

having only the information that the distribution was right-skewed addresses both the shape and 

the variability of the distribution. 
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 Observing that only a few students addressed variability explicitly in their responses, I 

continued to code responses. As a result, I ended up coding 250 student responses following 

Arnold’s (2013) distribution framework. The results suggested that 75 (30%) student responses 

provided pieces of information that could potentially be categorized as responses about 

variability. These responses mostly fell into either “interval for high/low for groups” or 

“majority” features of a distribution according to Arnold’s framework (see Table 3 for the full 

list of features). In addition, the coding suggested that a distinction between these two categories 

was difficult and unproductive to make since many responses could be coded either way. As a 

result, I collapsed these categories into a single category and named the category “addressing 

variability.”    

Because the main purpose of analyzing the homework data was to explore how students 

addressed variability in their responses, and since most of the students did not include specific 

variability terms in their responses, I searched for some key terms in all 1,156 responses. Next, I 

accumulated a list of terms based on the student responses that I had already examined. These 

terms were (a) “range,” (b) “spread” (so that both spread and spread out would be captured), (c) 

“var” (in order to include the responses that used varies, variation, variability, (d) “deviat” (in 

order to include the responses that used deviate, deviation, or standard deviation), and (e) 

“cluster.” Table 5 summarizes the frequencies and an example for each of the terms. As Table 5 

shows, only a small portion of students (47 out of 1,156 responses) used a more normative 

language to address variability. Within these answers, the use of range and spread were the most 

common.  
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Table 5 

Summary of the Use of Variability Terms by 1,156 Students 

Term Count Example 

Range 20 Looking at the histogram, the distribution is skewed right. The mode of the 
data is 0, while the median of the data is around 50. To describe the spread, 
the range is 100. 

Spread 12 Shape: the histogram is sort of skewed right but looks bi-modal with a less 
pronounced second mode. 

Spread: in the case of "Ounces of Coffee Per Day", the values definitely 
seem significantly spread out. 

Outliers: doesn’t necessarily have any pronounced outliers. 

Var 7 The distribution of the number of ounces of coffee college students drink is 
somewhat varied. The majority of college students, 100, drink around 0-10 
ounces of coffee a day. 

Deviat 6 This graph has a wide distribution and has a large standard deviation. It has 
an outlier of an unusually small observation. Most college students do not 
drink more than 20 ounces of coffee per day. 

Cluster 2 The majority of students drink between 0 and 10 ounces of coffee per day. 
More students seem to drink less coffee compared to more as indicated by 
the cluster of students that drink between 0 to 30 ounces per day. It then 
drops off after 30 and only rises slightly again from 60 to 90 ounces. 

 

Because only a small set of the student responses addressed variability through the use of 

statistical terms, such as range and standard deviation, I reexamined the responses in hopes of 

finding other possible ways of addressing variability that I might have overlooked. Another 

distinct group of responses that was common but did not fit into the categories in Table 5 or the 

features in Arnold’s distribution framework was the responses that summarize the frequencies 

for each bin in the histogram. The following student response is an example of this type of 

response:  

Of the sample, 100 students drink 0 ounces of coffee, 50 drink 10 ounces of coffee, 
approximately 27 students drink 20 ounces, less than 10 students drink 30 ounces, less 
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than 5 students drink 40 ounces, less than 5 students drink 50 ounces of coffee, 
approximately 10 students drink 60 ounces of coffee, around 12 students drink 70 ounces 
of coffee, less than 15 students drink 80 or 90 ounces, and less than 5 students drink 100 
ounces. 
 
Although one might claim that these types of responses address variability, I did not 

regard them in that way. A histogram emphasizes an aggregate of data; thus, the description of a 

histogram should capture the general features. The example above shows a listing of individual 

facts rather than an overall summary. In sum, variability is described as the characteristic of a 

distribution (Ciancetta, 2007), which was missing in the students’ explanations.  

Overall, the analysis of student responses to the first question suggested that for more 

than half of the many students, skewness was the most recognizable attribute of the distribution, 

and students often mentioned skewness but nothing else in their responses. In addition, available 

student explanations that included variability were often too brief to produce fully elucidated 

insights about students’ reasoning about variability. Many students often used terms, such as 

spread, in their responses but did not explain in detail the way a distribution was spread. For 

example, a student’s response for the second homework question was as follows: “The definition 

of variability is the spread of data, and it’s spread out equally.” As the response indicates, the 

student might have assumed that using the term spread is self-explanatory when addressing the 

concept of variability. Accordingly, the results of the analysis of student responses was 

sometimes less informative than I had hoped in seeking answers to the research questions of the 

study. The rest of this section presents the interviewed students’ reasoning about variability. 

As I explained in the last chapter, the interviews started with a brief dialogue about how 

the student would describe variability in general. Words and expressions that the interview 

participants commonly included in their responses were “change, different” (Ocean), “all 

possible choices, nuance, differences” (Karen), “vary from each other” (Chloe), and “different 
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ranges, different numbers, different results” (Britney). Overall, the participants’ descriptions 

were more applicable to the colloquial use of the word variability than to its formal use. The 

participants did not confine their use of variability to the statistical meaning. I concluded that the 

descriptions that the participants devised at this phase of the interviews were reasonable because 

the aim in these brief dialogues was to capture the participants’ broad understanding of the 

variability concept not the meaning of variability that is confined solely to the discipline of 

statistics.  

Later in the interviews, two of the participants expanded their definitions of variability to 

include the notion that the statistical concept of variability might have a different meaning if 

compared to its use in daily life. Ocean pointed out, “In math situations [emphasis added], 

variability has a totally different definition.” Similarly, Chloe claimed that the term variability 

could have distinct meanings in statistical and non-statistical situations. For example, she 

explained the distinction between the meanings as follows:  

The students of this campus vary within each other and also from other college campuses. 
There is always different, sort of, different student population that’s what I think of 
variability as a whole. Now, of course, I am in statistics, I know that it means how one 
sample varies from the other. It’s basically showing how they are not the same but they 
could be similar in a way…yeah…there is always differences between each person and 
each sample. 
 

 For the various statistical tasks that followed these brief conversations, Ocean stood out 

as the only student who consistently focused on where the majority of the data were in relation to 

the mean of the data. She addressed my follow-up questions using this idea throughout the tasks 

in the interviews. In addition, she successfully considered range, extreme values, mean, and other 

possibly related issues when reasoning about variability. She was not concerned that certain tasks 

were designed to focus on specific aspects of the distributions (thus, the tasks might trigger some 

of the aforementioned informal notions). In addition, if she had contradictory conclusions in 



59 

 

comparing variability across distributions, she handled those situations based on her fundamental 

ways of reasoning about variability instead of adopting a task-specific approach. In other words, 

Ocean’s powerful conceptualization of variability as the measure of clustering around the center 

allowed her to negotiate possible conflicts that her counterparts were unable to navigate during 

the interviews. The following excerpt illustrates the general mechanism that she employed when 

she addressed variability: 

Ocean: Initially I was thinking of variability as…just like…the different data points [emphasis 
added] so…like…something is more variable if different data points were recorded with 
all different but here you can see that they were, like, three of them were all the same but 
still constituted for the higher variability…it is not always have to be. Each individual 
data point does not have to be different; it just depends on how far each varies from the 
mean [emphasis added].  

Oguz:  So, then would you reconsider your very first list of words you gave to explain 
variability, change and different? 

Ocean: Different. Yeah, I wouldn’t use that anymore, because as I said here they are all the 
same, but they still have a higher standard deviation. I don’t know… I guess...like…in a 
math situation [emphasis added], variability had a totally different definition. Using it, 
like, just using it like a common language like talking to your friends, “that varies”; that’s 
what I like is changing, but here it really doesn’t have to change but still had variability 
within the dataset. 

 
Moreover, context was not a mediating factor in Ocean’s reasoning about quantitative 

variability. She did not alter her approach to variability across the context-included and    

context-free tasks. The only major difficulty she encountered was on Task 5 of the second 

interview. In Task 5, Ocean was asked to reason about variability for categorical data given in 

bar graphs. The first question of the task included two bar graphs that showed the frequency 

distribution of four categories in two different samples. Ocean was asked to choose the more 

variable sample and explain the reason for her choice. The second question of the task was a 

similar but simplified version of the first question, and the third question was another bar graph 

representation of categorical data for four grade levels’ preferences about where to go for field 

trip: the aquarium or zoo. Overall, Ocean had difficulty in reasoning about variability in these 
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situations. Her strong reliance on the idea of variability as clustering around the center seemed 

to limit her reasoning with categorical data as the following excerpt suggests: 

My explanation would be like with the mean and stuff, but you can’t calculate a mean 
from these [points to the categories in the bar graphs]. Because that was when I first think 
of variability. Now, I think of like average and stuff like that and changed the first 
definition that I gave you.  
 
Although other interview participants occasionally attended to the notion behind standard 

deviation (especially Karen later in her interviews), their ways of reasoning were less consistent 

across the tasks of the interviews. The participants employed the notions range (e.g., in Chloe’s 

words, “range has a lot to do with variability”) and differences of data values (e.g., in Britney’s 

words, “variability means the most different”) as justifications for their decisions on variability. 

They usually attempted to use these two criteria whenever possible as the following excerpt from 

Chloe’s responses to Task 4 of the first interview illustrates:  

Chloe: Maybe it doesn’t have to do with range sometimes. This is ten and fifty and that’s forty 
[points to the first dataset]. And it’s a difference of forty, and this is a difference of 
sixteen [points to the second dataset]. However, this is repeated three tens, three twenties, 
and three fifties, that’s not very variable. You know it’s like ten, ten, ten, then like 
twenty, twenty, twenty, then fifty, fifty, fifty. That’s not much variability at all.  

Oguz: Is this what you have in mind? 
Chloe: Yeah, I would say that second one has more variability. Maybe range does not have in 

terms of variability because this range is a lot bigger, but if you got repeat so…like…I 
don’t know, I just…I don’t know how to describe that change. Now you have one person 
who thinks this, who thinks that [inaudible], you have more varied responses. These are 
the very similar responses [refers to the first dataset], whereas this one has very similar 
responses—three people here. Yeah, sometimes range doesn’t matter, frequency matters. 

Oguz: Frequency matters. 
Chloe: Frequency and range matters [emphasis added], and in this set both matter, but 

frequency I think overpowers because you are getting a lot of the same here and there and 
there.  

Oguz: Okay. 
Chloe: Doesn’t give you much of a difference. It’s the same amount of people, too. Three people 

here and there. That’s not too different but in there [inaudible] two people here, one 
person would be here. It gives you a broader range of data to work with.  
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Those three interview participants also directed their attention toward the clustering of 

observations in a given distribution, especially when their informal notions were less applicable 

to the given situations. It should be noted, however, that the treatment of clustering as used by 

the participants was still naïve because they generally failed to consider the position of clusters 

of data in a distribution in relation to its center. After I observed that the interview participants 

failed to include the mean in their reasoning about variability I provided graphs in which means 

were labeled and asked if they could describe the relationship between the mean and the 

variability of the distribution. Britney, for instance, confirmed that she was not able to connect 

the information about the mean of a distribution with the distribution’s variability. She said, “I 

am not sure about the relationship with, how points close to the mean has any relationship to 

variability.” These results, together with the results of the second homework question, presented 

in the next section, suggested evidence of the difficulty students tend to have with incorporating 

the location of the center into their thinking about variability. 

 In the third question of Task 4 in the first interview, two raw datasets were given, and 

subjects were asked to determine whether the first or second dataset was more variable or if they 

were both approximately equally variable. This question was among one of the few instances in 

which interviewees were not able to use either range or the different data values ideas. In this 

case, two of the interview participants decided that the distributions were equally variable. Those 

participants determined that the two distributions had the same range and same variety of data 

values so (they concluded that) the distributions were equally variable. 

It was noteworthy that the interview participants often failed to reason consistently across 

different tasks and questions. They switched between different ways of reasoning based on the 

affordances and restrictions that were caused by the particular characteristics of the tasks they 
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were asked to perform. They employed informal notions in different weights in different 

questions, which was probably because the characteristics of the distributions or datasets 

provided in the tasks underlined certain aspects over others. For instance, in one of the tasks, 

Karen commented, “In some cases, when the standard deviation is high, there is more variability, 

but in this instance I don’t think it applies.” Similarly, for Task 5 of the first interview protocol, 

Britney had two contrasting ways of reasoning, but she reported that she was unsure how to 

decide between them: 

Honestly, I go back and forth on two [the uniform one] and three [the u-shaped one] 
because I could kind of see either way. Because I did this, because look how it is evenly 
spread out, so there is a lot of variability … each of them own the same frequency 
interval. But in this one, it has a big chance of ten and zero ranges, kind of. 
 

Overall, the inconsistencies in interview participants’ approaches to the concept of variability did 

not seem to bother them. The rest of the section provides answers to each research question of 

the study based on the analyses of homework and interview data.  

Results Specific to Each Research Question 

Research Question 1.a: 

How do undergraduate students reason about variability when the datasets or distributions to be 

compared have equal ranges? 

Most of the homework questions could be exploited to answer this research question 

because the distributions in those questions had equal range values. The results for two of these 

questions, the second and the third, are presented in this section.  

In the second homework question (see Figure 1), three distributions X, Y, and Z, each 

contained five values, were given and students were asked to choose the least variable dataset 

from those distributions. Although the distributions had equal range values, the observations in Y 

were more closely clustered around the mean of the distribution, but the observations in X were 
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clustered away from the mean. Hence, the distributions from the least to the most variable were 

Y, Z, and X, if students regarded variability as the measure of how much, on average, 

observations in a distribution deviate from its mean.  

 

Figure 1. Homework question 2. 

