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ABSTRACT

The importance of data science skills for modern environmental science research
cannot be understated, but graduate students in these fields typically lack these
integral skills. Yet, over the last 20 years statistics preparation in these fields has
grown to be considered vital, and statistics coursework has been readily incorporated
into graduate programs. As “data science” is the study of extracting value from data,
the field shares a great deal of conceptual overlap with the field of Statistics. Thus,
many environmental science degree programs expect students to acquire these data
science skills in an applied statistics course. A gap exists, however, between the data
science skills required for students’ participation in the entire data analysis cycle as
applied to independent research, and those taught in statistics service courses. Over
the last ten years, environmental science and statistics educators have outlined the
shape of the data science skills specific to research in their respective disciplines.
Disappointingly, however, both sides of these conversations have ignored the area
at the intersection of these fields, specifically the data science skills necessary for
environmental science practitioners of statistics.

This research focuses on describing the nature of environmental science graduate
students’ need for data science skills when engaging in the data analysis cycle, through
the voice of the students. In this work, we present three qualitative studies, each
investigating a different aspect of this need. First, we present a study describing
environmental science students’ experiences acquiring the computing skills necessary
to implement statistics in their research. In-depth interviews revealed three themes
in these students’ paths toward computational knowledge acquisition: use of peer
support, seeking out a “singular consultant,” and learning through independent
research. Motivated by the need for extracurricular opportunities for acquiring data
science skills, next we describe research investigating the design and implementation of
a suite of data science workshops for environmental science graduate students. These
workshops fill a critical hole in the environmental science and statistics curricula,
providing students with the skills necessary to retrieve, view, wrangle, visualize, and
analyze their data. Finally, we conclude with research that works toward identifying
key data science skills necessary for environmental science graduate students as they
engage in the data analysis cycle.
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INTRODUCTION

Over the last two decades, nearly every scientific field has seen a rapid

increase in the volume and variety of available data and a growth in the usage

and power of computational tools to model phenomena. This increased focus

on data-intensive research has made computationally heavy applications of data

science techniques—such as management and coalition of large data sets, high

dimensional data visualization, and Bayesian modeling—essential understandings for

scientific research. These dramatic changes to scientific practices have created a

crucial need to reevaluate how our educational system can better prepare current

and future generations of researchers (Green et al., 2005; Hampton et al., 2017).

Unfortunately, the gap between the computing included in the education students

receive and the computational knowledge required for scientific research has become

more pronounced, especially in the environmental and life sciences. When considering

the issue of curriculum reevaluation, we note that over the last 20 years, statistics

preparation in these fields has become vital.

The History of Computing in Statistics and the
Environmental Sciences

The Emergence of Computing in the Statistics Curriculum

In 1962, John Tukey charged the field of Statistics to “seek out novelty in

data analysis,” reflecting that “in the future [Statistics] can and should contribute

much more” to data analysis (Tukey, 1962, p. 3). This charge for innovation in data

analysis was echoed in Breiman’s organization of the “Conference on the Analysis of

Large Complex Data Sets” in 1977 and the symposium on “Modern Interdisciplinary

University Statistics Education” by the Committee on Applied and Theoretical
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Statistics’ (CATS) in 1992. In its August 1992 meeting in Boston, CATS “noted

widespread sentiment in the statistical community that upper-level undergraduate

and graduate curricula for statistics majors are currently structured in ways that

do not provide sufficient exposure to modern statistical analysis and computational

and graphical tools.” This growth the field of Statistics had experienced “is not

reflected in the education that future statisticians receive,” and left the need for a

more meaningful integration of the “computational and graphical tools that are today

so important to many professional statisticians” (National Research Council, 1994, p.

vii).

At the close of the century, this call for the need to transform the undergradu-

ate statistics curriculum was reiterated by statistics educators, mapping opportunities

for innovation to bring statistics education up to speed with the modern day practice

of Statistics. Moore et al. (1995) speculated that “technological advances may at last

bring widespread change to college teaching” (p. 250), imagining plausible futures

for statistics teaching at the university level. Biehler (1997) added to these musings,

elaborating on the need for educators to “critically evaluate existing software and

to produce future software more adequate both for learning and doing statistics in

introductory courses” (p. 167). Possibilities for modernizing the outdated and overly

mathematical undergraduate statistics programs were voiced by Higgins (1999), with

Nolan and Speed (1999, 2000) providing recommendations for infusing computing

explorations into “traditional” mathematical statistics course(s).

The next century brought the introduction of “data science” (Cleveland,

2001), and continued conversations surrounding how to infuse computing into the

statistics curriculum. However, the majority of these conversations revolved around

including computing into mathematical statistics course(s) (Reid et al., 2003; Horton

et al., 2004). Despite these small changes, some statisticians remained concerned
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with the trajectory of the field of Statistics. Friedman, reflecting on the absence of

Statistics from the development and implementation of data mining methodology,

lamented that “the field [of Statistics] should be defined in terms of a set of problems

rather than a set of tools, namely those that pertain to data” (Friedman, 2001,

p. 8, emphasis in original). Furthermore, the field needed to “make peace with

computing,” because it had been “one of the most glaring omissions in the set of tools

that have so far defined Statistics” (Friedman, 2001, p. 8). That same year, Breiman,

the creator of classification and regression trees, published a groundbreaking piece

on the two cultures of statistical modeling, data modeling and algorithmic modeling.

These cultures, Breiman argued, use two fundamentally different methods to model

the relationship between two sets of data: the inputs to a process or mechanism and

the outputs from that process. Data modeling assumes that the relationship between

these two datasets can be explained by a mathematical model, but relies entirely upon

the correct model. In contrast, algorithmic modeling determines a data model solely

in terms of correctly predicting an output, provided an input, allowing for the model to

potentially have little to no relationship with the underlying data-generating process.

Breiman asserted that Statistics’ commitment to data modeling had prevented the

field from entering new arenas where “the data being gathered is not suitable for

analysis by data models” (p. 200). Hence, Breiman encouraged statisticians to become

more familiar with algorithmic modeling, to address this significant change in the data

landscape.

Although these calls for an increased focus on computational tools continued

to be heard throughout the statistics community, it wasn’t until nearly ten years

later that Brown and Kass resumed the discussion around the statistical training of

undergraduate and graduate Statistics majors. This work came at a critical time,

following Peck and Chance’s detailed description of the assessment of Cal Poly’s
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undergraduate Statistics program (2005). Brown and Kass argue that “to remain

vibrant, the field [of Statistics] must open up by taking a less restrictive view of what

constitutes statistical training” (2009, p. 105). The authors acknowledged that “a

fear lurks in the heart of many statistics professors” where “statistics as we know it

[may] become obsolete” if the field continued to complacently ignore the innovation

in data analysis techniques (p. 105). They found that, while programs emphasize

the mathematical logic of data analysis, when faced with an actual data analysis,

“graduate students in statistics often are reticent to the point of inaction” (p. 106).

At the climax of these discussions, came the publication of “Computing in

the Statistics Curriculum” from Deb Nolan and Duncan Temple Lang (2010). In this

influential article, Nolan and Temple Lang painted a broad picture of the computing

skills that successful statisticians must be facile with, and how these skills had been

infused into the Statistics program at the University of California, Berkeley. The

authors asserted that, “the skill set needed by a statistician even 20 years ago is

very different from what is needed today (p. 98). Moreover, as a statistics education

community, we were not preparing students with the computational proficiency, the

statistical problem solving, or the “confidence needed to overcome computational

challenges” (p. 97). Nolan and Temple Lang reflected that they have “found that

Bachelors and Masters students who enter the workforce spend much of their efforts

retrieving, filtering, and cleaning data and doing initial exploratory data analysis,” (p.

99), but students were not taught these skills in their courses. Instead, students were

“told to learn how to program by themselves, from each other, or from their teaching

assistant in a two-week ‘crash course’ in basic syntax at the start of a course” (p.

100). They outlined a series of recommendations for changes the statistics education

community should make to bring the statistics curriculum up to date with the tools

that modern statisticians use, so that students would leave the statistics curriculum
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with the “computational understanding, skills, and confidence needed to actively and

wholeheartedly participate in the computational arena” (p. 106).

The Emergence of Computing in the Environmental
Science Curriculum

Meanwhile, in the 1990s and 2000s, the environmental science community was

having similar conversations surrounding the importance of computing for research

in biological fields. In 1977, Levin et al. pioneered these conversations by asserting

that, with the addition of more powerful computers and new analysis techniques, the

“face of the science of computational population biology and ecosystems science will

change in the next decade” (p. 341). This conversation went unanswered until in

2001, George Johnson of the New York times published a piece describing the use of

computing for research in bioinformatics, concluding that no matter what scientific

field one chooses to perform research in, “all science is computer science” (Johnson,

2001).

Finally, by the early 2000s, the conversation around teaching computing in

environmental science courses began to flourish. Andelman and colleagues (2004)

published a recount of an interdisciplinary seminar they developed for graduate

students and what they learned about students’ computational skills—or lack thereof.

During their course, the authors learned that students were unprepared with both the

statistical and computational skills necessary for data analysis; rather, “ninety-three

percent of students did not have skills in the scripted programming languages (e.g.,

SAS or MATLAB) that are needed for the integration of large data sets” (p. 244).

As a consequence, “the greatest limitation [. . . ] that the students faced was related

to data concatenation, manipulation, and analysis” (p. 245). Environmental science

educators continued to press on the issue of integrating computing into environmental

science research (Green et al., 2005; Hastings et al., 2005), detailing the formidable
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computational challenges scientists were facing. To stress the importance of these

needs, the NSF sponsored a series of three workshops on “quantitative environmental

and integrative biology,” to aid in identifying “areas of cutting edge research in

ecology and environmental biology that require integration with novel computational,

statistical, and informatics tools” (Green et al., 2005, p. 502).

The importance of every scientific researcher having the ability to reason

through computational problems, was further emphasized in 2006 by Jannette Wing

in an Association for Computing Machinery (ACM) communication. Wing pioneered

the concept of computational thinking in her ACM communication, declaring

computational thinking to be a “fundamental skill for everyone” (p. 33). Wing

then outlined the variety of mental tools that encompass computational thinking,

including but not limited to: thinking recursively, parallel processing, abstraction,

and decomposition. A series of articles from the ITiCSE and SIGCSE conferences

followed, with computer science educators describing their institution’s development

of introductory computer science courses for non-computer science majors. These

courses were designed for “any student intending to major in science or engineering”

(Dodds et al., 2007, p. 23) and were intended to develop students’ problem solving and

programming skills, paint a compelling picture of the vastness of computer science,

and attract students to continue to study computer science (Dodds et al., 2007, 2008;

Hambrusch et al., 2009; Wilson et al., 2008).

During these conversations, Greg Wilson and Dr. Brent Gorda at the Univer-

sity of Toronto developed a course named Software Carpentry, to teach “scientists and

engineers the ‘common core’ of modern software development” (Wilson, 2006, p. 66).

Software Carpentry addressed a gaping hole in graduate education in the sciences,

providing students with the tools to increase their productivity by improving the

quality of their code. This course included topics such as version control, scripting,
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debugging, testing, and continuous integration, all topics which few, if any, students

had seen before.

The conversation around scientists’ need to be familiar with scripted program-

ming and reproducible documents continued with Stephen Eglen’s tutorial piece on

how to teach R programming to computational biology students (Eglen, 2009). (It

is worth noting that Eglen’s piece is potentially the first occurrence in which the use

of R is advocated for research in the biological sciences.) Rounding out the decade,

Kelling and colleagues revisited the original argument of “data-intensive” science in

2003, reiterating the importance of computing to biological research, and outlining the

big picture “steps in the data-intensive science workflow” (Kelling et al., 2009, p. 614).

These researchers paid special attention to the integration of statistics in this data-

intensive workflow, with exploratory analysis and confirmatory analysis encompassing

the final two stages. The authors concluded with a charge for environmental scientists

to “overcome the challenges in organizing and analyzing massive and heterogeneous

data” so the field could make headway towards unraveling the complexity of ecological

systems” (p. 619).

Data Science in the Environmental Sciences

With the importance of computing to environmental science fields firmly in

place, the literature over the next decade focused instead on the important role

academic institutions have in preparing undergraduate and graduate students with

the skills relevant to research in these fields. Strasser and Hampton (2012) began

this conversation, focusing on the importance of data management in undergraduate

ecology courses. The authors reported that while ecology instructors rated data

management topics, such as workflows, databases, and reproducibility, as very

important for their research, less than 20% of instructors included these topics in
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their courses. These results suggested that—across institutions—“data management

education is not currently a priority for ecology instructors” (p. 10).

That same year, Hernandez, an environmental science graduate student,

led a large scale study of the “technological and computational experiences of

environmental scientists in the formative stages of their career” (Hernandez et al.,

2012, p. 1068). These researchers found that over 74% of the students surveyed

stated they had no skills in any programming language—including R—and only 17%

reported basic skill levels in any programming language. These findings suggested

that—across institutions—graduate students were not obtaining the knowledge and

skills required to navigate the advancing fields of technology, computation, and data

management through their coursework or instruction.

Given the poor computational preparation of environmental science graduate

students by their curriculum, Hernandez et al. suggested that student-focused work-

shops could “provide intensive environments” where students could learn “particular

methods or technologies” (p. 1075). Furthermore, developing and offering these

workshops would be simpler than developing new courses to organize and implement.

Over the subsequent years, researchers would reiterate the ability of these external

workshops to provide students with on-demand, intensive training to acquire the

computing skills necessary for data-intensive environmental science research.

Gutlerner and Van Vactor (2013) led the charge in the development of short-

format, skill-building courses, in an article describing tools for evolving the scientific

curriculum. These short-courses allowed for students to “take a course on a particular

topic or technique at the time when they are most motivated to learn about it” (p.

732). Alternatively, these intensive experiences could be harnessed into a “bootcamp”

prior to students’ first semester of graduate school. One such “quantitative methods

bootcamp” was implemented by instructors at Harvard Medical School, to “enable
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students to use computational tools to visualize and analyze data” and to “strengthen

their computational thinking skills” (Stefan et al., 2015, p. 1). The authors argued

introducing graduate students to these concepts before they begin their coursework

lowered the computational barrier for students before taking courses, empowered

students to learn computational tools on their own, and enabled courses to “build

upon this foundation and integrate quantitative methods throughout the curriculum”

(p. 2).

Around the same time, Greg Wilson created the Software Carpentry Founda-

tion, transforming the Software Carpentry course into a workshop curriculum, which

could be offered to researchers around the world. Software Carpentry found larger

success than its predecessors, due in part to the dramatic change in the scientific

landscape. Backed by the support of the Mozilla and Sloan Foundations, in 2013,

Software Carpentry offered its first Software Carpentry workshops for Librarians in

the United States and Canada. Then, in 2014, Data Carpentry was founded to

“train researchers in the core data skills for efficient, shareable, and reproducible

research practices” (2020), specific to their field of research. These workshops met

the need for “good training resources for researchers looking to develop skills that

will enable them to be more effective and productive” (Teal et al., 2015, p. 135).

Teal and collaborators pressed further into the findings of Hernandez et al. (2012)

and Wilson (2016), claiming that “most or all of what [researchers] know about data

management, analysis, and sharing has been learned piecemeal, or not learned at all,”

as “training in data and computing skills is still largely absent from undergraduate and

graduate programs” (p. 136). The authors emphasized the importance of developing

streamlined training opportunities for researchers in these fields for two main reasons:

(1) there is substantial variation in computational training at every institution, and

(2) for students not being directly taught computing skills, it is difficult to wade
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through the plethora of online lessons, MOOCs, and books to find relevant resources.

The authors acknowledged that, while the Data Carpentry workshops “will not be

able to teach researchers all of the skills they need in two days,” the workshops

“are a way to get started,” lowering the activation energy required and empowering

researchers “to be able to conduct the analyses necessary for their work in an effective

and reproducible way” (p. 143).