 
 The majority of the students chose either Y (41.6% of the responses) or Z (38.7% of the 

responses) as the least variable distribution. Although choosing distribution Y as the least 

variable was the expected, normative response because the observations in Y were more closely 

clustered around its center, 415 out of the total 1,072 students chose Z as the least variable 

distribution. As a result, for the rest of the analysis, I focused on the justifications students 

provided for choosing either Y or Z.  

 Students’ justifications for selecting Y as the least variable distribution suggested that the 

main reason why students chose this option was the clustering of observations. In order to 

explain their reasoning, students commonly used phrases such as more condensed, clumped 

together, concentrated in the middle, and less spread out. It should be noted that the language 

students used in this question was not similar to the features of variability listed in Arnold 

(2013), so I coded their responses independently of Arnold’s framework. 
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An examination of the explanations for this answer choice Y suggested that the responses 

differed based on whether the responses explicitly included the measure of center. Therefore, I 

re-read the responses and distinguished the set of responses that mentioned clustering but did not 

take center into account from the set of those that clearly included the center in the explanations. 

Coding the responses according to that distinction suggested that these responses could be 

categorized in three distinct groups. Figure 2 displays these reasoning themes from vague to 

more deliberate consideration of center, with examples for each theme.  

 

Figure 2. Student explanations from less clear to clearer consideration of center. 

 
To claim a distribution as less variable, the observations in the distribution need to group 

closely around the center of the distribution. Accordingly, students’ use of terms such as middle 

and center made it difficult to decide whether these terms were used to refer to the midpoint of 

Close together 
• Example: Most of the responses in group Y are close 
together with  fewer outliers than in groups X and Z. 

• Example: Y has the majority of it's [sic] variables all in 
the same spot compared to X and Z. 

Clustered toward the middle (or center) 
• Example: There were more clustered toward the middle, 
and less variance in terms of responses. 

More points more close to the mean (or median) 
• Example: Y has the least variation because the mean in 
every class would be 10, but Y has more data points closer 
to 10 which would reduce the value of the sum of squares 
and thus, reduce the variation. 

• Example: Y is the answer because variability means spread 
and there is the least amount of spread in this data set 
because most of the data is concentrated in the middle near 
the mean. 
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the values on the x-axis or the mean or median of the distribution. Nevertheless, these responses 

suggested a clearer emphasis on center when compared with the group of responses in the top 

group in Figure 2. In conclusion, although the notion that “there are more values closer together” 

is important to observe, a more complete response should include more clarification as the 

following student response suggested: “Section Y has most of it's [sic] data clustered around the 

center of the dataset, leading to less variation in the data.” 

 When students chose dataset Z as the least variable dataset, they commonly used 

expressions such as equally spaced, evenly distributed (or spread), uniformly distributed, 

consistent (constant, even), and spread. An overwhelming majority of those student responses 

included an argument that Z was the least variable because the observations in Z were “equally 

spaced” and thus had “greater consistency and lesser variability.” Treating variability in this way 

seemed to be a common way of reasoning among students as the following responses illustrate:   

I chose Z because it has a continuous flow of values. Each number is 4 units apart, and 
the variability stays the same throughout the whole line of numbers. The other parts have 
much more space between the depicted numbers, so there is more variability in the line. 
 
Because the values in Z appear at constant intervals and are very organized. They always 
appear at intervals of two, giving room for little to no variability. 

 
All of the variables are separated by 4, so there isn't any variability among them. 
 
There is few variation between each of the point.  
 
Z is evenly spaced and is constant. There is no data variability. 

 
Students’ justifications for choosing the distribution Z suggested that students hold an 

informal notion of variability, triggered by the characteristic of Z. Instead of focusing on how the 

data values were spread from the mean value, students compared whether the overall spread was 

more haphazard (as in X or Y) or followed a regular pattern (as was the case in Z). In other 

words, they perceived (smaller) variability as consistency or predictability of the spread of values 
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in a dataset. The following student explanations clearly demonstrate this informal notion in 

detail:  

 I chose graph Z because although the dots are more spread out than the other two, it is 
 a constant gap between the points. It varies the least because it begins at 2 and every 
 fourth number after that has a point. It's systematic. X & Y may have points that are 
 closer together, but their spread is more random [emphasis added] while Z is consistent. 
 
 Z has the least variability because variability refers to how points differ from each other 

using range, standard deviation, and variance, which is all the same regardless of which 
point it is since the points are spaced evenly apart and have no outliers. 

 
Variability means have a lot of difference within data. Dataset Z has each value in an 
equal distance away from each other showing a constant standard deviation while the 
other datasets have unequal distributions showing variation within the data. 

 
Variability can be defined as "having a lot of differences" or "spread out". The data in 
dataset Z has similar distances between each dot compared to the other plots. The other 
plots have a much greater space between some dots. 

	
  
As the responses above clearly indicate, these students focused on the extent to which 

consecutive data points were evenly distant from each other. In other words, the existence of a 

regular pattern was satisfactory evidence for students to claim that the distribution Z was the 

least variable. This informal notion could also be framed as the consistency or regularity of the 

distance between data values. Note also that students’ informal notions of variability seemed to 

be dependent upon the properties of the distribution given to the students. This question, for 

example, led to reasoning that was not observed for the other homework questions in the study.  

Lastly, although most of the students chose either dataset Y or Z as the least variable, 

12% of the students in this study concluded that the distribution with the least variability could 

not be determined since the range values were equal across the given distribution. Here is a 

typical justification one student provided for this conclusion: 

I chose that it can't be determined due to the having the same range and variability all of 
the datasets start at 2 and end at 18 [emphasis added].  
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The student response above and other similar ones indicated that students equated 

variability with range and concluded that X, Y, and Z should have equal variability. Although the 

literature indicated that students usually include range when reasoning about variability, having 

only 12% of the students in this study relying on range was noteworthy. The result suggested that 

students may reconsider their use of range based on the constraints and affordances of the 

question, dataset, or distribution when reasoning about variability.  

The third homework question required comparing the variability of test scores between 

two classes, Class A and Class B, represented in histograms. Note that both histograms had a 

range of 100 points. My coding of 100 randomly selected student responses according to the 

features in Arnold’s framework suggested that a large proportion of the students addressed the 

shape of the distribution specifically. These students usually suggested that the distribution for 

Class A was right-skewed and the distribution for Class B was closer to a symmetric or normal 

distribution. Table 6 provides the counts and students’ typical justifications for their conclusions.  
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Table 6 

Percentages and Examples for Each Category of Response in Question 3 

Category Count Example 

Class A is 
more 
variable 

41 The range of test scores for both class A and class B are the same in 
this example so we have to consider the frequency of the test scores to 
determine variability [emphasis added]. Class A test scores follow a 
right-skewed distribution while class B test scores follow a normal 
distribution. Class A frequencies vary [emphasis added] in magnitude 
more drastically than class B frequencies. 

Class B is 
more 
variable 

16 Overall, Class A's test scores are far less spread out than Class B's test 
scores. This is because many of the students in Class A scored between 
a 0 and 30 but most of the students in Class B scored between a 30 and 
90. 

Class A and 
B equally 
vary 

4 The variability of the test scores are [sic] the same because the spread 
of the data is the same. The ranges are the same for both classes. The 
difference is that Class A's data is skewed to the right while Class B's 
data is approximately bell shaped, maybe SLIGHTLY skewed to the 
left. 

No 
discussion of 
variability 

39 Class A's test scores are very low and the histogram is skewed right.  
The mean is a low grade. Class B's test scores were much higher and 
the histogram is skewed left. The mean is a higher grade. 

 

 As shown in Table 6, the majority of the students either chose Class A as more variable 

or did not mention variability in their answer. Note that the question specifically asked the 

students to compare variability between the given distributions, but a large proportion of sample 

student responses did not include a discussion of variability. These responses generally included 

information about the shape of the distributions using the term skew. One student, for example, 

suggested, “The variability for Class A is skewed left, while Class B is a normal curve.”  

 As I elaborated in the previous section when reporting the results of the first homework 

question, it was possible that students use the information about the shape of a distribution to 

address variability as well. In other words, some students might have assumed that the term skew 
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was self-explanatory in addressing the variability of the distributions, as the following examples 

suggest:  

  The variability of the distributions of test scores [emphasis added] for Class A are 
 skewed to the right and the distribution for Class B is skewed to the left.  
 
  Class A is skewed right where as Class B is more bell shaped with a skew to the left. 
 The skew is not as prominent so there is more variability [emphasis added] in Class A’s 
 scores. 
 

The students’ justification for the decision that Class A was more variable indicated a 

common misconception reported in the literature for histograms—associating differences in 

heights of bins with larger variability. In other words, students often assert that if the 

“frequencies vary” in a distribution then the distribution is more variable. Similarly, as the 

following student response suggests, students often claimed that variability of distributions could 

be judged based on “how similar or different the frequencies” were in a given distribution: 

The variability in the left graph (class A) is much greater than the variability on the right 
(class B) because there is much greater differences in the frequencies while on graph B 
the frequencies change much less drastically. 
 

 The analysis of responses did not indicate a serious consideration of the center when 

reasoning about variability. Responses usually lacked mention of the mean or other measures of 

center. Ten out of the 100 analyzed student responses explicitly mentioned the fundamental idea 

of variability using more appropriate statistical terminology in their responses. The following 

student responses were examples from that group of answers:  

The scores for Class A show a curve with a skewed-left distribution while the scores for 
Class B show a curve with a skewed-right distribution. The mean and the median were 
far higher for Class B's test scores than for class A’s test scores. The variability for Class 
A is higher because it has points that are farther away from the mean than does Class B. 

 
 Class A has less variability of test scores because a majority of the data is around the 
 class average,  indicated by the high frequencies clustered together. Thus, the data has a 
 small standard deviation. Class B has high frequencies in the various test scores, not just 
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 around the mean, indicating a larger standard deviation. Therefore, Class B is more 
 variable. 
 
 There are 4 different things we need to consider for variability; range, mean variance and 
 standard deviation. First the range is the same for both of them, but as for the mean Class 
 A is closer to the 20 and for Class B it should be around the 50s. For standard deviation, 
 the Class A score will have a larger range compared to Class B. 
  
 There is less variability in the test scores for Class A than there is in the test scores for 
 Class B. This is because Class A's test scores are less spread out; the scores are more 
 concentrated toward the lower end of the grading scale. Class A’s distribution is skewed 
 right. There is less deviation in Class A’s test scores. Class B’s distribution represents a 
 relatively normal distribution. Class B’s test scores have more variability because the 
 scores are more spread out, with no strong grade concentration and greater deviation. 
 
 Overall, the analysis of the second and third homework questions suggested two informal 

notions of variability. Many students interpreted variability as the extent to which consecutive 

data points were evenly distant from each other in the second question, and many students 

interpreted variability as the extent to which frequencies were different in the third question. 

 The analysis of interviews suggested mixed findings for datasets with equal ranges. Of 

the four interview participants, Ocean was the only student who focused her reasoning about 

variability on clustering around the center and standard deviation. Although she initially 

attempted to coordinate the notions of “larger range means larger variability” and “clustering 

around the center implies less variability,” she dropped the former and relied on the latter more 

uniformly throughout the remainder of the interviews. The other participants demonstrated 

various reasoning approaches discussed below. 

 In Task 2 of the first interview protocol, which was identical to the second homework 

question except the task had multiple follow-up questions, Chloe, Britney, and Karen suggested 

that they initially assumed that range was the most prominent measure when reasoning about 

variability. They were willing to adopt a different approach, however, when they observed that 

range did not provide distinguishing information about variability because the compared groups 
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had the same range. Although they articulated their thinking in slightly different ways, these 

interview participants commonly suggested an informal notion: The distribution with more 

distinct values was the most variable. As a result, if they observed any clustering (irrespective of 

the relative position of the cluster to the center) in a distribution, they claimed that the 

distribution was less variable.  

 The interview participants articulated the informal notion in slightly different ways. For 

example, in order for Chloe and Britney to judge a distribution to be variable, the observations 

needed to differ from each other, which also required the observations to be far apart. 

Accordingly, clustering indicated less variability because clustering signaled that the 

observations were very similar (in terms of values) to each other. Karen put this informal notion 

into words as “covering more data values,” and as long as the observations of a distribution were 

different from each other, she noted more variability. Therefore, Karen noted that if the 

observations were “close together, too, they are not gonna cover the most ground;” consequently, 

the distribution would not vary much. 

 This informal notion was more prominent when the interviewees were asked to work 

with the datasets that were given in raw data form. When the interviewees observed that the 

datasets to be compared had equal ranges, they raised the issue of whether the datasets contained 

repeating data values. For example, all interview participants except Ocean focused on how 

different the data values were in the first question of Task 4 (in the first interview protocol). In 

this question of the task, two raw datasets with equal sample size were given, and participants 

were asked to choose the dataset with more variability. The participants decided that the second 

dataset was more variable since all nine observations in the second dataset were different 

numbers as opposed to the first dataset, which had three different repeating numbers. The fact 
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that the first dataset had a relatively larger range did not prompt the interviewees to conclude that 

the first dataset was more variable. Those participants again chose the second dataset to be more 

variable in the second question of the task (in which both datasets had the same range value) 

because the second dataset had more varied data values. Overall, the interview participants’ 

approach to these and other similar questions in the interview tasks suggested that the use of a 

“variety of numbers” was an influential way of thinking about variability when they were unable 

to use range in their conclusions.  

 The interview participants’ use of this informal notion took a different form when they 

worked on comparing variability using conventional statistical graphs, such as dot plots and 

histograms. Although Ocean maintained her original approach—gauging clustering around the 

mean—in these tasks, the others suggested different criteria in order to claim that a dot plot or 

histogram was less variable. Britney and Karen claimed that the approximately uniform 

distributions would be more variable when two histograms or dot plots had equal range. When 

Chloe worked on the Task 5 of the first interview, she decided that uniform distributions were 

less variable because she claimed that the presence of different frequencies in dot plots or 

histograms caused larger variability. Accordingly, she claimed that normal distributions were 

more variable than uniform distributions when both had the same range values.  

Overall, the analysis of second and third homework questions suggested two informal 

notions of variability. In the second question, many students interpreted variability as the extent 

to which consecutive data points were evenly distant from each other, and in the third question, 

many students interpreted variability as the extent to which frequencies were different. 

Considering the interview results, Ocean was the only interview participant who used the notion 

of clustering around the mean when she compared distributions in terms of variability in the case 
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of equal ranges. The other participants usually used presence of various data values in raw 

datasets in order to identify a distribution as more variable. The use of these strategies by the 

interview participants suggested how this informal notion was prominent in their 

conceptualization of variability. 

Research Question 1.b:  

How do undergraduate students reason about variability when the datasets or distributions to be 

compared have no extreme values? 

 The research question was about investigating students’ reasoning about variability when 

the datasets or distributions to be compared have no extreme values. The third homework 

question, whose results were reported in order to address Research Question 1.a, could also be 

exploited for Research Question 1.b. As discussed above, the distributions for Class A and Class 

B did not have extreme values, or at least, the students did not claim there were any extreme 

values in the given histograms. Accordingly, no students presented a justification based on 

individual or extreme values. As discussed above, the students focused on the frequency 

differences within the bins of a histogram and compared it to the case in the other distribution.  

 Homework Question 4 also targeted research question 1.b. because the first part of the 

question had two extreme values (observations 8 and 10), whereas the second part of the 

question lacked those extreme values. Students were asked to describe the distribution in both 

cases so that the role of extreme values in students’ reasoning could be investigated. My coding 

of 100 randomly selected student responses revealed that 34 of those responses included the 

terms extreme values or outliers. Among those student responses, half of the students used the 

existence of outliers to support their ideas about the shape of the distribution (e.g., the 

distribution is skewed since 8 and 10 are outliers). In other words, those students used the 
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presence of the outliers (or extreme values) to justify skewness but did not mention the outliers’ 

role in variability. The other half of the students used outliers to justify their conclusion about the 

variability of the distribution. Examples for each purpose are presented below:  

It is relatively symmetrical with the exception of a few outliers, which cause a slight 
skewed left overall [use of outliers to discuss the shape of the distribution]. 
 
Thew [sic] range is now 4 instead of 10. The mode remains two pets, but the chart 
reflects more of a bell curve shaped distribution. The range and variability decreased [use 
of outliers to discuss the variability of the distribution]. 
 
No students claimed that the distribution was variable based on the presence of outliers, 

leading me to conclude that they did not consider outliers and extreme values when they 

reasoned about variability. Thus, I concluded that availability or unavailability of outliers was 

not extensively influential in students’ reasoning about variability.  

My coding of 100 randomly selected student responses according to the features in 

Arnold’s framework also suggested that some students partially addressed the important 

characteristics of the given distribution. An exemplary student response, which was rare among 

the coded responses, is as follows: “The distribution of the number of pets owned by students is 

mostly centered around 2, and is slightly skewed to the left, but with some outliers to the right of 

the center of the data.”	
  As the response clearly shows, the student estimated the center and shape 

of the distribution, mentioned where the majority of data were in relation to the mean, and 

identified possible outliers in the given context.  

	
    Out of 100 responses, only 35 addressed variability in their descriptions. Among the set 

of responses that addressed variability, students often used expressions that fall into Arnold’s 

Majority (mostly, many) feature. These responses often provided descriptions by using the 

phrases most and majority as the following examples illustrate: 
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   Most people have about 2 pets, usually between none and 4. Very few have more than 
 that. 
 
 The majority of class members owned between 0 and 4 pets. The students who owned 8 
 and 10 pets can be counted as outliers. 
	
  
	
   Many responses (65 out of 100) were not informative enough to conclude whether 

students had considered variability in their responses. For example, in responses such as, “The 

distribution is skewed right. This means that more people own fewer pets, like 1 or 2, rather than 

a lot of pets, like 10” or, “The new distribution would be skewed left because most of the data 

would be on the left side of the peak, which would be 2,” the students’ main ways of reasoning 

were not clear from their explanations. In other words, student responses were too vague and 

ambiguous, which made it too difficult to understand how they reasoned about variability in the 

given homework question.  

 The sixth homework question included two dot plots that showed the number of pairs of 

shoes owned by females and males who took a survey. My coding of 100 randomly selected 

responses suggested that 66% of the students concluded that the distribution for females was 

more variable and 26% of students concluded that the distribution for males was more variable. 

Students generally used two phrases more spread out and more clustered in their responses for 

either of the conclusions. For example, students who concluded that the distribution for females 

was more variable used the phrases spread out and more clustered as the following example 

illustrates: “The samples for Females are more variable because the samples are more spread out 

[emphasis added]. The samples for Males are more clustered together within the range and the 

Females samples are all very dispersed within the range.” Similarly, one student provided the 

following explanation for his or her conclusion that the distribution for males was more variable: 
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“There is more variability in the male group because the dots are more spread out [emphasis 

added].”  

When students used terms spread out and more clustered without additional explanation, 

I could not classify the student responses further using the features in Arnold (2013) because the 

responses were not detailed enough to understand what students meant by these terms. For 

example, one student claimed, “There is more spread for the females, therefore, more 

variability,” which left me unable to delineate the student’s reasoning.  

Analyzing student responses also suggested use of some other common phrases. One of 

the phrases that students used was concentration. Students’ use of concentration in their 

explanations might indicate that they treated variability as deviation from the mean. It should be 

noted, however, that use of the word concentration does not assure they had such an idea. 

Another common occurrence was the use of skew. Some students also used the term as if 

skewness was a direct and clear measure of variability. Accordingly, student explanations such 

as “the distribution for females is more variable because the responses are more spread out 

whereas for males the responses are skewed right” were not clear enough for me to decide how 

these responses indicated variability. In contrast, the following example provided a clear link 

between variability and skewness: “I said that the distribution for Males is more variable, 

because it is more skewed and would have more points farther from the mean.” As evident from 

the last part of the response, the student explained how skewed distribution could result in 

increased variability. 

Other than describing the distribution with the phrases more clustered and spread out, 

only a few students explained their reasoning using the terms outliers, standard deviation, and 

range, and explicitly addressed the center of the distributions and where the majority of data 
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were in relation to the mean. Thus, the following types of explanations were rare among the set 

of responses I analyzed: 

I said that the distribution for Males is more variable, because it is more skewed and 
would have more points farther from the mean [emphasis added]. 
 
The males have more variability because while both sets of outliers that skew them to the 
right, there is more data clustered near the median [emphasis added] of the males [sic] 
distribution than the females. 
 
Overall, the analysis of the sixth homework question suggested that students generally 

used phrases such as spread out and more clustered without closely considering whether using 

them accurately conveyed their ideas about variability. In addition, the result suggested 

availability and unavailability of outliers was not influential in students’ reasoning about 

variability.  

 The analysis of interview data also did not suggest that availability or lack of availability 

of extreme values had a necessary role in the interviewees’ reasoning, although they occasionally 

raised concerns about the probable impacts of outliers on variability in given distributions. 

Ocean’s work in Task 3 of the first interview (the task with a dot plot that represented the 

number of pets owned by each of 30 students) suggested that she did not neglect possible 

extreme values, but she also did not overemphasize their role in terms of reasoning about 

variability. Ocean’s first observable reactions to the task were that the data values were 

“clustered near the mean,” and the distribution included two data values that were distinctively 

farther away from the rest of the data. Her response to the variability of the distribution included 

these two values as she claimed “Except these two, but if you don’t take these into consideration 

and just mark off as one and two, then I would say that there is not as much variability within 

this distribution.”  
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 Britney, Chloe, and Karen treated extreme values and outliers in a number of ways when 

they reasoned about variability. Britney claimed that without outliers, “[The distribution] would 

be less variable because it would have a less range that it fall in between, because you would 

shorten the range if you cut that out.” Chloe’s reaction to the existence of outliers shared similar 

features to Britney’s responses. When I asked (while she was working on Task 3 of the first 

interview) why the presence of outliers results in a more variable distribution, she said, “Outliers 

increase range of values, and as I was saying in my own words, hitting more numbers.” Chloe 

claimed that the variability would be greater if there were outliers in a distribution because 

“outliers increase range of values.” Chloe’s treatment of extreme values seemed to function in 

this order: With extreme values, an increase in range follows, so the possibility of more different 

numbers in a distribution increases. She also added that variability increases more radically, 

especially if extreme values occur “on the side that has barely anything” in a given distribution. 

This observation also suggested that outliers imply more variety of numbers (i.e., data values) in 

a distribution because they are different values than the rest of the data.  

Overall, the interview participants’ explanations suggested that they took outliers and 

extreme values into consideration when reasoning about variability, but perhaps as a secondary 

phenomenon to justify their reasoning. As Britney and Chloe’s explanations above illustrate, the 

primary use of extreme values and outliers by those participants was to support their reasoning 

based on range and variety of data values. This finding also meant that the lack of extreme values 

in given distributions was not sufficiently instrumental for the participants to consider variability 

of quantitative data in terms of how close the data were distributed around the mean. To 

conclude, the available interview data did not suggest a considerable difference in approaching 

variability between the situations in which distributions did not have any extreme values and the 
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situations in which distributions had extreme values. In other words, the participants often 

preserved their preexisting notions and approaches with and without the presence of extreme 

values. 

Research Question 1.c:  

How do undergraduate students reason about variability when the datasets or distributions to be 

compared have approximately the same number of different values? 

 Analyzing 100 randomly selected student responses from the fifth homework question 

(comparing the variability of two datasets given in the form of raw data) suggested that the 

overwhelming majority of the students (84 out of 100) decided that the second dataset had more 

variability. The result clearly showed that most of the students were inclined to treat variability 

as various data values if one of the datasets had more varied data values than the other. 

 Students’ justifications for concluding that the second dataset was more variable usually 

included an argument centered on how different the data values were between each other in the 

second dataset. Except for a few responses, students usually used one of two notions to justify 

their reasoning: more different data values or spread out. The following responses illustrate 

students’ typical explanations for the question: 

The second dataset has more variability than the first because the first dataset only has 
three sets of values, while the second has multiple different values in the dataset. The 
ranges for both of these datasets are identical, but the second [dataset] has more 
variability because of the more diverse set of values. 
 
The second dataset has more variability because the numbers are more spread apart 
whereas the first dataset has a lot of repeats. 
 
Overall, analyzing student responses to the fifth homework question provided limited 

information on Research Question 1.c. In other words, the instruments fell short in investigating 
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students’ reasoning about variability when the datasets or distributions to be compared had 

approximately the same number of different values. 

The treatment of variability as “how different the values are from each other” was the 

overarching theme when each interview participants described variability at the beginning of the 

interviews. For example, when I asked Ocean how she could describe the term variability, she 

explained that variability refers to the mere fact that there are “a lot of different points, different 

data points within that population, everything is not exactly the same.” She further claimed that 

variability basically refers to “change” or “different from normal.” The words that she claimed to 

be related to variability were change, different, and quantitative value.  

The notions above, however, seemed inapplicable to the quantitative data as Ocean 

started to work on the interview tasks. Her approach to Task 4 of the first interview (hence, to the 

aforementioned informal notion) was as follows: 

I expected group two [refers to second dataset] to have a lower standard deviation 
because when I labeled the means of those, you can see that the data points are more 
clustered towards mean versus this mean [refers to the relative position of the mean in the 
first dataset] does not have really any points near it until you go, like, further below the 
mean or above, extremely above the mean, so that’s why standard deviation is eighteen 
and five point five on this one and then again smaller standard deviation corresponds with 
less variability where high standard deviation corresponds with more variability within 
that dataset. 
 

 When I raised the issue that the variety of data values was lower in the first dataset, she 

agreed that she “was thinking variability as different data points,” but she did not use change 

anymore to describe variability since it was an inappropriate way to describe variability. She 

further clarified that “in math situations [emphasis added] variability has a totally different 

definition.” The following excerpt illustrates how she reframed her thinking.  

Ocean: Initially I was thinking of variability as just like the different data points so like 
something is more variable if different data points were recorded with all different, but 
here you can see that they were like three of them were all the same but still constituted 
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for the higher variability it is not always have to be. Each individual data point does not 
have to be different; it just depends on how far each varies from the mean.  

Oguz:  So, then would you reconsider your very first list of words you gave to explain 
variability, change, and different? 

Ocean: Different. Yeah I wouldn’t use that any more because as I said here they are all the same, 
but they still have a higher standard deviation. I don’t know. I guess like in a math 
situation variability had a totally different definition. Using it, like, just using it like a 
common language like talking to your friends, that varies; that’s what I like is changing, 
but here it really doesn’t have to change but still had variability within the dataset. 

Oguz:  Maybe there are some non-math situations. 
Ocean: Yeah situation can affect the definition of variability. 
Oguz:  Can you think of any situation in which the notions of different or change may be an 

appropriate way to describe variability? 
Ocean: Maybe, like I said the temperature, or like maybe amount of water bottles you drink a 

day varies, they are different everyday but like in math when you are thinking of 
variability you are not thinking of data unique by itself; it can be like repeated; it does not 
have to be a one-time thing. 

Oguz:  What about that t-shirt color example? 
Ocean: Yeah like in a classroom, variability, I feel like variability can still be in the t-shirt 

example; it can still be used since t-shirt colors can be different in the different 
classrooms and then you would assume that all that to be red right after a game or 
something like that.  

 
Overall, Task 4, in which the datasets to be compared in terms of variability were given 

in the form of raw data, specifically investigated whether interview participants might treat 

variability as the measure of how different the numerical values were in a dataset. Ocean realized 

that describing variability based on the notion of difference was inadequate to and inconclusive 

in her investigation of variability in various tasks throughout the interviews.  