Culminating all of these conversations, in 2017, educators from a variety of

environmental science research areas gathered together to write a formative piece

on the skills and knowledge necessary for “data-intensive” environmental science

research (Hampton et al., 2017). Hampton and colleagues outlined the current state

of environmental science education in American universities, stating that “a symptom

of the current curriculum’s shortcomings is the recent emergence of a variety of

extramural options for acquiring critical technological skills” (p. 547). They then

describe the “skillset required by environmental scientists to succeed in the kind of

data-intensive scientific collaboration that is increasingly valued” (p. 548). These

five classes of skills included: (1) data management and processing, (2) analysis,

(3) software skills for science, (4) visualization, and (5) communication methods for

collaboration and dissemination. Each of these classes of skills reiterates previous

research on the “good enough” (Wilson et al., 2017) computational skills necessary

for research these fields.

Over the last 20 years, however, attention has yet to be paid to the substantial

role students’ statistics education potentially plays in their attainment of the data

science skills necessary for data-intensive scientific research. Andelman and colleagues

reflected that, in addition to students’ lack of familiarity with scripted programming

languages, students were also “unfamiliar with multivariate statistics and with the

range of models for regression and analysis of variance” (p. 244). Almost 10 years
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later, Strasser and Hampton reported that the most common courses ecology faculty

voiced as possibly covering “data-related topics” were “ecology laboratories, advanced

ecology courses, or statistics courses” (p. 7-8). The survey administered by Hernandez

et al. asked students whether they had taken or planned to take courses related “to

the management and analysis of large or complex data” (p. 1070), including courses in

spatial or time series analysis. The authors also surveyed students regarding their level

of proficiency with programming languages, including R. Consistent with the previous

discussions, Hampton et al. continued to outline the extensive statistical skills a data-

intensive environmental science researcher should possess, but do not admit that

today, the majority of students in these fields complete statistics coursework prior to

graduation. This discontinuity in these conversations comes as a shock, as, over this

time period, “statistical preparation in the environmental sciences has grown to be

considered vital” (Hampton et al., 2017, p. 547).

Data Science in Statistics

In statistics education, during the 2010s the research focused on integrating

computing throughout the statistics curriculum, revising the program expectations

for undergraduate statistics programs, and creating user-friendly tools for streamlined

data science workflows. In the year following the publication of “Computing in

the Statistics Curriculum” (Nolan and Temple Lang, 2010), the Mckinsey Report

(Manyika et al., 2011) was published. The McKinsey report stated that, by 2018,

“the United States alone could face a shortage of 140,000 to 190,000 people with

deep analytical skills as well as 1.5 million managers and analysts with the know-how

to use the analysis of big data to make effective decisions” (p. 3). Simultaneously,

during the 2011 United States Conference on Teaching Statistics (USCOTS), statistics

educators began conversations around how computing could play a larger role in the
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introductory statistics course through the incorporation of simulation-based methods.

Following these conversations, two simulation-based introductory statistics textbooks

emerged, both carrying with them a suite of applets for student use (Lock et al., 2013;

Rossman and Chance, 2011).

Amidst these conversations, a suite of packages was being created, which

would fundamentally change how users interact with R. The ggplot2 R package,

created by Hadley Wickham in 2005, spearheaded the change toward creating

user-friendly R tools all “sharing an underlying design philosophy, grammar, and

data structures” (Wickham, 2017). The ggplot2 package was created to produce

statistical, or data, graphics; but, unlike most other graphics packages, it had the

“deep underlying grammar” (Wickham, 2016, p. 1) of Wilkinson’s Grammar of

Graphics (2005). Over the next decade, Wickham and his team produced the suite

of packages now included in the tidyverse package, namely stringr (2009), dplyr

(2014), RMarkdown (2014), tidyr (2014), readr (2015), purrr (2015), tibble (2016),

and forcats (2016). The tidyverse package houses all of the necessary packages to

import, tidy, transform, wrangle, visualize, and model data, and to communicate the

results.

With calls for transforming undergraduate statistics education resounding

nationally, the 2014 American Statistical Association (ASA) President, Nathaniel

Schenker, convened a workgroup to update the association’s guidelines for undergrad-

uate programs. The group, with broad representation from academia, industry, and

government, put forward guidelines that were endorsed by the ASA Board of Directors

in November 2014 (American Statistical Association Undergraduate Guidelines

Workgroup, 2014). These new guidelines included an increased emphasis on data

science skills and real applications, specifically students’ ability to “access and

manipulate data in various ways, use a variety of computational approaches to extract
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meaning from data, [and] program in higher-level languages” (p. 7).

Although these changes reflected a growing consensus that computing should

be featured throughout statistics programs, much of the statistics education literature

up to that point had focused on the introductory statistics and mathematical statistics

courses. Hence, in 2015, The American Statistician produced a special issue on

“Statistics and the Undergraduate Curriculum,” to encourage submissions of broader

topics in the statistics curriculum. The articles in the special issue fell primarily into

two themes: the first theme described how computing should be included throughout

the statistics curriculum, with articles from Green and Blankenship (2015), Tintle and

colleagues (2015), and Hesterberg (2015); the second theme in these articles presented

thoughts on how data science topics should be integrated into undergraduate statistics

courses, with articles from Nolan and Temple Lang (2015), Grimshaw (2015), Baumer

(2015), and Hardin et al. (2015). In the same issue, George Cobb provocatively stated

that the statistics curriculum needed to be rebuilt “from the ground up” (2015), as

“what we teach lags decades behind what we practice” and “the gap between our

half-century-old curriculum and our contemporary statistical practice continues to

widen” (p. 268). In his article, Cobb argued that statistics, like computer science,

should be teaching algorithmic thinking at a basic level. But, computing should be

mindfully included throughout the statistics curriculum, rather than simply inserting

“a new computing course into the existing curriculum” (p. 275).

Despite these technological advances promoting a facile integration of data

science in the statistics curriculum and calls for purposeful inclusion of computing

in the statistics curriculum, we continue to see students from scientific disciplines

leave the statistics classroom without data science skills in hand. A mere 60% of

environmental science graduate students reported a basic skill level in R (Hernandez

et al., 2012, p. 1069), which has become the “primary tool” reported for data analysis
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in environmental science research (Lai et al., 2019, p. 1). This gap between the

importance of data science reiterated by statistics educators and the data science

skills environmental science graduate students report leaving their program with

demonstrates that data science concepts continue to be absent from many statistics

courses. To promote conversations such as this, the Journal of Statistics Education

will publish a special issue on “Computing in the Statistics Curriculum” in July 2020.

To celebrate the 10-year anniversary of Nolan and Temple Lang’s pioneering piece,

articles in the special issue will look into what has changed since the publication of

“Computing in the Statistics Curriculum,” what still needs to change, and what is

needed to implement curricular shifts.

Barriers to Incorporating Data Science in the Curriculum

While calls for incorporating computing throughout the environmental science

and statistics curricula have resonated for the last ten years (Jones et al., 2006; Joppa

et al., 2013; Laney et al., 2015; Manyika et al., 2011; Mokany et al., 2016; Peters and

Okin, 2017; Smith, 2015; Teal et al., 2015), we continue to see researchers reporting the

computational ill-preparation of environmental science undergraduate and graduate

students by their curriculum (Hampton et al., 2017; Teal et al., 2015). This raises

the question, why are these skills still so rare when the need for them is now widely

recognized?

Nearly ten years ago, over 70% of ecology instructors reported substantial

barriers to incorporating data management topics in their course(s). These barriers

include: the instructor’s lack of time or their lack of knowledge of the topics, students’

lack of the necessary quantitative understandings, or a lack of alignment of the data

management topics with the content of their course. These obstacles can be distilled

into two main components: first we are “attempting to fit more material into already-
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full courses and curriculum,” and second, these courses are potentially “taught by

people who do not feel prepared to address topics relevant to big data and data-

intensive research” (Hampton et al., 2017, p. 547). Yet, this lack of computational

training impedes the progression of scientific research and results in substantial hidden

costs.

Instead of acquiring these necessary skills in the coursework required for their

programs, these environmental science graduate students “learn much of what they

know about programming and data management on their own or the information is

passed down within a lab” (Teal et al., 2015, p. 136). Despite the inclusion of statistics

courses in these students’ programs of study, students continue to be “told to learn

how to program by themselves, from each other, or from their teaching assistant in

a two-week ‘crash course’ in basic syntax ” at the beginning of their statistics course

(Nolan and Temple Lang, 2010, p. 100). This teach-yourself approach sends the signal

to students that “computing is not of intellectual importance relative to the material

covered in lectures” (Nolan and Temple Lang, 2010, p. 100). Moreover, this structure

results in students potentially “picking up bad habits, misunderstandings, and, more

importantly, the wrong concepts” (Nolan and Temple Lang, 2010, p. 100). Students’

initial knowledge shapes the methods they use to accomplish a task, making some

tasks impossible. They may spend weeks or months doing things that could be done

in hours or days, unable to abstract what they learned to broader classes of tasks.

Furthermore, students may be unaware of the reliability and reproducibility of their

results.

Specific Aims for This Research

Clearly, the current situation is unsatisfactory; however, few efforts have been

made to better understand the data science skills necessary for environmental science
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graduate students as they implement statistics in their research. The findings of

Hernandez et al. suggest that—by in large—graduate students are not acquiring

the data science skills required for participation in data-intensive research in their

curriculum. Yet, elements of these skills are necessary for each student as they

engage in their research, which surfaces the question: how are environmental science

graduate students acquiring the data science skills necessary to implement statistics

in the context of their research? Investigating students’ experiences navigating the

phenomenon of acquiring the data science skills necessary for their research adds

a new perspective to the conversation surrounding the acquisition of data science

skills for scientific research, and brings to light the pathways through which students

successfully acquire these necessary skills.

Multiple environmental science researchers reference extracurricular work-

shops as a potential solution for researchers acquiring data science skills ‘just in

time’ for their research (Teal et al., 2015; Hampton et al., 2017). Namely, Data

Carpentry workshops provide researchers with “high-quality, domain-specific training

covering the full lifecycle of data-driven research” (2020). Although Data Carpentry

workshops are developed by the community to be tailored to specific areas of research,

such as Ecology, there has been no formal investigation on the relevance of the skills

taught in these workshops to environmental science graduate students, a population

of researchers in critical need for relevant, high quality, and accessible computing

instruction. Understanding the data science skills relevant to this population of

researchers allows for the tailoring of current workshop resources, by making evidence-

based, iterative improvements to the content and structure of the workshops.

These profound changes in the data landscape have also impacted the

instructors of graduate courses which are intended to arm environmental science

students with the data science skills necessary for their independent research.
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Instructors may be experiencing similar barriers as those faced ten years prior

(Strasser and Hampton, 2012). Instructors of these courses may not “have not been

taught computing formally,” so they “have not had the opportunity to learn it well,

and feel they cannot teach it effectively” (Nolan and Temple Lang, 2010, p. 106).

Educators from both Statistics and the environmental sciences have outlined data

science skills of potential relevance to researchers in their respective field, but each of

these conversations neglect a critical aspect of data-intensive environmental science

research, the data analysis cycle.

While we may see data science concepts integrated into the undergraduate

programs in statistics, integrating these topics into graduate-level statistics service

courses, often required for environmental science graduate students, has received

less attention and poses different issues. These statistics courses that serve a

variety of students reflect a snapshot of the statistics curriculum, but often act as

students’ sole statistics course prior to conducting the research required for their

degree. Thus, instructors of these courses are forced to navigate difficult decisions of

how they can ensure their students leave the classroom with both the statistical

and “computational understanding, skills, and confidence needed to actively and

wholeheartedly participate” in the scientific research arena (Nolan and Temple Lang,

2010, p. 106). Regrettably, for instructors unfamiliar with students’ scientific

disciplines, it can be difficult to “be bold” and infuse data science skills relevant

to students’ field of research into the classroom (Nolan and Temple Lang, 2010, p.

106).

Each of these issues facing environmental science students and faculty

necessitates a better understanding of the specific data science skills relevant to

environmental science graduate students as they engage in the data analysis cycle.

Understanding the data science skills relevant to this population of researchers allows
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for the evaluation of the content included in tailored extracurricular workshops and

provides statistics and environmental science educators with a set of foundational

data science concepts to be included throughout the environmental science graduate

curriculum.

With these considerations in mind, the goals of this research are threefold: (1)

to outline the experiences of graduate students in the environmental sciences when

acquiring the data science skills necessary to apply statistics in the context of their

research, (2) to design, implement, and evaluate a suite of data science workshops

tailored for graduate-level environmental science researchers, and (3) to describe the

data science skills environmental science graduate students employ throughout their

research when engaging in the data analysis cycle, and how these skills evolve over

time.

For this research, the collection of fields who perform research in the biological

and environmental science fields are captured under the term “environmental science.”

At Montana State University, these are the fields whose students are required

or highly-recommended to enroll in the graduate-level Applied Statistics course

sequence. In this research, I use the following terms interchangeably: “computing

skills necessary to implement statistics,” “statistical computing,” and “data science

skills.” Each of these terms are considered to consist of the computing knowledge

and skills necessary for the entire data analysis cycle, from data cleaning to data

visualization to data analysis to communication. The computing skills necessary

throughout the data analysis cycle may include general programming concepts such as

loops, user-defined functions, or conditional statements, but the focus of data science

skills differ fundamentally from general programming skills. Rather than focusing on

computer architecture, design, and application, for data science skills, data are the

focus.



19

Research Journey

I was drawn to research in data science education through my experiences

as a second-year graduate student in Statistics. During my second year, I provided

statistical consulting for a graduate student in Ecology. This graduate student sought

out consulting for assistance to implement a Bayesian framework to Ornate Box

Turtle mark-recapture data, having no previous experiences working with statistical

software. A component of our consulting collaboration took the form of weekly

R workshops covering a variety of skills, from importing data to writing for-loops

and functions, to fitting models in the R package rjags. At the close of the semester,

I appreciated the computational challenges environmental science researchers face in

their attempts to implement statistics in their research, and a realization of the data

science skills with which graduate students typically leave their statistics courses. This

emboldened me to investigate how environmental science graduate students acquire

the data science skills necessary for research in their fields.

Experiences of Environmental Science Graduate Students

With this motivation in hand, I set out to design a study to understand and

describe graduate students’ transferability of the data science skills learned in the

statistics classroom to environmental science applications. The design of this pilot

study was comprised of two parts: (1) students’ completion of hands-on computational

problems, and (2) a survey of students’ attitudes and experiences learning and using

computing skills.

The computing tasks were included to assess students’ abilities to reason

through applications of data science skills in an environmental science context. Then,

after reasoning through each task, students were asked to detail where and how they
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had acquired the computational skill(s) they had employed while completing the task.

During my initial data analysis, I realized that if a student was unable to reason

through a particular task, that did not necessarily capture their ability to reason

through that type of data science application in their field. Indeed, it is possible

that the student was unable to reason through that type of data science task or,

alternatively, the task in question may have been irrelevant to the “typical” data

science applications in the student’s respective field of research. Therefore, these

data science problems were removed from the focus of this study.

Although the statistical computing tasks may not have accurately captured

students’ data science understandings, the interviews accompanying these tasks shed

light on how students acquired the data science skills they were familiar with. In an

article which appeared in the Statistics Education Research Journal (Theobold and

Hancock, 2019), Chapter 2 outlines the results of these in-depth interviews, how these

graduate students experienced the phenomenon of acquiring the computational skills

necessary to implement statistics in their research. Three themes emerged in students’

paths towards computational knowledge acquisition: use of peer support, seeking

out a singular “consultant,” and learning through independent research experiences.

These themes provide descriptions of graduate student experiences absent from the

environmental science literature, informing how instruction can be improved, both in

and out of the formal classroom.

The findings of this phenomenological study led me to wonder how students’

acquisition of the data science skills necessary for their research could be facilitated

with extracurricular workshops tailored to research in their specific field. Current

ecology focused extracurricular workshops, such as Data Carpentry, aim to provide

researchers with the fundamental data skills needed to conduct research in that

field. However, the skills included in these workshops may not reflect the key data
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science skills necessary for the population of environmental science graduate student

researchers. Therefore, this research demanded an understanding of the key data

science skills necessary for environmental science graduate students to implement

statistics in their research. These questions led to the two follow-up studies detailed

in Chapters 3 and 4.