In terms of reasoning about variability of the distributions in raw datasets, all of the 

interview participants except Ocean maintained the same informal notion—possibly even more 

strongly as I explained above when reporting the findings for the first research question. The 

term variability essentially meant different and change for the interviewees, and the observation 

of various numbers in datasets seemed to confirm interview participants’ treatment of variability 

in this way. When the notion could not be employed because of the design of the question or 

other features of the tasks that overshadowed this property, the participants employed different 
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strategies that I found fragmented and inconsistent. In some of these cases, the participants 

classified the distributions as being equally variable. For example, upon confronting the third 

question of Task 4 of the first interview, in which both datasets had the same range and variety 

of values, Karen and Chloe decided that the datasets were equally variable. The following 

excerpt illustrates how Karen dealt with the situation, and eventually decided that the 

distributions had equal variability:  

Karen: They are looking kind of similar. 
Oguz: In want ways? 
Karen: Well, both have repeating values in them. This one [the first dataset] has forty, forty-two. 

This one [the second dataset] has seventy and thirteen repeating itself so yeah and also, 
this I think has a similar pattern maybe because this one [the first dataset] goes up by one 
plus one is four, ten [in the second dataset] plus one eleven and then except for this, 
maybe wait, yeah maybe it’s not the same yeah I don’t know. This one [the second 
dataset] jumps a little bit more that throws variability. I think they are pretty similar. This 
one [the second dataset] has the highest value but and this is a big jump right here that is 
a really big jump. I think for the most part, they are similar. 

Oguz: So they may have the same variability? 
Karen :Yeah, I think they have the same variability because they are not drastically different and 

they both have similar characteristics. 
Oguz: If we had second forty-two to be forty-three, would that make a change in your answer?  
Karen: Yes, I think so because then there would be a different number right there. It wouldn’t 

have the same amount of numbers, the mode I guess, so this one [the first dataset] would 
have more variability if that was the case. 
 
For the same situation, Britney started to use the notion of clustering of values in order to 

justify her decision. The following excerpt illustrates how she started to establish her approach of 

“clustering” of values and on whether or not the presence of values in a distribution “grouped 

together” implied less variability: 

Britney: Maybe, I would say the second dataset because, it’s totally a guess but I guess, the 
eighteen is I guess is more like the median more. The repeating values are more outside. 
Seventy is further away from the eighteen and, oh well, ten to forty is kind of big jump. 
These values kind of less like in relation to each other. 

Oguz:  They are less in relation to each other.  
Britney: I mean more spread apart. Like it goes, if it was in a dot diagram [might mean dot plot], 

all these numbers will be like on this end it kind of jumps like from eighteen to seventy 
either or side and this one lay down here [inaudible]. Well, actually maybe the first 
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dataset would be more variable since it has more spread out. It has some datasets from 
the end, forty kind of in the middle, and seventy seven up here rather than the second one 
just having more like clustered on the lower end and the higher end.  

 
Overall, both in interviews and in their responses to homework questions students tended 

to treat variability as the measure that gauges “how different the values are from each other.” 

When this informal notion of variability was not applicable, however, students tended to view 

the concept of variability in different ways such as examining whether or not observations in a 

distribution are grouped in some certain areas.    

Research Question 2:  

In what ways, if any, does providing a context support or detract from students’ reasoning about 

variability in the preceding situations? 

Table 7 displays the frequency of students’ choices for each version of the second 

homework question, those with and without context, with examples of student reasoning for each 

choice and each version. The differences in the distribution of percentages across the answer 

options suggested that although availability of context was not statistically significant in helping 

students to choose the correct option (39.4% for the version without context and 43.9% for the 

version with context), it did appear to change the incorrect choice made by students. In 

particular, students who saw the context version of the question were more likely than expected 

to choose that the distribution with more variability cannot be determined, while students who 

saw the version without context were more likely to choose option Z as the least variable. 
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Table 7 

Percentages and Examples for Both Versions of Question 2 

Option Without Context With Context 

 
n  
% 

Example 
n 
% 

Example 

X  34 
6.4 

X has the least measure of 
variability because it has two 
occurrences of regions of data 
within the same range. 

  50 
 9.2 

The items are more clustered and 
not as spaced out as the other 
options. Either her students went 
out 20 times a week or less than 3. 

Y 209 

39.4 

In Y, more numbers were 
closer to the mean, 10, than 
the other sets. 

238 

43.9 

Y is the answer because variability 
means spread and there is the least 
amount of spread in this data set 
because most of the data is 
concentrated in the middle near the 
mean. 

Z 245 

46.1 

The data points that are 
depicted in the graph are 
equally spread out from each 
other, and thus they 
demonstrate a consistent, 
predictable pattern. 

 

170 
31.4 

The students in the afternoon class 
went to eat at very constant 
intervals while the others were more 
sporadic. 

Cannot 

be 
determ 

  43 

 8.1 

Because they are both spread 
out 

 83 

15.3 

I said it cannot be determined 
because as we went over in the class 
and on the notes, each section has 
the same range of values. 

Total 531  541  

Note. Correct choice was Y if students think of variability in terms of SD and variance. 

 
Similar to the second question, the fifth homework question was asked both with and 

without a context. Coding 100 randomly selected responses suggested that students’ decisions on 

the more variable dataset were similar in both versions of the question. The percentage of 

students who claimed that the second dataset was more variable was 81% for the group of 

students who took the question with the context, and 85% for the group of students who took it 
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without a context. In addition to similar percentages in both versions of the question, fewer 

students included contextual information in their responses.  

I investigated the influence of context on the interview participants’ reasoning by offering 

a question without the context, observing the participants’ approach to the question, and then 

providing the context and exploring whether they reconsidered their approaches. Analysis of the 

interview data did not suggest availability or lack of availability of context to have an impact on 

the interviewees’ reasoning—especially for quantitative variables. In other words, availability of 

context did not suggest a strong clue or indication for interviewees to consider the variability of 

quantitative data in terms of how close, on average, observations were spread around the mean. 

For instance, in Task 2 of the first interview protocol, Chloe kept using her previous method of 

reasoning (which overlooked the mean and how data values were arranged in relation to the 

mean) even though she was able to discuss the centers of the distributions with the given context. 

Providing a context for the task seemed not to affect Chloe’s approach. She slightly refined the 

context by suggesting “how many times people go downtown throughout the week” and claimed 

that the context for the data supported her reasoning. I further emphasized that all the 

distributions had the same average in order to see if she would take this new information into 

consideration in her reasoning. She claimed that either knowing the center of the distributions or 

having a context for them did not influence her preexisting thought process.  

The interview participants occasionally used context to justify their informal notions of 

variability, as was illustrated in Karen’s explanation of Task 4 of the first interview. She claimed 

that “[The first dataset] could be chocolate, vanilla, strawberry, but this [second dataset] is 

rainbow sugar, vanilla, and chocolate; you know it’s so many other flavors.” It should be noticed 

that the data on which Karen was working were quantitative, thus Karen’s proposed scenario was 



86 

 

inappropriate. In addition, she admitted that her reasoning was more of “thinking not 

numerically.”  

Additional Findings 

Although there were no research questions posed to investigate students’ reasoning about 

variability for categorical data, one of the homework questions (thereby, one of the interview 

tasks) required students to think about variability for categorical variables. In the eighth 

homework question (Figure 3), students were given two bar graphs of the same sample size, and 

asked to decide which distribution had greater variability. By including the question in students’ 

homework assignments, I thought I might gather additional information about the informal 

notion that I targeted in Research Question 1.c. In addition, by asking this question I aimed to 

investigate the extent to which students conceptualized variability as a measure of how often the 

observations differ from one another. 

The analysis of student responses to the question showed that 49.6% of the students 

selected the correct option that the Wednesday section was more variable, and 46.2% of the 

students selected that the Tuesday section was more variable. The other 4.2% of the students 

chose one of two options: the variability was the same for both sections or the variability of the 

distributions could not be determined. Observing that a large majority of the students chose 

either Tuesday or Wednesday as having more variability, for the rest of the analysis I 

investigated typical explanations they provided for these two options.  
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Figure 3. Homework question 8. 

 
First, I examined the reasons for justifying the claim that the Wednesday section was 

more variable. An overwhelming majority of responses in this category pointed to the fact that 

the number of students was distributed across the categories almost equally in the Wednesday 

section; therefore, the Wednesday section would be more variable. Justifications were similar to 

the following student responses:   

Wednesday section has more variability because each year has about the same amount of 
students. 
 
Wednesday is the answer for that above question because the graph on the right [refers to 
the Wednesday section] displays more diversity in the amount of students that are present 
for all age groups. The one on the left [refers to the Tuesday section] displays more 
sophomores and less[sic] juniors. This takes away variability because the distribution of 
ages present on Tuesday is not displayed as evenly as in the right graph of Wednesday. 

 
In the Tuesday section there are 7 freshman (first-years), 16 sophomores, only 2 juniors, 
and 5 seniors. But in the Wednesday section, there are 8 freshman, 9 sophomores, 7 
juniors, and 6 seniors. With that said, Wednesday’s class has more variability, because 
there is almost the same amount of students from each class year in that section. For 
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example, the probability of calling on a student in the Tuesday section and that student 
being a sophomore is relatively high because there are more sophomores in that section 
than any other class year. But the probability of calling on a student in the Wednesday 
section and them being a sophomore, freshman, junior, or senior is relatively going to be 
the same for each class year. 
 
It is noteworthy that students were able to use their intuition to figure out what made a 

bar graph more variable. Only a few students, however, explicitly mentioned that the data 

represented in the question were categorical. In other words, the student responses did not clearly 

show that students recognized that the data represented in the question (through bar graphs) were 

categorical. On the other hand, some students used terms such as mean, range, standard 

deviation, normal distribution, normal curve, and a few more terms in order to justify their 

response. Such responses indicated that students might have treated the data shown as numerical. 

For instance, one student claimed that the Tuesday section was more variable, “because the 

standard deviation for the Tuesday section is much larger than the standard deviation for the 

Wednesday section.” 

In addition to treating the categorical data as numeric and inappropriately employing 

measures such as mean and standard deviation to bar graphs, the great majority of students 

concluded that the Tuesday section was more variable by observing the wider frequency 

differences for the Tuesday section categories. The following student responses depicted this 

widely observed approach: 

The Wednesday section has an equal distribution of first year through senior students 
while for the Tuesday class, the amount of students based on class is different for each 
level, making it more varied. 
 
The Wednesday section has an equal distribution of first year through senior students 
while for the Tuesday class, the amount of students based on class is different for each 
level, making it more varied. 
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In conclusion, an analysis of student responses to this question indicated that most of the 

students who correctly identified the right answer used their intuition appropriately, whereas 

most of the students who chose the wrong answer used properties related to histograms and 

quantitative data in inappropriate ways. 

 In addition to the results from the analysis of student responses to the eighth homework 

question, findings of the interviews for Task 5 of the second interview, which was the same as 

homework question 8, suggested additional insight about students’ ways of reasoning for 

categorical variability. In the following pages, I present a detailed report of each interview 

participant’s approach to variability for categorical data as represented in bar graphs.  

 For Task 5 of the second interview, although Ocean clearly noted that “the bar graph tells 

the frequencies for specific categories” and the data under investigation in the task were 

categorical, such as “juice options” to choose from, she tried to calculate the mean values for 

each sample by using a method that was similar to computing median. As Figure 4 shows, Ocean 

applied an inappropriate method to compute the mean values for the categorical data. For both 

samples, she represented Category 1 with Number 1, Category 2 with Number 2, and so on, and 

she ranked them according to their frequencies. Then, she located the median value. According 

to this method, the mean for each sample was Category 2. Although such a strategy was 

inappropriate to follow for categorical data, I refrained from warning Ocean until she reached a 

conclusion based on her own calculations. 
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Figure 4. Ocean’s method of calculating “mean” for categorical data. 

 
Ocean claimed there were 14 data points “that were not included within the bar that 

includes the mean” in the first sample, and 21points that were not in the same category where 

mean was in the second graph. She further explained that “higher frequency that is different from 

the bin that includes the mean” would indicate the distribution to be more variable. Accordingly, 

she decided the first sample had a “smaller standard deviation” and therefore, was less variable.  

Although Ocean decided that the second sample had larger variability, she kept thinking 

about the question, probably because she was not sure about the appropriateness of her 

conclusion. She even went back to her work in ranking the dot plots task and checked if her 

approach to this task was in accordance with her approach to the previous task. Upon observing 

that she was confused, I asked the second question of the task, assuming that the simplified 

version, which had only two categories for each sample, would help her to reason more easily. 

She approached the second question using the same method she generated for the first question. 
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Later, with some follow-up questions, Ocean recognized that calculating means for categorical 

data as she did in this task was inappropriate since the conventional meaning of mean is not valid 

for categorical data. On the other hand, she could not come up with another way that she might 

think of as appropriate for examining variability in bar graphs. Thus, she was unsure how to 

answer my question of “how do you interpret variability in categorical data?”  

After she spent a few minutes working on the question, I provided the context to the data 

represented in bar graphs in the first question of the task, assuming that having a context might 

be helpful in her reasoning about categorical data. She immediately decided the Wednesday 

section (Sample 2) was more variable, but still had difficulty in explaining why she chose 

Sample 2. Then, I reiterated my question of how she would interpret variability in categorical 

data. She responded, “I would think you couldn’t because unless you assign a variable number 

like one, two, three, or four to the categories … I don’t think you could get numerical data or 

convert it to numerical information when you are given categorical chart.” Ocean’s reaction to 

this question and her following explanation seemed a noteworthy instance of how she attempted 

to come to a resolution to her dilemma: 

Ocean: My explanation would be like with the mean and stuff, but you can’t calculate a mean 
from these [points to the categories in the bar graphs. Because that was when I first think 
of variability. Now, I think of like average and stuff like that and the change the first 
definition that I gave you. Now when I think of variability I am picturing the average 
and—  

Oguz:  Maybe should you switch back to your previous? 
Ocean: This is like situational [emphasis added] or like the t-shirt thing. 
 