Designing Data Science Workshops for Data-Intensive
Environmental Science Research

The first follow-up study focused on (1) describing the computing skills

environmental science faculty believe are necessary when implementing statistics in

graduate-level environmental science research, (2) investigating how these data skills

can be infused into currently existing extracurricular data science workshops, and (3)

understanding the backgrounds and experiences of attendees of these workshops.

For these investigations, we executed a three-phase design-based implemen-

tation research model (Fishman et al., 2013). Phase one encompassed conducting

in-depth interviews with faculty members from environmental science fields regarding

the computational skills they believed are necessary for graduate students to engage

in the data analysis cycle in their research. Phase two then focused on adapting

currently existing workshop resources to design a series of data science workshops

targeting the key computational skills distilled from these faculty interviews. Phase

three consisted of implementing the workshops and collecting survey responses from

the workshop attendees regarding their backgrounds prior to the workshop and their

experiences participating in each workshop.

For phase one, all university faculty currently overseeing a graduate student

from the departments of Ecology, Land Resources and Environmental Sciences,

Animal and Range Sciences, and Plant Sciences and Plant Pathology at Montana

State University were emailed requesting their participation in this research. Faculty
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members from these fields were included because of the large degree of overlap in the

type of data collected and analyzed in these fields. Therefore, graduate students from

these fields would presumably have similar computational skills required of them as

they analyze their data. A total of 61 faculty members were invited to participate in

the study, and 23 total faculty agreed to participate in an interview.

During these interviews, faculty were asked a series of questions detailing

the computational skills they believe are necessary for graduate students in their

field to implement statistics in their research. Over the course of transcribing these

interviews, it became clear to me that many faculty focused on the statistical skills and

understandings necessary for graduate students to succeed in their research, rather

than the computing skills necessary to employ these statistical techniques. Upon

this discovery, a second round of faculty interviews were conducted. During these

interviews, I asked follow-up questions to further explore why each faculty member

believed the computational skill(s) in question are necessary for research in their field.

If faculty’s responses consisted of the statistical understandings necessary for graduate

student researchers, I redirected the conversation to understand what computing skills

may be required of a student to implement this type of statistical analysis with their

data.

Chapter 3 reports on the data science skills outlined in phase one of this

research and how they were used to tailor the existing Data Carpentry Ecology

curriculum (Michonneau et al., 2019) to design workshops that suit the needs of

this population of graduate student researchers. The chapter then reports on the

implementation of these workshops during the 2018-2019 academic year, describing

the backgrounds and experiences of the workshop attendees. To close, the chapter

outlines the next iteration of this design work, reevaluating the content of these

workshops using research code produced by environmental science graduate students.
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Computing Skills Employed by Environmental
Science Graduate Students

With the phenomenon of acquiring the computational skills necessary for

graduate-level research in the environmental sciences firmly in place (Andelman et al.,

2004; Green et al., 2005; Hampton et al., 2017; Hernandez et al., 2012; Mislan et al.,

2016; Teal et al., 2015; Theobold and Hancock, 2019), and an understanding of the

skills environmental science faculty believe are necessary for these researchers in hand,

I turned my attention to examining the data science skills employed by environmental

science graduate students in their research.

Despite the elevated importance of data science to the fields of Statistics

and the environmental sciences, research has yet to focus on investigating the data

science skills necessary for graduate-level research in the environmental sciences.

This final arm of my research focuses on using a qualitative method of investigation

to describe and understand the key data science skills necessary for environmental

science graduate students as they engage in the data analysis cycle.

For this research, an embedded comparative case study (Yin, 2009) was

employed. This comparative case study described the key data science skills used by

two environmental science graduate students, Alicia and Ellie, and compared the key

skills found for each student, in the context of their educational experiences. Where

the phenomenology detailed in Chapter 2 focused on describing the shared experiences

of environmental science graduate students when acquiring the data science skills

necessary for their research, this case study focused instead on describing the specific

data science skills used by two individuals. For this case study, Alicia and Ellie were

the cases and the R scripts produced for their respective research were the embedded

units of analysis.

At the outset of this study, a cohort of eight graduate students from
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environmental science fields were recruited from first semester Methods of Data

Analysis courses, in the spring of 2018. These students were recruited from a variety

of environmental science fields to develop an understanding of what key data science

skills span across environmental science fields of research. Each of these students

participated in at least two interviews, between the fall of 2018 and the fall of 2019.

For the first interview, students were asked to submit all of the research code they

had produced thus far. For each subsequent interview, students were requested to

submit any research code they had produced since the last interview. I produced

analytic memos for each of these script files, to synthesize the data science skills used

throughout each student’s script into higher level analytic meanings (Miles et al.,

2014, p. 95). During the interview, students were then asked to describe how they

learned the data science skills outlined in these memos.

When the focus came to outlining an analytical framework, however, it became

clear that this initial sampling methodology aligned with grounded theory research,

with the purpose of generating a substantive theory of the prevalence of specific

data science skills used by environmental science graduate students in their research.

Regretfully, the sampling logic of a grounded theory methodology did not align with

the study’s intention to intensively explore both the computing skills employed by

students when implementing statistics in their research and how these skills evolve

over time. Instead, an embedded case study aligns with this research goal, by selecting

a few individuals and painting a picture of the data science skills they used in

their research, and how each individual’s skills evolved over time. Furthermore, a

comparative case study allows for the comparison of the data science skills used by

each student, in the context of their personal experiences.

The rationale for selecting Ellie and Alicia were two-fold. Their experiences

represent two ends of the spectrum in the computational preparation and support of
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environmental science graduate students as they perform data-intensive research in

their field. These experiences differed in four primary ways: (1) their programming

backgrounds, (2) the statistics coursework they completed for their degree, (3) the

field-specific quantitative methods coursework they completed for their degree, and

(4) the computing and statistical support of their adviser. Second, the research

code produced by Ellie and Alicia also represents two substantially different types

of computational tasks environmental science graduate students might face as they

engage in the data analysis process.

Chapter 4 describes the design, analysis, and findings of this embedded case

study research. Finally, Chapter 5 concludes our work and presents directions for

future research outlining a learning trajectory for how students build understandings

of data science concepts.
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Abstract

Modern environmental science research increasingly requires computational

ability to apply statistics to environmental science problems, but graduate students

in these scientific fields typically lack these integral skills. Many scientific graduate

degree programs expect students to acquire these computational skills in an applied

statistics course. A gap remains, however, between the computational skills required

for the implementation of statistics in scientific research and those taught in statistics

courses. This qualitative study examines how five environmental science graduate

students at one institution experience the phenomenon of acquiring the computational

skills necessary to implement statistics in their research and the factors that foster or

inhibit learning. In-depth interviews revealed three themes in these students’ paths

towards computational knowledge acquisition: use of peer support, seeking out a

singular “consultant,” and learning through independent research experiences. These

themes provide rich descriptions of graduate student experiences and strategies used

while developing computational skills to apply statistics in their own research, thus

informing how to improve instruction, both in and out of the formal classroom.

Introduction

With the increased focus on data-intensive research, statistical computing has

become essential in many scientific fields. Yet, the gap between science education

and students’ computational knowledge has become more evident, particularly in

the environmental and life sciences. The growth in computational power and the

volume and variety of available data has multiplied the computational and statistical

expectations of scientific researchers’ abilities. Yet an abundance of literature

in the environmental sciences suggests graduate students are not acquiring the
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computational skills necessary for their research (Andelman et al., 2004; Green et al.,

2005; Hampton et al., 2017; Hernandez et al., 2012; Lai et al., 2019; Teal et al., 2015).

Contrasted with graduate students in the biological sciences, where external

structures often exist to support computational knowledge acquisition (Stefan

et al., 2015), environmental science graduate students are often assumed to acquire

computational skills in graduate-level statistics courses. The requirement of graduate-

level statistics coursework is intended to help these students acquire the statistical

knowledge necessary for their research along with any essential computational skills,

but little is known about the paths graduate students actually rely upon when faced

with statistical computing problems in their research. The intention of this study

is to describe the experiences of graduate students in the environmental sciences

to illuminate the phenomenon of acquiring the computing skills necessary to apply

statistics in the context of their research. We consider the following research question:

Through what paths do graduate students in the environmental sciences gain the

computational knowledge necessary to implement statistics for research applications

in their disciplines?

The subjects of this study were graduate students enrolled in a second semester

graduate-level Applied Statistics course at a mid-size university in the Western United

States. The target audience of this course is non-statistics graduate students, and,

at this institution, this two-semester Applied Statistics sequence is either required

or highly recommended for the completion of a master’s degree in departments

such as Ecology, Land Resources and Environmental Sciences (LRES), Animal and

Range Sciences (ARS), and Plant Sciences & Plant Pathology. This sequence of

two one-semester courses covers the foundations of statistical inference, including a

wide variety of statistical methods, starting from two sample inferences and moving

through regression and generalized linear models to mixed models. Taught using
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an R (R Core Team, 2020) programming environment, students are typically given

code to modify, covering base R graphics, data and model summaries, and built-in

functions, while also being exposed to a few computational concepts such as loops,

and conditional and relational statements.

The majority of graduate students in Ecology, LRES, ARS, and Plant Sciences

departments enroll in the graduate-level Applied Statistics course sequence or solely

in the first course in this sequence. Thus, this terminal statistics sequence often serves

as graduate students’ sole statistical computing course, and consequently, their only

formal preparation for the computational problems they may face when implementing

statistics as researchers. In examining the experiences these environmental science

graduate students face when acquiring the computational skills necessary to use

statistics in their research, we seek to capture an in-depth understanding of the

successes and shortfalls these students encounter in their computational journey.

Though the term “Environmental Science” refers to a specific discipline in the

literature, in this paper we will refer to the collection of fields that perform research

in the biological and environmental sciences as “environmental science.” At our

institution, these are the fields whose students are required or highly-recommended to

enroll in the graduate-level Applied Statistics course sequence described above. For

this study, “statistical computing” is considered to consist of the computing knowledge

and skills necessary for the entire process of statistical analyses, from data cleaning to

data visualization to data analysis. These computing skills may include programming

concepts such as loops, user-defined functions, or conditional statements, and methods

for importing, cleaning, and subsetting data.

We begin by describing areas of the research literature that address the

computational and statistical training of graduate students in the environmental

and biological sciences. We then outline the qualitative study we implemented to
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explore the experiences of graduate environmental science students in acquiring the

statistical computing skills necessary for their research. The results presented reveal

the prevailing experiences of these students when faced with computational problems

beyond their understanding, and articulate the paths students employed to gain the

required computational skills for carrying out statistics in their research.

Computing and the Environmental Sciences

Research in the computational abilities of environmental science students

is in its infancy, with only a handful of institutions performing research that

specifically addresses the computational training necessary to prepare students for

careers post undergraduate or graduate degree. Literature related to this area has

primarily focused on resources that students could potentially use to increase their

computational abilities, with no studies focusing on the resources graduate students

actually employ when wrestling with the computing problems necessary to apply

statistics in the context of their research.

In this section, we discuss briefly three broad areas of the literature that

informed this study. First, we review the literature on the foundational role compu-

tation has in the sciences. We then discuss research efforts detailing computational

training in the environmental sciences, as compared with the computational training

of graduate students in other biological fields. Finally, we detail research in statistics

education declaring the importance of computing in the statistics curriculum.

Computing and Statistics in the Sciences

Over the last two decades, nearly every scientific field has seen a rapid increase

in the use of computation and analytical tools to model phenomena across many

disciplines of inquiry. In some scientific fields, such as biology and chemistry, the
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recent ability to collect multitudes of data easily and quickly have made computational

abilities vital to researchers and practitioners. Fields previously thought to be niche

disciplines, such as computational biology, are now “becoming an integral part of

the practice of biology across all fields” (Stefan et al., 2015, p. 2). Across a large

sector of scientific domains, computationally heavy applications of mathematical

and statistical techniques, such as management of large data sets, dynamic data

visualization, and computationally intensive modeling and prediction, have become

essential computational understandings for field applications (Weintrop et al., 2016).

With these advances in computational power, analytical methods, and detailed

computational and statistical models, scientific fields are undergoing a renaissance.

These advances have, however, created a growing need for scientists to receive an

appropriate education in computational methods and techniques (Fox and Ouellette,

2013; Wing, 2006).

Many chemistry, biochemistry, and bioinformatics programs have begun

to incorporate computational training into their programs. A similar revolution

affirming the importance of computational proficiency has yet to be experienced in

environmental science fields.

Computational Training for Graduate Students
in Environmental Science

The volume and variety of data collected by environmental science researchers

for statistical analysis continues to increase at a rapid pace due to the availability of

data from “long-term ecological research, environmental sensors, remote-sensing plat-

forms, and genome sequencing” (Hampton et al., 2017, p. 546). These technological

advances have created a crucial need to reevaluate how our system of training can

better prepare current and future generations of environmental researchers (Green

et al., 2005; Hampton et al., 2017).
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Facing the new frontiers of “big data,” programming skills to manipulate,

analyze, and visualize data are becoming necessary for many ecologists. Moreover,

most environmental science graduate students are required to write their own code

as part of their research (Mislan et al., 2016), with the use of R as the “primary tool

reported in data analysis increasing from 11.4% in 2008 to 58% in 2017” (Lai et al.,

2019, p. 1). In a survey of a seminar course for graduate students in ecology across 11

American universities, however, Andelman and colleagues (2004) found that “ninety-

three percent of students did not have skills in the scripted programming languages

(e.g., SAS or MATLAB) that are needed for the integration of large datasets” (p.

244), and that one of the greatest limitations students experienced was related to

data concatenation, manipulation, and analysis. Furthermore, in a recent survey of

graduate students in the environmental sciences, “74% of students reported they had

not completed any coursework related to the management and analysis of complex

data” and only 56% of students “claimed a basic skill level in statistical applications,

including R” (Hernandez et al., 2012, p. 1069).

This lack of computational training required for data analysis inhibits the

progress of research and is laden with hidden costs. Teal and colleagues (2015)

suggest that “researchers learn most of what they know about programming and

data management on their own or the information is passed down within a lab” (p.

136). The costs associated with this process are substantial. Graduate students “can

spend weeks or months doing things that could be done in hours or days,” they may

be unaware of the reliability of their results, and they are often unable to reproduce

their work.

Not all biological graduate students, however, are experiencing a lack of

computational training. For example, researchers in the Department of Biological and

Biomedical Sciences at Harvard have developed an intensive workshop that introduces
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graduate bioinformatics students to the “fundamentals of programming, statistics,

and image and data analysis through the use of MATLAB” (Stefan et al., 2015,

p. 2). This course is framed not only with the goals of developing programming

skills and statistical understandings, but also emphasizing how to algorithmically

reason through computational problems. The structure of the two-week intensive

“bootcamp” consists of five full, mandatory days. The workshop dedicates the first

two days to an introduction to programming using MATLAB, where students learn

a variety of topics, including creating variables, performing basic variable operations,

indexing, logicals, functions, conditionals, and loops. Day 3 is dedicated to developing

statistical understandings, including probability distributions, hypothesis testing,

p-values, bootstrapping methods, and multiple testing. Day 4 covers topics in

image analysis, and Day 5 assists students in working with their own data. These

workshops are given twice a year, once prior to the start of the school year as

new graduate students are attending orientation, and a second time for upper-level

graduate students and post-doctoral fellows (Gutlerner and Van Vactor, 2013). In

introducing beginning graduate students to these concepts, researchers hoped to lower

the computational barrier for students taking courses, empower students to learn

computational tools on their own, and allow for other courses to “build upon this

foundation and integrate quantitative methods throughout the curriculum” (Stefan

et al., 2015, p. 2).