As the excerpt above shows, Ocean had difficulty in approaching variability in 

categorical data and bar graphs. Hearing that she remembered the t-shirt color example she 

provided to explain variability early in the first interview, I suggested that t-shirt colors—black 

and white—could represent categories in two different classes for the two samples given in the 
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task. Using that context, Ocean correctly identified the more variable sample in both questions of 

the task. 

Later, Ocean generated a method for assessing variability of a categorical variable based 

on the ratio between the frequencies of the categories. Ocean used the rule, if the ratio from one 

category to another is higher in one group, then that group had to have larger variability. She also 

said that the frequency differences among categories could be used to decide the bar graph with 

larger variability. She further claimed that the sample that has more categories should always be 

more variable. She elaborated on the issue by saying, “It has more variability because it has one 

more category, because you are giving more opportunity for different responses.” Overall, from 

the variety of notions she provided, I was not sure if Ocean had adequate knowledge resources 

she could consistently use in the future when asked to reason about variability in categorical 

data.  

As she spent more time thinking about the task, Ocean began to realize that variability 

might have different meanings in different “situations” (i.e., types of variables). As she claimed, 

“with the variability thing, it can alter based on the situation. You can’t always go for average 

with especially with this situation where it is categorical data.” It was clear from her expressions 

that Ocean started to recognize that the meaning of variability for categorical and numerical 

variables could be different.  

Potential reasons for Ocean’s difficulty in reasoning with categorical data seemed to stem 

from her lack of experience in thinking about variability for categorical data as well as her strong 

disposition on the meaning of variability for quantitative variables. This claim is further 

supported by her concern about categorical data: “Because you can’t put a number on it and see 

where the average is at and how far each is away from the average and stuff like that.” In other 



93 

 

words, I suspected her “clustering around the mean” notion has dominated her ways of reasoning 

about variability and did not allow her to ease her thinking when it comes to categorical data. 

Another issue related to her difficulty with categorical variability might be because it is rarely 

addressed in typical statistics courses. Therefore, she might not have accumulated enough 

experience in investigating variability for categorical data. 

  In Task 5 of the second interview, Karen provided a description of the use of bar graphs 

that I found satisfactory: A bar graph basically presents “what categories have what frequency.” 

Then, she started to work on the question by first suggesting a context for the data represented in 

given bar graphs: 

If we were thinking in terms of people, then a lot of people are in this category [points to 
the second category in the first bar graph], rather than these categories. Or, if I were to 
think of, it usually helps me to name the categories if it is really general like this it helps 
me to name the categories. So if these were countries and like if this one was Russia, I 
guess United States, Mexico, and Guatemala or something that would tell me that a lot of 
people live in this specific country [points to the second bar in the first bar graph] rather 
than these countries. So I feel like since more people live in this country [again, points to 
the second bar in the first bar graph] it doesn’t have that much variety or variability if that 
makes sense. Whereas in this one [points to the second bar graph] they are close to each 
other, they are very close to each other. There is pretty … they are close to each other. 
There is pretty much the same amount in each category, yeah people I guess. So as far as 
this goes I would choose B [as the more variable sample]. Sample two has more 
variability.  
 
It was obvious that Karen had an idea of what she needed to do in order to reason about 

variability for categorical variables. Therefore, instead of asking for more detail on how she 

worked on the question, I asked her to explain her interpretation of variability. She said, “As far 

as categorical, variability means variety, variability means that the frequencies in each category 

to be similar.” Karen’s work on the question and the her clear explanation suggested that she was 

able to describe the concept of variability for categorical data and employ her description when it 

comes to reasoning about categorical variables as presented in bar graphs. Upon my question on 
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whether variability is same for categorical and quantitative variables, she claimed they were 

“similar but organized differently.” She further explained that variability was based on 

“frequency” in bar graphs and she did not need to check “the range, spread, or any of that” when 

reasoning about variability in categorical data. 

 In the Aquarium and Zoo question of the task, Karen provided explanations that were 

again satisfactorily indicative of her understanding of variability for categorical data. Some of 

these explanations were, “so much more students lean toward aquarium so not much variability” 

and “Students [refers to the seventh grade] are even in both sides and it makes it more variable.” 

Accordingly, she suggested that she “would choose grade seven ultimately because it’s like 

pretty much the same frequency” across categories. Karen’s explanations suggested that she 

focused mostly on the (differences of) frequencies of categories in bar graphs in her reasoning 

about categorical data. Overall, as far as categorical data—thus, bar graphs—were concerned, 

Karen regarded variability as variety and made decisions based on this very notion. 

In Task 5, Chloe noted that all the frequencies were very similar in the second sample; 

thus the first sample had to be more variable. The expression that she used to explain her 

reasoning included her saying that the first bar graph had an “up-down thing” of the categories. 

Overall, it seemed that Chloe strived to formulate her reasoning based on the frequency 

differences across the categories. Smaller frequency differences among categories of a bar graph 

generally suggest larger variability, which was also valid in this question. However, Chloe’s 

response suggested that she saw things the opposite way. 

Next, I provided the version of the question that included context. Chloe discovered that 

the Sophomore Category constituted the majority of the frequencies in the Sample 1, but 

frequencies were distributed among the frequencies in approximately the same amounts in 



95 

 

Sample 2. Observing that the first sample had the “overwhelming amount of sophomores, not 

many juniors, some freshmen, and some seniors, ” she decided that the first sample was less 

variable. Accordingly, she said that none of the categories were “over powering the other” in the 

Sample 2. 

Chloe employed a different strategy in the third question; therefore, although I was 

expecting her to conclude that seventh grade was the most variable (since both aquarium and zoo 

categories had equal frequencies), she decided that sixth grade was the most variable. She 

explained her thought process in the following excerpt:  

Because in the seventh grade … not variability at all, same amount of kids, fifty fifty, it’s 
halved. Eight grade … overwhelming majority, eighty kids for the aquarium, twenty for 
the zoo, it’s a higher range but it’s not like it’s varied because that’s like out of ten kids 
eight of them say this, here is eight and here is two, it’s not varied at all, most of it is in 
that. This one, grade nine, it’s a little better, but it’s still so far away like, seventy to 
thirty, that’s like, thirty, seventy, and you know, I am looking at, like, that in my head. 
And grade six, they are a little bit closer to each other but enough part apart. You are 
definitely like say you are voting like and this is saying, this has majority to win [points 
to the higher bar in Grade 9], this has majority to win [points to the higher bar in Grade 
8], this has to have a even break [points to the bars in Grade 7], this [points to the bars in 
Grade 6] okay, okay forty to sixty almost half and half but not half and half so there is a 
good amount of kids that like this one versus the other one but nothing is overwhelming 
the other, so it’s sixth grade.  

 

Chloe’s explanation was surprising. For Chloe, a “fifty-fifty” distribution of frequencies 

in double-bar graphs was insufficient to claim that a distribution was the most variable. She 

claimed, “Equality of frequencies across categories indicates variability but not much.” As it was 

evident from her explanation, Chloe required a small amount of frequency differences across 

categories between frequencies in order to conclude that a bar graph was more variable. Even 

after my follow-up questions and reminding her of her way of thinking for the previous question, 

Chloe maintained her conclusion that the sixth grade was the most variable class because the 

frequencies in sixth grade’s data were very close but still were not equal.  
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Overall, Chloe suggested, “Determining variability in categorical is a little bit different 

than quantitative one.” For quantitative data, she suggested range and availability of various 

numbers (“hitting more numbers” in her own words) as the two most crucial criteria. For 

categorical data, she claimed that categories should have similar amount of frequencies but not 

equal in order to conclude that a bar graph represents a more variable dataset. 

When Britney started to work on Task 5, first I wanted to understand how she could 

extract the information represented in bar graphs. She suggested that bar graphs presented “the 

frequency to the categories.” When I asked which sample had more variability in terms of the 

categories, Britney claimed that the second sample was more variable. She justified her 

conclusion by claiming, “frequencies being similar throughout causes more variability.” She 

elaborated her thinking saying, “They are all equally affecting on the decision because this is all 

pretty much high frequency rather than having like a small bar down here that does not affect 

much.” 

  In addition, Britney noted, “The bins [refers to bars in each category] are also different 

from each other.” This additional requirement noted by Britney was noteworthy especially 

because Chloe also mentioned it as a criterion in her work with bar graphs that came next. In 

brief, both Chloe and Britney claimed that even though an approximately equal distribution of 

frequencies across categories suggested that the distribution was more variable, the frequencies 

had to have slightly different frequencies (although Britney did not apply this criterion when she 

worked on the last question of the task).  

When I asked the second question of the task in which there were only two categories in 

each sample, Britney again concluded that the second sample was more variable. The rationale 
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she provided was as, “Nothing is more favorite, nothing is more prominent over the other one.” 

The following excerpt provides a more comprehensive account of her reasoning: 

If you had fourteen people go to this event and then sixteen people go to this event, it’s 
like frequency close for each. It’s a little higher but it’s still close, really nothing is more 
favorite, nothing is more prominent over the other one so it has more variability because 
it’s even and close to been even. And this one [refers to the first sample] in context a lot 
more people go to this event rather than this one. So the variability of people going to 
events is not that much because you can tell that most people go to this one. 
 

Britney’s explanation suggested that she was able to think about variability for categorical 

variables and articulate her thinking upon my questions. When I asked if the ways of reasoning 

for variability were different for quantitative and categorical data, she said that it was “Still the 

same reasoning but just looks different.” Her response suggested that she was not able to 

recognize that variability is interpreted differently in categorical and quantitative variables. 

For the last question of the task, in which four different school grade’s preference were 

presented in double bar graphs, Britney maintained her approach and said that in the more 

variable class (which was the seventh grade), the options were “equal to each other” and 

“Nothing is favored, so nothing is prominent over the other.” She also added, “if there is a lot of 

variability you cannot make a decision easily.” 

Overall, student responses to the eighth homework question suggested that almost half of 

the students were able to reach a correct conclusion by applying their intuitive ideas of 

variability for the categorical data and bar graphs. The other half of the students, however, 

reached an incorrect conclusion, probably because they treated bar graphs as if they were 

histograms and then applied the properties related to histograms and quantitative data in 

inappropriate ways to the bar graphs. Students’ performance during the interviews suggested that 

(a) one of the interview participants was not able to reason about variability for categorical data 

although she was competent in reasoning about variability for quantitative data and (b) other 
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participants were able to reason about variability for categorical data although they had serious 

difficulties in reasoning about variability for quantitative data. The findings suggest that learning 

to reason about variability for different types of data might be independent from each other. 

Lastly, interview participants found the contextual information helpful in reasoning about 

variability for categorical data. 
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CHAPTER 5 

DISCUSSION  

 In this study, I examined the assumption that students’ reasoning about variability would 

be influenced by the prevalent characteristics of the distributions and datasets on which students 

were asked to work. By collecting and analyzing homework and interview data from 

undergraduate students enrolled in an introductory statistics course, I was able to frame students’ 

particular ways of reasoning about variability. In this chapter, first, I summarize the findings 

reported in Chapter 4. Next, I describe the limitations of the study. Finally, I discuss implications 

for instruction and further research. 

Summary and Discussion of Results 

 In the last chapter, I presented findings from homework questions and interviews. In this 

section, first I summarize findings for each research question of the study. Next, I provide a 

discussion of the results. 

Research Question 1.a 

 The results suggested that many students focused on the differences among the ranges of 

the data when comparing variability across different distributions. When given distributions had 

equal ranges, these students suggested different approaches for the concept variability. When 

given raw data or dot pots with only a few values, a considerable group of students claimed that 

the distribution with values distinct from each other had more variability. Acoordingly, if some 

or most of the values in a distribution were grouped together, students indicated that the 

distribution was less variable because the clustering of values meant that the values were more 
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“similar to each other.” Note that students often lacked an integral aspect of the formal definition 

of variability, which focuses on the relative position of the grouping of values with respect to the 

center of the distribution.  

When data were presented in dot plots and histograms, many students equated the 

concept variability with the differences in frequencies of observations in these graphical 

displays. For example, some students claimed that approximately uniform distributions should be 

less variable than normal distributions because the frequencies of bins for the first would be very 

similar to each other, whereas the frequencies in normal distributions would fluctuate more, 

thereby exhibiting more variability. There were, however, some students who claimed that 

approximately uniform distributions should be more variable than normal distributions or 

distributions with different shapes. These students often justified their thinking based on the 

claim that in uniform distributions each value (such as the bins of a histogram or horizontal 

values in a dot plot) is equally likely to occur, whereas bins or horizontal values have different 

probabilities of occurance in non-uniform distributions; therefore, uniform distributions are 

supposed to be more variable. As is clear from this way of thinking, these students tend to think 

about variability in a way that is more applicable to categorical data.  

Research Question 1.b 

Analyzing both homework and interview data suggested that when students were 

assessing the variability of a distribution, they did not focus on the notions of presence of 

individual values in a distribution. In other words, students did not claim a distribution was less 

or more variable based solely on the availability of extreme values or outliers. Many students 

noticed those values when responding to the homework questions or explaining their reasoning 

in interviews, but used them as a secondary phenomenon to consider when explaining their 
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reasoning about variability. For example, three of the interview participants used extreme values 

and outliers to support their reasoning based on the notions of range and variety of data values. 