Providing effective training in data-intensive computational skills for re-

searchers is wrought with challenges. Strasser and Hampton (2012) reported that

ecology instructors indicated eight barriers to covering data-intensive computational

skills. These barriers included limited time, students did not have the necessary level

of quantitative or statistical skills to cover the topics, lack of resources, the instructor

was not knowledgeable in these topics, topics should be included in a lab, and the
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topics should be covered in other courses. These obstacles can be boiled down to

“attempting to fit more material into already-full courses and curriculum, which are

taught by people who do not feel prepared to address topics relevant to big data and

data-intensive research” (Hampton et al., 2017, p. 547).

When considering the issue of curriculum reevaluation, however, we note that,

for many environmental science fields, statistics preparation is considered vital, and

statistics courses have readily been incorporated into undergraduate and graduate

programs across the country.

Computing in the Statistics Curriculum

The digital age is also having an overwhelming impact on the practice of

statistics and the nature of data analysis, which necessitates a “reevaluation of the

training and education practices in statistics” (Nolan and Temple Lang, 2010, p.

97). The skills needed by today’s statistics practitioners differ profoundly from what

was needed 20 years ago. For scientific research today, computing skills are vital,

especially for scientific research requiring statistical analysis (Hardin et al., 2015, p.

344).

Nearly 20 years ago, Friedman (2001) noted that “computing has been one of

the most glaring omissions in the set of tools that have so far defined statistics” (p.

8). This statement is echoed in the calls from statisticians advocating for changes

in the statistics curriculum (Cobb, 2015 [Discussions from Gelman, Gould, Duncan

Lang, Kass, Nolan]; Nolan & Temple-Lang, 2010), as “what we teach lags decades

behind what we practice” (Cobb, 2015, p. 268). Furthermore, computing has become

more necessary to implementing statistical methods than even ten years ago such

that “a ‘just enough’ level of understanding of computing is not adequate” (Nolan

and Temple Lang, 2010, p. 106).
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Many statisticians would agree that more computing should be included in

the statistics curriculum so that students leave the classroom more computationally

capable and literate. However, many statistics students are “told to learn how to

program by themselves, from each other, or from their teaching assistant in a two-week

‘crash course’ in basic syntax at the start of a course” (Nolan and Temple Lang, 2010,

p. 100). This do-it-yourself approach signals to students that statistical computing is

not of intellectual importance compared to materials covered in lectures. Additionally,

this structure inherits additional hidden costs, where students may pick up bad habits,

misunderstandings, or the wrong concepts. Students may learn “just enough to get

what they need done, but they do not learn the simple ways to do things,” and the

knowledge they possess when approaching a problem limits the tasks they are able

to accomplish (p. 100). This brings us to question whether students in our statistics

courses acquire the confidence necessary to overcome computational challenges they

may face in their scientific research.

Due to the historical importance of statistics in environmental science fields,

graduate students are often required or highly recommended to enroll in statistics

courses for completion of their degree. As evidenced by literature in the environmental

sciences, however, graduate students are not being prepared by their current curricula

with the computational skills necessary to perform data-intensive environmental

science research. Indeed, these commentaries by statistics educators also illuminate

the lack of computational preparation with which students often leave the statistics

classroom.

Methodology

In this study, we examined experiences of environmental science graduate

students in gaining the computational knowledge necessary to implement statistics
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in their research, and the paths that impacted these experiences. Implementation of

statistics is necessary for many of these graduate students to succeed in their master’s

and doctoral research. Across these fields, however, students may not be acquiring

these necessary skills within their graduate curriculum.

Phenomenology is a study of “people’s conscious experience of their life-world”

(Schram, 2003, p. 71) or their “lived experiences” (Van Manen, 1990, p. 9). As

compared to case study research, which stresses the “unit of analysis, not the topic

of investigation” (Merriam, 2009, p. 41, emphasis in original), a phenomenology aims

to depict the essence or the structure of a shared experience through analyzing and

comparing the experiences of different people (Patton, 2002).

A phenomenology was appropriate for this study, as it focuses on the experi-

ences of graduate environmental science students as they acquire the computational

skills necessary to apply statistics in their research. Participants for this study

were not chosen to illustrate different aspects of a shared experience. Rather, these

participants act as a cohort to illuminate and understand the phenomenon of acquiring

the computational skills necessary to implement statistics through participants’ lived

experiences. Aspects of the backgrounds from each of the study’s participants may

characterize a “typical” graduate student in the environmental sciences, however, it is

not the intention of these participant characterizations to focus on how backgrounds

impact the experience of this phenomenon.

Participants

At our university, the two-semester graduate-level Applied Statistics course

sequence (GLAS I and II) serves as a service course for graduate students in

scientific fields, and only assume prerequisite knowledge of Introductory Statistics.

Additionally, GLAS I serves as the required prerequisite course for other statistics
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courses in the department.

Students were recruited from GLAS II in the spring of 2017. These students

were interviewed following their spring break, nearly halfway through the course.

Only graduate students taking the course for their respective master’s or doctoral

programs in environmental science fields were considered.

We requested all eight environmental science graduate students enrolled

in GLAS II in the spring of 2017 to complete a survey detailing their previous

statistics and computer science courses, the computer languages with which they had

experiences, and their independent research experience. All eight of these students

completed the survey and were then asked to participate in an in-depth interview, of

which five agreed. Names of participants used in this paper are pseudonyms.

Details of the five interview participants are summarized in Table 2.1. All five

identified as women, and all had taken GLAS I within the last two years. Four of the

interview participants had begun or were nearly finished with their master’s thesis,

while Robin had just begun to work on the projects associated with her dissertation.

Of the five interview participants, Catherine’s only prior statistics course

had been GLAS I, Beth, Kelly, and Robin had all taken another statistics course

outside of GLAS I and II, and Stephanie was completing a Graduate Certificate

in Applied Statistics. The Graduate Certificate in Applied Statistics requires the

completion of GLAS I and II, as well as Sampling or Experimental Design, and

one additional upper-level statistics course. The Experimental Design course covers

the foundations of design and analysis of experiments, including a large variety of

experimental methods, starting from matrix forms and moving through factorial,

balanced complete and incomplete blocking, and split plot designs. The Sampling

course covers the cornerstones of sampling methodology, including a wide variety
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of probability samples, from simple random sampling to systematic sampling and

cluster sampling. Both courses are taught using a SAS programming environment,

where students are typically given code to modify. Other courses often taken for

completion of this certificate include Time Series Analysis, Multivariate Analysis,

Mixed Effects Models, and Generalized Linear Models.

Beth Catherine Kelly Robin Stephanie
Degree
Seeking MS MS MS PhD MS

Department ARS LRES Ecology LRES LRES

GLAS I Fall 2015 Fall 2015 Spring
2016 Fall 2015 Fall 2015

Additional
Statistics
Courses

Experi-
mental
Design

None Sampling Time
Series

Time
Series, Ex-
perimental

Design
Languages
Introduced
in
Coursework

R R, SQL R, SQL R, SQL,
Python

R, SQL,
Python,

Java

Languages
Employed
in Research

R, SQL R R R, SQL,
Python

R, SQL,
Python

Indepen-
dent
Research

Thesis Thesis Thesis Thesis A few
projects

Table 2.1: Academic demographics of participants: GLAS I indicates the academic
semester they took the first semester graduate-level Applied Statistics course.

Over the last five years, this first semester graduate-level Applied Statistics

course sequence has serviced 101 students from the departments of Ecology, LRES,

ARS, and Plant Sciences. Of those 101 graduate environmental science students,
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63% have gone on to complete the second semester graduate-level Applied Statistics

course sequence, and only 5% have completed the Graduate Certificate in Applied

Statistics.

Every interview participant from the Ecology and LRES departments voiced

that they had taken a required course for their graduate coursework which introduced

Access databases, providing them with experiences working with a structured query

language (SQL). Robin and Stephanie continued to use SQL during their independent

research and Beth learned SQL independently at the recommendation of her adviser.

Unlike many environmental science graduate students, Stephanie had experience with

Java from her undergraduate coursework and gained knowledge for working in Python

and R from a year’s work as a research assistant prior to enrolling in graduate school.