Similarly, almost half of the students who noticed outliers or extreme values in a distribution 

used those individual values to justify their conclusions about the shape of a distribution (e.g., to 

justify the claim that a distribution was skewed). The other half of the students claimed that the 

presence of outliers indicated a bigger variability for various reasons (e.g., outliers suggest that 

the range is greater and outliers mean a greater variety of observations in a distribution). Overall, 

the results of the analysis of homework and interview data collectively suggested that availability 

or unavailability of outliers did influence students’ reasoning about variability extensively. Many 

students tended to use their preexisting notions and approaches to assessing variability in similar 

ways both with and without the presence of extreme values. 

Research Question 1.c 

The treatment of variability as how different the values are from each other was the 

overarching theme when each interview participant described variability at the beginning of the 

interviews. Three of the interview participants also used this notion throughout the interviews 

when a task permitted its application. When this notion was not applicable, because of the 

characteristic of the question or other features of the tasks that overshadowed the use of the 

notion, the participants classified the distributions as being equally variable. Similarly, in their 

responses to homework questions many students were inclined to treat variability as a measure 

that gauges the variety data values if one of the datasets had more varied data values than the 

other. Unfortunately, the results of the analysis of homework data were inconclusive in 

suggesting insights about the research question because the homework questions did not provide 
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an opportunity to compare varaibility when the datasets or distributions to be compared had 

approximately the same number of different values. 

Research Question 2 

Results of the student responses to homework questions suggested that although 

availability of context was not statistically significant in helping students to choose the correct 

option, it did appear to change the incorrect choice made by students. Analysis of homework 

data showed that students’ use of context-related language in their explanations about the 

variability in the given datasets were not common. Similarly, the analysis of the interview data 

did not suggest that availability or lack of availability of context had a positive impact on the 

interviewees’ reasoning—especially for quantitative variables. In other words, availability of 

context did not appear to provide clues or indications to interviewees that addressing variability 

of quantitative data requires an assessment of how close, on average, observations are spread 

from the mean.  

Discussion of Results  

 Overall, analysis of interview and homework data suggested a relationship between 

students’ reasoning and the prevalent characteristics of the distributions on which students were 

asked to work. For example, students addressed the shape of a distribution when given skewed 

distributions more frequently than they addressed shape and variability of distributions with 

other shapes.  

 The analysis of the student responses to homework questions also suggested that students 

generally had a rule-based approach to statistical questions in their response to homework 

questions. For instance, for the first question in Appendix B, instead of focusing on what 

skewness could mean in the context of coffee consumption, students usually applied simple rules 
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of statistics related to skewed distributions. For example, many students stated the relationship 

between a skewed distribution and its implication on whether mean or median of the distribution 

is larger, giving a response such as, “The distribution is skewed towards the right. That means 

that the mean is greater than the median.”  

The homework data were occasionally insufficient to answer the research questions, 

especially for some of the questions asked in homework assignments. As reported in Chapter 4, 

students often did not mention variability of a distribution if not specifically asked to do so. Even 

when students were asked to describe variability in a given distribution, they rarely discussed 

variability in detail. The majority of the students seemed to overlook the variability of the 

distribution in their responses, which was consistent with previous studies (e.g., Cooper & Shore, 

2008; Kaplan, Lyford, Jennings, & Gabrosek, in press; Meletiou & Lee, 2002) that students often 

fail to attend to variability when describing histograms. 

The results of the study fell short in answering some of the research questions also 

because the data collection means were not detailed and comprehensive enough to extract rich 

data to answer these research questions. For example, in the second research question, I aimed to 

investigate the role of context in students’ reasoning about variability, but providing contexts did 

not appear to suggest to students the need to use the mean of a distribution as the important 

theme related to variability. The student responses in both homework and interviews did not 

suggest that context was useful for students to recognize the type of data represented in the 

graphs and its implications in terms of thinking about variability. The finding, however, was 

contradictory to my assumption that context would help the student think the bins were 

quantitative and not categories.  
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Availability of context helped all four interviewed students in their approach to reasoning 

about variability for categorical data and articulating their reasoning behind it. In that sense, the 

finding supports the claim made by other researchers (e.g., English, 2012; Pfannkuch, 2011) that 

context can be an aid or an obstacle in students’ reasoning. The finding is noteworthy because 

students’ fluency in thinking about variability of categorical data might help them recognize the 

different types of data (such as categorical versus quantitative and univariate or bivariate 

quantitative).  

Some of the findings that emerge from the present study are similar to those in previous 

studies. For example, the findings agree with Garfield et al. (2007) that students usually maintain 

their thinking about variability as “overall spread and differences in data values (e.g., not all 

values are the same)” (p. 142). Ways of thinking, such as (a) smaller range values mean less 

variability because the values will be similar and (b) when values are close together they are 

more similar hence less variable, were commonly observed among students. All in all, 

approaching variability in these ways was not totally unhelpful; these notions could, in fact, offer 

a useful intuitive basis for understanding variability as a measure of how data values cluster 

around the mean, although I make no claim that most of the college students were prone to this 

way of thinking.  

Findings of the study also contrast with some of the previous research findings. The 

research literature, for instance, has suggested that students tend to focus on individual values 

and especially extreme values when they reason about variability, which was not common 

among the interview participants of the study or the students who submitted their responses to 

homework questions. One possible reason that could explain the disagreement between the 

findings of the present study and previous studies might be the use of a few questions that 
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targeted this phenomenon in the present study. Including more homework questions and 

interview tasks could substantially increase the overall richness of the data in answering the 

research question related to extreme values.  

The study also added more detailed information about the knowledge resources that 

undergraduate college students employ when reasoning about variability and determining more 

or less variable distributions, the characteristics of given distributions that were influential in 

their approach to variability, and the role of context. In addition, students’ tendency to treat 

variability for quantitative data in a way that is more suitable for categorical data might be 

because of the everyday meaning of variability, vary, and variation. As also supported by the 

first descriptions students provided in the beginning of the interviews, students usually think 

about variability in its colloquial meaning. Overall, the study contributes to the statistics 

education research literature by critically investigating the interaction between the content 

students were asked to work on and their approach to variability. 

Limitations 

  The interviews were conducted with a small group of students a few times during the 

study. Ideally, more interviews with more students would provide a better depiction of students’ 

reasoning. In addition, results of the interviews were contingent upon the type of questions in the 

interview protocols and the students’ effort when responding to these questions. Although the 

interview tasks in my study had many follow-up questions, the interview data could be limited in 

terms of laying out students’ individual thinking mechanisms. It might have needed to use a 

more varied and tailored set of questions for each interviewee based on their unique ways of 

thinking.  
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The study included students’ responses to eight homework questions collected from all 

registered students in the course. Ideally, more questions would be asked so that a more thorough 

depiction of students’ reasoning could be achieved. There were some restrictions in terms of 

putting more questions into students’ homework assignments for research purposes because the 

course already had several required assignments every semester. In addition, the results of the 

study were highly influenced by the extent to which students took the questions seriously or 

attempted to answer to the best of their abilities. Students often explained their thinking briefly in 

their responses to homework questions, which resulted in difficulties for deducing students’ 

exact reasoning about variability.   

In the study, I focused more on identifying students’ informal notions of variability, 

which might have caused me to neglect other important issues. The researcher’s focus might also 

influence the selection of data collection such as including only some certain types of statistical 

tasks but missing other important aspects of students’ reasoning about variability. Therefore, 

interpreting the results of both interview and student responses to homework data has constraints. 

First of all, one can claim that the situation in which students were asked to reason about 

variability in the study had a major impact on what type of responses student could possibly 

provide. In other words, it is reasonable to assert that the design of the study overall and the 

questions asked specifically in the interviews and homework questions might have directed 

students to think about variability in certain ways. For example, different types of data 

representations and their prominent characteristics might have triggered certain types of 

reasoning. As I discussed when I proposed the Theoretical Framework, novice knowledge is 

dependent on the circumstances and conditions under which students are asked to reason. In the 

study, the characteristics of the datasets, distributions, and even the small differences (that even I 
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could not be aware of) might have led interviewees to think in certain ways. Therefore, the same 

students could have shown different reasoning mechanisms if the interview tasks had been 

organized differently.  

Lastly, the study relied on qualitative data analysis, which introduces a limitation called 

lack of internal consistency. Most quantitative techniques will result in the same results if the 

data remain the same. Qualitative data analysis, however, depends heavily on the researcher. 

Thus, the results of the analysis may differ across different researchers analyzing the data. By 

recruiting two or more researchers to work on the data, inter-rater reliability could be achieved. 

Although a capable colleague occasionally examined my coding of students’ responses to 

homework questions, the overall coding process was essentially based on my own coding; thus, 

inter-rater reliability was not achieved for the analysis and results of students’ responses to 

homework questions in the present study. Similarly, I did not aim to achieve an inter-rater 

reliability for the analysis of interview data.  

Implications for Further Research 

Many students were very brief when explaining their thinking in their responses to 

homework questions, which resulted in difficulties for deducing students’ exact reasoning about 

variability. Lack of detail in students’ explanations suggested that using homework data this way 

may be an obstacle to sound research findings, especially if the goal of a research study is to 

achieve detailed and in-depth data. The problem with the homework data also raises the issues 

about students’ motivation toward answering homework questions. In my case, students 

probably knew they would get points automatically for whatever explanations they submitted in 

their response, which might have reduced their effort and motivation to answer homework 

questions to the best of their abilities. Therefore, researchers who want to collect large-scale data 
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may need to consider the motivation aspect, seek other ways to collect data from students, and be 

cautious in interpreting students’ knowledge in answering constructed-response questions that 

are not subject to grading. Accordingly, researchers should be careful in generalizing findings 

that they extract from similar homework data since these findings have a potential to 

underrepresent overall student performance.  

Integrating the knowledge-in-pieces epistemological perspective framework into my 

study was helpful in making sense of the interview findings. Three of the interview participants 

presented a fragmented understanding of variability, as their approaches to variability were 

inconsistent across the tasks. In other words, those participants went back and forth between 

various approaches in different situations. As hypothesized before the present study was carried 

out, if students were given raw data with some data values repeating (i.e., having the same 

numerical values more than once in a distribution), they interpreted variability as difference and 

compared variability across distributions according to the difference notion. In this specific case, 

many students found comparing ranges across datasets to be inconvenient and inappropriate. 

According to the knowledge-in-pieces epistemological perspective, however, such a student 

behavior is expected because undergraduate students can be regarded as novices in reasoning 

about variability, thus their understanding and knowledge were heavily influenced by the 

characteristics of the tasks that they were asked to work with. Accordingly, I agree with Bakker’s 

(2004) suggestion that both instruction and research on students’ understanding of statistical 

ideas need to pay attention to providing experiences with a variety of distributional shapes, 

contexts, and variability. In conclusion, as students develop an understanding of variability, they 

should start to recognize that one or two characteristics of a distribution, such as having a larger 

range or extreme values, is insufficient to claim that the distribution has a larger variability. 
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Wagner (2006) suggested that different situations have their own affordances and 

facilities with respect to students’ reasoning about a concept. Similarly, Meletiou and Lee (2002) 

claimed that students’ reasoning about variability is heavily reliant upon both the particularities 

of the task explored, which refers to situations and the contexts in which the tasks are situated. 

Use of the knowledge-in-pieces perspective was instrumental in investigating ways in which the 

characteristics of distribution, graphical representation, and statistical context cue different ways 

of reasoning, such as the one I observed in student responses to the second homework question. 

As extensively discussed in Chapter 4, students’ explanations were different in nature than the 

explanations they provided to the more typical statistical questions such as describing histograms 

or comparing variability across dot plots with more common shapes.  

The results of the interviews provided some new evidence for possible learning 

trajectories for variability, which could be studied further in the future. According to the 

interview results, students who had a solid quantitative understanding of variability in 

quantitative data had difficulty understanding variability in categorical data. On the other hand, 

students who did not have a robust understanding of variability for quantitative variables were, in 

general, able to reason about variability in categorical data. These findings could be used further 

in examining whether students tend to think about variability in two different ways, how often 

the observations differ from one another and how much the observations differ from the mean, or 

if students hold different ways of reasoning about variability that lie between these two 

fundamental ways of reasoning about variability.  

In addition to its implications for possible learning trajectories, the study presented 

students’ particular difficulties with working with variability. The students who recognized their 

difficulties with variability mentioned them during the interviews. Those insights give important 
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evidence about how students learn statistical concepts. For example, one of the interview 

participants said she had difficulty conceptualizing variability when comparing two samples of 

categorical data with the same number of categories in each sample. The student said it was 

easier for her to compare two samples and decide on the sample with smaller variability if one of 

the samples has fewer categories. This observation and others present important information on 

how to teach variability for categorical data. Overall, future studies could use the results of the 

present study in investigating students’ affordances and difficulties with the statistical concept of 

variability.  

Results of the study suggested that students use the appropriate statistical terminology 

sparsely when asked to explain their thinking about statistical variability. The study clearly 

showed that interviewed students tended to use the colloquial meaning of variability, variation, 

and vary and apply them to the core statistical situations haphazardly. In addition, it was 

common from both data resources of the study that students used range and spread, often 

without giving much attention to their specific meaning in statistics. For instance, take the use of 

range by students. The statistical term range is calculated for quantitative variables, and it is 

based on the minimum and maximum quantitative data values, not based on the minimum and 

maximum frequencies for categories or bins. In contrast, the interview participants often used 

range to refer to the “range of frequencies.” Therefore, instructors and researchers should focus 

on students’ use of statistical language, and assess whether students use the proper statistical 

meanings of the terms. As conceptualized as lexical ambiguity (e.g., Kaplan et al., 2010; Kaplan, 

Rogness, & Fisher, 2014) the term variability requires explicit attention. Future studies could be 

conducted to enable researchers and instructors to exploit students’ preexisting notions of the 

word variability in introducing the statistical term. These studies could first examine whether and 
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to what extent students distinguish the term’s meaning in statistics and outside the world of 

statistics, and then suggest instructional interventions that could help students conceptualize 

statistical variability in the ways curricular documents (e.g., ASA, 2005; Franklin et al., 2007) 

and pertinent research literature promote. 
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APPENDICES 

Appendix A 

Recruitment Script 

Dear STAT 2000 students: 

I am a graduate student in the Department of Mathematics and Science Education working under 
the direction of Dr. Jennifer J. Kaplan in the Department of Statistics at The University of 
Georgia. I invite you to participate in a research study entitled “Undergraduate Students’ 
Informal Notions of Variability.”  The purpose of this study is to investigate undergraduate 
students’ ways of reasoning about the statistical concept of variability. The study will focus on 
ways that undergraduate students address variability in various distributions and datasets with 
different characteristics.  

We obtained your contact information from your STAT 2000 course professor and/or computer 
lab teaching assistant.  

In order to be eligible for this research, you must both be 

1) Currently enrolled in STAT 2000 at the University of Georgia and 
2) 18 years or older 

Your participation will involve being interviewed in a series of interviews during the semester 
you are enrolled in STAT2000. You will be interviewed at most three times during the semester. 
Each interview will last no more than one hour so your total time commitment will be less than 3 
hours. After preliminary analysis of the first interviews, candidates for the second interview will 
be selected. The participants for the third interview will be selected from the participants who 
took first and second interviews. If you are chosen for a second interview and/or third interview, 
the researcher will contact you to arrange the next interview.  

In the interview, you will be asked to work on statistics tasks and think aloud as you solve them. 
The tasks will be similar to those used in class or introductory statistics textbooks. These will 
include tasks about the concept of variability and other ideas, concepts, and representations 
related to variability. The purpose of the interviews is to get more detailed information about 
your thinking about statistical concepts, not to grade you.  
 
Interviews will take place outside of scheduled class meetings in an empty conference room or 
classroom at a time that is mutually convenient. The interviews will be video-recorded, but the 
camera will be focused on paper on which you will be working not on you or your face. In order 
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to be used for the data analysis, the video recordings will be transcribed later. We plan to keep 
video recordings for five years, and any written work and transcripts indefinitely. These data will 
be stored in researcher’s password-protected personal computer and on a portable hard drive. 

This research involves linking your interview data with your anonymous responses to homework 
and lab questions from WebAssign, which we are collecting throughout the semester in the 
STAT 2000 course. Giving consent here includes allowing us to match your responses to online 
homework and lab questions of STAT 2000 to your interview data.  

For the first one-hour interview, you will receive an incentive of 15 dollars at the end of the 
interview. If you are chosen for the second and third interviews, you will be paid 20 dollars at the 
end of the second one-hour interview, and 25 dollars at the end of the third interview you will 
have participated. If you choose to withdraw consent later, you will not lose your incentive (i.e. 
the payment you have already received). 

The findings from this project may provide information on how to improve instruction of STAT 
2000 and similar courses at other institutions. The main benefit of the interviews may be the 
opportunity to think more about the course material. There are no known risks associated with 
this research. There are some minimal discomforts associated with this research. The discomforts 
include the stress due to the presence of a video camera in the room or because you may be 
asked to explain your thinking when you are not sure whether what you are saying is statistically 
correct. If you feel uncomfortable, you are free to skip questions or tasks, or discontinue the 
interview at any time without explanation. 

If you have any questions about this research project, please feel free to call me at (706) 254-
6282 or send e-mail to oguzkkl@uga.edu.  After I have graduated (May 2017), please direct any 
questions or concerns to the Principal Investigator of the study, Dr. Jennifer J. Kaplan ( 
jkaplan@uga.edu).  

Thank you for your consideration!   

Sincerely, 

Oguz Koklu
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Appendix B 

Homework Questions 

* indicates that the question was created by the Statistics Education Research Team at UGA. 

*1.  

The histogram below shows the distribution of the number of ounces of coffee a random sample 

of 237 college students drank the previous day. 

 

Describe the distribution of the number of ounces of coffee college students drink as shown in 

the histogram.  
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Rationale for Inclusion of the Question: This question is a typical statistical task that is 

commonly found in introductory statistics textbooks. For this type of questions students are 

supposed to describe the distribution by addressing the shape, center, and variability of the given 

distribution in context. I included this question in order to have an overall idea on students’ 

reasoning about variability. 
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2.  

Version 1 

a. Which of the datasets depicted in the graph above has the least variability? 

a. X 

b. Y 

c. Z 

d. Cannot be determined. 

b. Explain why you made the choice you did in part a. 

Version 2 

a. The lab assistant asked students in her morning (X), noon (Y) and afternoon (Z) open lab 

section hours how many times they went out to eat during the last semester and displayed the 

responses in the graph above. Which section has the least variable responses? 

a. X 

b. Y 

c. Z 

d. Cannot be determined. 

b. Explain why you made the choice you did in part a. 
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Rationale for Inclusion of the Question: This question addressed research question 1.a because 

the three datasets to be compared have equal ranges. In addition, it also addresses the second 

research question because half of the student population received the first version with no 

context, and the other half received the second version with context. 
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*3.  

The histogram on the left shows the distribution of Class A's test scores for a mathematics test. 

The histogram on the right shows the distribution of Class B's test scores on the same test. 

 

Compare the variability of the distributions of test scores for Class A (Left Histogram) and Class 

B (Right Histogram). 
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Rationale for Inclusion of the Question: This question targets research question 1.a and 1.b 

because the datasets to be compared have equal ranges; thus I expected students not to use range 

when reasoning about variability. In addition, it is less likely that students claim the distribution 

to have extreme values; hence, students’ answers to the question might shed light on research 

question 1.b. 
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4.  

The dot plot below shows the distribution of the number of pets owned by each of 30 students in 
a class. 
 

 
a. Describe the distribution of the number of pets owned by the students in the class.  

 

b. It was noticed that two of the observations, 8 and 10 as the number of previously owned pets, 

occurred due to an error while recording the data. These students actually had 1 and 2 pets. 

Given this new information, describe the new distribution of the number of pets owned by 

the students in the class. 

  

Collection 1 Options

0 1 2 3 4 5 6 7 8 9 10
Number_of_Pets

Circle Icon



 

 

134 

Rationale for Inclusion of the Question: This question was adapted from LOCUS (Jacobbe, 

Case, Whitaker, & Foti, 2014), and it addresses research question 1.b. due to the extreme values 

8 and 10 in the distribution. Having the question in two parts was assumed to help investigate 

whether the presence of extreme values leads students to solely focus on those extreme values in 

reasoning about variability. 
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5.  

Version 1 

a. Two datasets are given as follows: 

(1st dataset)    3 3 3 40 40 40 77 77 77 

(2nd dataset)   10 11 12 13 40 40 70 75 84 

Without calculating, determine which dataset has more variability. Explain the reason.  

Version 2 

b. The researcher took a random sample of 18 law schools and randomly split the group in half. 

The numbers below show the percentage of graduates from each school that started to work as a 

lawyer upon graduation.  

(1st dataset)    3 3 3 40 40 40 77 77 77 

(2nd dataset)   10 11 12 13 40 40 70 75 84 

Without calculating, determine which dataset has more variability. Explain the reason.  
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Rationale for Inclusion of the Question: This question was adapted from a question in Lann 

and Falk (2003). The first dataset had three different values whereas the fourth dataset has eight 

different data values. In addition, the datasets to be compared have equal ranges; thus, students 

are expected not to use range to reason about variability. In addition, it addresses the second 

research question because half of the student population received the first version, and the other 

half received the second version. Context is excluded in the first version, and included in the 

second version. 
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6.   

The dot plots below show the number of pairs of shoes owned by females and males who took a 

survey. 

 

a. Which group has more variability?  

a. The distribution for Females is more variable. 

b. The distribution for Males is more variable. 

c. The variability is the same for both groups. 

d. A comparison about the variability for the two groups cannot be made from the dot plots. 

b. Explain your choice in the part above.  
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Rationale for Inclusion of the Question: This question, which was adapted from Gould and 

Ryan (2014, p. 64), addresses research question 1.a and 1.b. The distributions to be compared 

were intentionally ill constructed. Both distributions have equal ranges and it is difficult to 

predict which distribution has a larger standard deviation. As a result, students might employ 

their preexisting informal reasoning. They, for example, might claim that the distribution for 

females is less variable because there are only six very large values, but the great majority is 

spread between 0 and 60 whereas there are more values spread between 20 and 100 in the 

distribution for males.  
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*7.  

The dot plots (or histograms, depending on which version the student received) below show the 

distribution of scores on a 10-item test for two classes. Note that scores on each test have been 

classified as Excellent, Good, or Poor.  

a. For which class, A or B, are the scores more variable (i.e. have the higher standard 

deviation)?  

 a. Class A has more variable scores 

 b. Class B has more variable scores. 

b. Explain how you know from the graphs that the scores in the class you chose are more 

variable.  
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Rationale for Inclusion of the Question: The stem is repeated for each pair of graphs and a 

student gets only a pair (version 1–6), selected randomly. This question is expected to addresses 

research questions 1.a, 1.b., and 1.c.  
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8.  

The bar graphs below show the frequency distribution of class year in two sections of a statistics 

lab. 

  

  
a. Which section has more variability in terms of class year?  

a. Tuesday section 

b. Wednesday section 

c. The variability is the same for both sections. 

d. Variability cannot be determined.  

b. Explain why you made the choice you did in part a. 
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Rationale for Inclusion of the Question: The question was adapted from Gould and Ryan’s 

(2014) introductory textbook, and it targets students’ reasoning about variability for categorical 

data. 
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Appendix C 

Background Questionnaire, Open-Ended Questions, Tasks 

1. Thank you for volunteering to be interviewed. 

2. Engage in some small talk to put subject at ease: 

(What) Do you have other classes, homework or other stuff for today and this week?  

3. The purpose of this interview study is to explore undergraduate college students’ 

understanding of the statistical concept of variation and variability. I am conducting this 

interview on behalf of my dissertation study.  

4. Do you have any experience of participating to a research like this before? How do you feel 

about it? 

5. Are you ready for me to begin recording? 

6. Today is the Month Dayth, Year, it is … o’clock. We are in room … Aderhold Hall. I am Oguz 

and my interviewee today is ….  

 

1. Let’s start with your background. Tell me about your (intended) major and year? 

2. Tell me your experiences with statistics (both at school and in daily sense) 

a) Did you learn any statistics in high school? Before high school?  

b) Is this the first time you are taking an introductory statistics course (like STAT 

2000)?  

c) If not, when did you take it before? Tell me your experiences with that class. 
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3. You have been enrolled to the STAT 2000 introductory statistics course and have been 

exposed to statistics since …. Can you tell me about that experience a little bit? 

Possible follow-up questions: 

a) Describe a typical stat class/lecture 

b) What were some of the big take home messages in the statistics class?  

c) What do you think, the professor and the TA wanted you to achieve in this class? 

4. What are your thoughts about statistics as a discipline in general? 

 

Thanks for sharing all these. Now let’s focus our attention to my research study. 

Open-ended Questions 

 

1. Tell me what comes to your mind when you hear the word variability 

 

2. How do you explain the statistical term variability? 

   

3. Give a list of words that you think as related to variability 

 

4. Give an example of something that “varies.”  

 

5. Give an example of something that helps you explain “variability.”  

 

6. How is the word variability used in your statistics class? Give me some examples.  
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Now, I am going to ask you statistics questions. The point of the interview is for me to 

understand your thought processes as you work through these questions. I'd like you to think 

aloud as you work on and answer the questions—just tell me everything you are thinking about 

as you start reading and working on the questions. Don’t worry whether you are right or wrong. 

You are welcome to use whatever tools you need to work these out (paper, calculator, 

StatCrunch etc.), but do your best to verbalize as much of your reasoning out loud. I may ask you 

follow-up questions as you answer the questions. This does not mean that you tell something 

right or wrong. The aim in asking these follow-up questions is to get a better sense of your 

reasoning.  
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Interview 1 Protocol 

* indicates that the task was assigned as a question in the online homework assignments.  

Task 1 

*1. The histogram below shows the distribution of the number of ounces of coffee a random 

sample of 237 college students drank the previous day. 

 

Describe the distribution of the number of ounces of coffee college students drink as shown in 

the histogram.  
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Aim: I do not aim to address the research questions specifically with this task. However, 

interview participants’ responses to the question may provide insight on their reasoning about 

variability of a univariate distribution as depicted on a histogram. The follow-up question reveals 

the ways interview participants interpret the information vertical and horizontal axis could 

provide about variability. 

Note: When asked to describe histogram, students are supposed to address shape, center, and 

variability in context. In this histogram, because the distribution is right skewed and far from 

being approximately normal, I do not expect many students to mention clustering around the 

center and notions that indicate the idea behind standard deviation. I expect to hear notions such 

as:  

• Amount of coffee college students drank is between zero (none) and 100 ounces, 

• A hundred students out of total (237) drank coffee between none to 10 ounces,  

• Although the amount of coffee drank by many students is very small, there were students 

who drank a lot, and,  

• The distribution is not normally shaped and the bins are in different length, so variability 

is large.  

Possible follow-up questions:   

1. Tell me how you used the histogram to answer the question? 

2. a. i. What does the horizontal axis (x-axis) of the histogram tell? 

 ii. Assume that the label and the numbers in the x-axis are missing. Would this change 

your answer? If yes, how? 

b.  i. What does the vertical axis (y-axis) of the histogram tell? 
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     ii. Assume that the label and the numbers in the y-axis are missing. Would this change 

your answer? If yes, how? 

c.  How is each axis related to the variability of the distribution? 

3. How would variability be different if the first bin did not exist?  

 [If an interviewee does not address any of these] 

4. What can you say about the shape of the distribution? What does the shape tell us? 

5. What can you say about the center of the distribution? 

6. What can you say about the variability of the distribution? 

a. Based on what you said about variability of the distribution, could you tell what variability 

means? 
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Task 2 

*1.a. Which of the datasets, X, Y, or Z, as depicted in the graph below, has the least variability? 

Explain. 
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153 

Aim: The objective in asking this task is to investigate how students reason about variability if 

the datasets given have (approximately) equal ranges. This question specifically addresses the 

first research question (1.a) because the three datasets to be compared have equal ranges. In 

addition, it addresses the second research question because the first version of the task does not 

contain a context. 

Note: This question was included in the homework assignments in two different ways. Half of 

the students took this question without a context and the second half took the question with a 

context. In the interviews, students are given the version without the context first. Depending on 

an interviewee’s response, he or she is asked to come up with a context or I provide the context.  

 It should be noted that interviewees do not need to consider vertical axis of the dot plots 

because each observation in each X, Y, and Z repeats at most once (i.e., there is no frequency 

axis). If interviewees use the idea behind standard deviation (i.e. taking central clustering into 

account), then the distributions from least to most variable are Y, Z, and X in order.  

Possible follow-up questions:  

1. Tell me what each dot represents. 

2. Tell me how you used the (given) graph to answer the question. 

[If the interviewee does not explicitly tell that these are dot plots stacked together, then ask 

the following version of the question.]  

 Tell me how you used these three dot plots to answer the question. 

3. Each distribution has five observations, has a mean value of 10, and range of 16(18-2=16). 

Considering this information, could you tell which distribution is the least variable (from the 

mean)?  

4. a. i. What does the horizontal axis (x-axis) of the dot plots tell? 
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          ii. Assume that the numbers in the x-axis are missing. Would this change your answer? If  

 yes, how? 

5. Could you come up with a meaningful context for the distributions shown in the dot plots? 

Note: The most important criterion about the context will be to make sure that the variable 

suggested by the interview participant is a univariate quantitative variable. If the participant 

cannot approach the question or provide a context, then I present the version with the context and 

ask the follow-up questions above.  
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1.b. The computer-lab teaching assistant asked students in her morning (X), noon (Y) and 

afternoon (Z) open lab sessions how many times they went out to eat during last semester, and 

she displayed the responses in the dot plots above. Which section has the least variable 

responses? Explain.   
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2. Rank X, Y, and Z from least the most variable.  
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Note: The distributions from the least to most variable in terms of range are X, Z, and Y. 

However, the spread from the center is also the largest for X, and smallest for Y. As a result, 

using range to reason about variability should suggest a completely different conclusion as 

compared to using the idea of clustering around the center. 
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3. Distributions X, Y, and Z share the same mean value of 10.6. Y has the largest range and X 

has the smallest range. Rank X, Y, and Z from least the most variable. 
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Possible follow-up questions: 

1. How do you relate the location of the mean and the variability of a distribution? 

2. Which set of data varies least from the mean of the data values? 

3. Which set of data has the smallest standard deviation? Explain. 

4. Which set of data has the highest standard deviation? Explain. 
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Task 3  

1.a. The dot plot below shows the distribution (of 30 observations) of a variable.  

 

a. Describe the distribution of the variable as shown in the dot plot. Be sure to mention the 

variability of the distribution. 

 

b. It was noticed that two of the observations, 8 and 10, occurred due to an error while 

recording the data. The values for those observations were actually 1 and 2. Given this new 

information, describe the new distribution of the variable. Be sure to mention the variability 

of the distribution. 

 

c. Compare the variability of the distribution in the original (part a) and corrected case (part b)?  
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Aim: The aim of this task is to investigate research question 1.b. An interviewee’s responses to 

part a. and part b. are supposed to show whether his or her reasoning about variability is 

considerably influenced by extreme values in a dataset.  

Note: Interview participants are supposed to compare the variability across the distributions and 

explain the reason why variability is relatively less in the later case. Claims such as “since there 

is no extreme value in the second case” still need further investigation. The participants are 

supposed to express clearly that extreme values in a dataset indicates a larger variability because 

they are far from a center, or they are against the clustering around center.  

Possible follow-up questions:  

1. Assuming the original case is correct, how would you increase the variability by adding more 

observations to the distribution? 

2. Assuming the original case is correct, how would you decrease the variability by adding 

more observations to the distribution? 

3. How do you relate the shape and mean of the distribution to its variability? 

4. Why do you think the distribution is less variable in the corrected case? 

5. Could you come-up with a meaningful context for the distributions?   

Note: The task below is the context I present if a participant cannot come up with a context. 

Same follow-up questions will be asked. 

 

  



 

 

162 

*1.b. The dot plot below shows the distribution of the number of pets owned by each of 30 

students in a class. 

 

Describe the distribution of the number of pets owned by students in the class.  

 

a. It was noticed that two of the observations, 8 and 10 as the number of previously owned pets, 

occurred due to an error while recording the data. These students actually had 1 and 2 pets. 

Given this new information, describe the new distribution of the number of pets owned by 

the students in the class. 
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1.c. Compare the variability of the distributions in the original and corrected case.  

 

 

n Mean SD Min. Q1 Median Q3 Max. IQR 

30 2.17 2.20 0 1 2 2.75 10 1.75 
 

 
n Mean SD Min. Q1 Median Q3 Max. IQR 

30 1.67 1.15 0 1 2 2 4 1 
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Possible follow-up questions: 

1. Tell me how you use the dot plots to compare variability between the distributions? 

2. a. i. What does the horizontal axis (x-axis) of the dot plot tell? 

     ii. Assume that the label and the numbers in the x-axis are missing. Would this  change 

your answer? If yes, how? 

b.  i. What does the vertical axis (y-axis) of the dot plot tell? 

     ii. Assume that the label and the numbers in the y-axis are missing. Would this 

change your answer? If yes, how? 

c. How is each axis related to the variability of the distribution? 

 [If an interviewee does not address any of these] 

3. What can you say about the shape of the distribution? What does the shape tell us? 

4. What can you say about the center of the distribution? 

5. What can you say about the variability of the distribution? 

  5.a. How do you relate the location of the mean (i.e., measure of center) and the  

 variability of a distribution? 

6. In what way or ways extreme values increase the variability of a distribution? 

Note: The dot plots show the frequency of each observation (y-axis), the location of the mean 

number of pets, and some other summary statistics.  Having mean and standard deviations may 

be helpful for students to think about variability beyond range and existence or inexistence of 

extreme values.  
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Task 4 

1. Two datasets are given as follows: 

(1st dataset)    10, 10, 10, 20, 20, 20, 50, 50, 50 

(2nd dataset)   16, 18, 20, 22, 24, 26, 28, 30, 32 

Determine whether 1st or 2nd dataset contains data that are more variable (i.e. have more 

variability), or if both datasets have data that are approximately equally variable. Describe why 

one list is more variable than the other or why they're both approximately equally variable. 
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Group n Mean Std. Dev. Min. Q1 Median Q3 Max. IQR 

1 9 27 18 10 10 20 50 50 40 

2 9 24 5.5 16 20 24 28 32 8 
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*1.b. Two datasets are given as follows: 

(1st dataset)    3  3  3  40  40  40 77 77 77 

(2nd dataset)   10 11 12 13 40  40 70 75 84 

Without calculating, determine which dataset has more variability. Explain.  
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Note: Two versions of this question are included in homework assignments. In the first version, 

there is no context, whereas the second version has a context. In the interviews, I will direct the 

version without context first. Depending on the interviewee’s performance, I may provide the 

question in context.  

 Both datasets have ranges equal. In addition, the datasets do not have extreme values and 

I do not expect interviewees to claim any of the values as extreme. For instance, the numbers 3 in 

the first dataset are comparably small values but there are three of them. On the other hand, the 

second dataset has smaller values as 10, 11, 12, and 13, which should not appear extreme 

because they are sequential. The larger values in both dataset also are not expected to appear 

extreme due to similar reasons. As a result, I expect that interview participants do not rely on 

range or extreme values to reason about variability.  
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1.c. Without calculating, determine which dataset is more variable. Explain the reason.  

(1st dataset)    3  4  10  40  40  42 42 76 77 

(2nd dataset)   10 11  13 13  18 70 70 75 84 
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Task 5 

*1. The dot plots below show the distribution of scores on a 10-item test for two classes. Note 

that scores on each test have been classified as Excellent, Good, or Poor.  

a. Compare the distributions of scores for the classes and rank them in terms of their 

variability. 

b. Explain how you know from the graphs that the scores in the class you chose are more 

variable.  
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Note: In the homework assignment, each student had only two of the dot plots and the question 

explicitly asks them to think in terms of standard deviation (see Appendix A).  

Possible follow-up questions:  

1. Which set of data varies least from the mean of scores in a class? 

2. Which class has the highest standard deviation? Explain. 

3. Which class has the smallest standard deviation? Explain. 
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Interview 2 Protocol 

Task 1 

*1. The histogram on the left shows the distribution of Class A's test scores for a mathematics 

 test. The histogram on the right shows the distribution of Class B's test scores on the 

 same test. 

 

Compare the variability of the distributions of test scores for Class A (Left Histogram) 

and Class B (Right Histogram). 
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Possible follow-up questions: 

1. What does the horizontal axis in the graphs tell you about variability? 

2. What does the vertical axis in the graphs tell you about variability? 

3. What does the shape of the distributions tell you about variability? 

4. How do you take the mean of a distribution into account when thinking about variability? 

5. Which set of data varies least from the mean of scores in a class? 
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Task 2 

1.a 

(X)    1  2  3  4  40  70  72  78 90    

 (Y)    7 15 30 35 40 46 47 50 96 

Which of the datasets is less variable?  

  



 

 

176 

 

 

  

Group n Mean Std. Dev. Minimum Q1 Median Q3 Maximum IQR 

1 9 40 38 1 3 40 72 90 69 

2 9 41 25 7 30 40 47 96 17 
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Note: Do not provide a context for the numbers in the dataset, and ask the interviewee to come 

up with a context. 

Possible follow-up questions:  

Note: If the interviewee cannot come up with a context, then provide a meaningful context. 

1. X and Y stand for the two sections of the introductory Statistics course lab and the numbers 

stand for the distance to the home (in miles) for the students in these lab sections. Which lab 

section has more variability in terms of the distance to the home? 
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1.b. Which is less variable? X or Y?  Explain.  

(X) 2  3  4  10  40  70  72  78 90    

(Y) 7 15 30 35 40 46 47 50 97 

 

 

 

 

 

 

 

 

 

1.c. Which is less variable? X or Y?  Explain.  

(X) 2  3  4  10  16 20 40  70  72  78 90    

(Y) 7 15 18 39 40 40 40 46 47 50 110  
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1.b. 

Group n Mean Std. Dev. Minimum Q1 Median Q3 Maximum IQR 
1 9 41 37 2 4 40 72 90 68 
2 9 41 26 7 30 40 47 97 17 

 

1.c. 

Group n Mean Std. Dev. Minimum Q1 Median Q3 Maximum IQR 
1 11 37 34 2 7 20 71 90 64 
2 11 41 27 7 28 40 46 110 18 
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Task 3 

*1. The dot plots below show the number of pairs of shoes owned by females and males who 

took a survey. 

 

a. Which group has less variability?  

a. The distribution for Females is less variable 

b. The distribution for Males is less variable 

c. The variability is the same for both groups 

d. A comparison about the variability for the two groups cannot be made from the dot plots. 

b. Explain your choice in the part above.  
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Task 4 

*1. The histograms below show the distribution of scores on a 10-item test for two classes. Note 

that scores on each test have been classified as Excellent, Good, or Poor.  

a. Compare the distributions of scores for the classes and rank them in terms of their 

variability. 

b. Explain how you know from the histograms that the scores in the class you chose are 

more variable.  
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Note: In the homework assignment, each student had only two of the histograms and the 

question explicitly asks them to think in terms of standard deviation (see Appendix A).  

Possible follow-up questions:  

1. Which class seems to have the highest standard deviation? Explain. 

2. Which class seems to have the smallest standard deviation? Explain. 
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Task 5 

1.a.  The bar charts below show the frequency distribution of four categories in two different 

samples. 

  
 

a. Can you tell me what the bar graphs tell us? 

b. Which sample has more variability in terms of the categories?  
 

a. Sample 1 
b. Sample 2 
c. The variability is the same for both samples. 
d. Variability cannot be determined.  

 
 Explain why you made the choice.  
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Note: This task is different from the others since it focuses on reasoning about variability for 

categorical data. Although investigating students’ reasoning about variability for categorical data 

was not targeted in this study, I decided to include this task because the third of the 

aforementioned informal notions is more appropriate to adopt when the data are categorical. The 

task is provided without a context. If the interviewee struggles then the same task is introduced 

with context.  

Possible follow-up questions:  

1. What does the term variability refers to in this question? 

Note: Having four categories may be challenging for some of the interview participants. If this is 

the case, I ask them to reason about variability in samples with two categories (sample size 

equal).  
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*2. The bar charts below show the frequency distribution of class year in two sections of a 

statistics lab. 

  
 

a. Can you tell me what the bar graphs tell us? 

b. Which section has more variability in terms of class year?  

a. Tuesday section 

b. Wednesday section 

c. The variability is the same for both sections. 

d. Variability cannot be determined.  

 

 Explain why you made the choice. 
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3.  Aquarium and Zoo  

 A school is planning a field trip to the aquarium or the zoo for students in grades 6–9. To 

determine whether the school should go to the aquarium or zoo, the school principal 

investigates the following statistical question:  

Which field trip is most popular among students in each grade?  

There are 100 students at each grade level, and every student was asked which place he or 

she would prefer to visit. The charts for the four grade levels are shown below. 

  

 In which grade level were the responses most variable? Explain. 
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Possible follow-up questions: 

2. Please, tell me what the graph tell us.  

3. Do you recognize any difference or similarity between the histograms and dot plots you 

have explored so far and this graph? 

4. In which grade level were the responses less consistent? Explain. 

5. What does the term variability refers to in this question.  

 

 