Data Collection

Following the preliminary survey, students who agreed to be interviewed were

audio recorded while working through a set of ecological applications of statistical

computing. These tasks assessed students’ abilities to reason through applications of

statistical computing, covering a broad range of problems that may be necessary for

research in environmental science. These tasks were not intended to determine what

statistical computing knowledge each participant did or did not possess, but rather

as an entry point to capture the experiences of these participants in acquiring the

statistical computing skills with which they were familiar.

After reasoning through each task, students were asked where and how they

had acquired the computational skill they had employed. Based on participants’

responses, the interviewer asked a follow-up question to gain additional information

regarding why the participant used this resource to acquire the computational skill in

question. For instance, if a participant voiced acquiring the statistical computing
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skill in a course, further information was sought out regarding why she enrolled

in that particular course. Alternatively, participants who voiced the Internet as

their resource in acquiring the statistical computing skill were asked for additional

information regarding what Internet resources they had employed. All participants

were asked whether they attempted to use other resources when acquiring each skill,

as well as how often they had used each resource when acquiring computational

skills. Finally, every participant was asked to summarize where they have learned the

computational skills necessary for implementing statistics in their research. The full

interview protocol is included as an Appendix and the statistical computing tasks are

included as Supplementary Materials.

The analysis in this paper is based on participant responses to questions

regarding their experiences acquiring the computational skills they employed while

reasoning through these statistical computing tasks.

Data Analysis

The primary author led a three-stage data analysis process (Miles et al., 2014).

In the first stage, the interviews for each participant were transcribed verbatim,

with participants’ names removed and pseudonyms given. Subsequently, the primary

author read the transcripts independently and created descriptive codes for the paths

through which the participants voiced having acquired the computational skills they

employed when reasoning through the statistical computing tasks. Concluding this

stage, the author looked for specific references to how the courses taken by the

participants had influenced their acquisition of statistical computing skills.

After working through each transcript in this manner, the primary author

began the second stage of analytical coding. In this process, every path was given

equal value and “nonrepetitive constituents of experiences” were linked thematically
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(Moustakas, 1994, p. 96). Categories of experiences that held across multiple

interviews were retained. For example, every participant voiced specific individuals

they sought out as paths for knowledge acquisition. These activities were initially

coded to belong to the category of “learning from others.” Based on these groupings,

initial categories of course work, research experience, and learning from others were

constructed. Next, the primary author searched through the data to identify successes

and limitations voiced by the participants when acquiring statistical computing

skills within the initially identified categories. Through this step we learned that

certain categories were instead subcategories, whereas others were independent of

one another. For example, some participants voiced exposure to computational skills

in the statistics classroom but emphasized that their understanding of these skills

instead came through interactions with their peers or when using the methods in

their own research. Additionally, participants who learned from others found great

success in acquiring statistical computing skills from a single person in their lab or

department, as compared to the limited success select participants had when using

their peers to acquire statistical computing skills.

In the final analysis stage, the primary author identified emerging themes

arising from these categories to describe the phenomena of acquiring statistical

computing skills. The author searched for instances which reiterated the themes, as

well as negative cases, with attention paid to the transcripts throughout the validation

process. Following the validation process, both authors met to discuss the rationale

for coding, scrutinizing the situation of each participant’s description of their paths of

knowledge acquisition in the context of the emergent themes. Ultimately, we reached

consensus regarding the categories in which each participant’s response was placed.

Although the frequency of use varied across participants, every participant

voiced experiences acquiring statistical computing skills across every path, supporting
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the themes that emerged. The final themes were exhaustive, mutually exclusive,

and sensitizing, so that the name of the theme authentically represented the data

(Merriam, 2009). These final themes present the “essence of the phenomenon”

(Creswell, 2007, p. 62) of acquiring the computational skills necessary to implement

statistics in environmental science fields.

Following this process, we provided the participants with the table outlining

the computational skills they employed when completing the statistical computing

tasks and the paths from which they voiced acquiring each skill. The participants

recommended no change to be made to the table they were provided. This inclusion

of member checking allows participants to check for accuracy of their statements. The

ability of this study to authentically capture the experiences of students is enhanced

with the lack of researcher engagement with students prior to their participation in the

study. This helped to ensure that no student felt more comfortable in the interview

environment, articulating their experiences, than any other student.

Results

When investigating the phenomenon of acquiring the computational knowl-

edge necessary to implement statistics in environmental science research, we expected

themes of coursework and support structure to emerge. The experiences that

emerged from every participant’s interview, however, related primarily to the support

structures they employed, rather than the coursework that helped them to acquire

the computational knowledge necessary for applying statistics in their research. In

this section, we present themes describing the phenomenon of statistical computing

knowledge acquisition that developed throughout the participants’ interviews: (1)

independent research, (2) singular consultant, and (3) peer support. A sub-

theme of coursework appeared within peer support and independent research,



44

where participants voiced the importance of their coursework on their knowledge

of statistical computing. Participants consistently voiced this sub-theme to depend

on either peer assistance or independent research in its impact on participants’

understanding of statistical computing. The themes and sub-themes are summarized

in Table 2.2.

Theme Sub Theme Description

Independent
Research Coursework

Research experiences that allowed students
to take their course knowledge and transfer
it to statistical computing applications

Singular
Consultant

All-knowing past or current graduate
student whom students sought out for
computational assistance

Peer Support Coursework Assistance from peers with statistical
computing tasks

Table 2.2: Participants’ themes in acquisition of statistical computing knowledge.

In the sections that follow, we provide a detailed description of each theme,

supplemented with quotations from participants to ensure authentic descriptions of

their experiences.

Independent Research Experience

The first theme in acquiring statistical computing knowledge was participation

in independent research. Involvement in independent research helped students trans-

fer their course knowledge to statistical computing applications. This environment

helped students to see the messiness of non-classroom applications and feel the unease

that comes when attempting to perform statistical computing tasks beyond one’s

knowledge. These experiences came predominantly in the form of working as a
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research assistant prior to entering graduate school, collaborating on a project in

the first year of graduate school, or performing research for a master’s thesis, or

ultimately, a doctoral dissertation.

Catherine, a master’s student in Environmental Science, who still faced

everyday computational struggles, attributed the majority of her application-specific

computational knowledge to her experiences in independent research. She emphasized

the importance of understanding how to work in a statistical computing environment,

such as R, which she learned by performing research, before she was able to begin to

transfer the statistical knowledge she had learned in the classroom to her research:

What I struggled with is [GLAS I] covers theory really well, but since I
was new, I spent most of my time trying to figure out how to apply that
theory in [R]. And even now I struggle transferring from R into actual
statistical theory, when I’m writing my thesis. The way I had to approach
it was I had to learn the R first, then I was able to look back on what I
had actually done, in order to learn the statistics.

Kelly, an Ecology master’s student, described her experiences with data

management for her master’s thesis as having produced the most substantial

contributions to her computational abilities. Often, she attributed her intuition for

solving statistical computing problems to experiences she had “merging data sets”

and learning to use conditional statements for her research project. She emphasized

the importance of her statistical knowledge gained in both graduate-level statistics

courses in understanding “what statistical method to use,” whereas she attributed

becoming more fluent in statistical computing to her research experiences: “The

data management stuff comes from independent research, trial and error, getting

myself through.” In this context, Kelly seemed to be reflecting on the computational

skills she acquired when applying the statistical methods from the classroom in

the context of her research, not the skills she acquired from the “trial and error”
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process involved with performing research. Similar sentiments were voiced by Beth,

an Animal & Range Science master’s student, who attributed nearly all of her

computational knowledge as having stemmed from her independent research. With

the recommendation of her adviser, she taught herself how to create an Access

database to store her data. In storing her project data in this manner, she was able to

learn important concepts about data structures, subsetting data “using qualifiers and

criteria,” and sorting data, skills which were then easily transferred into R to manage

data for analysis.

Singular Consultant

When describing who they seek out for computational help, every participant

described first seeking out an “all-knowing” past or current graduate student. These

individuals served as “singular consultants,” with whom these students had the

“best,” most productive experiences in finding solutions to computational problems

that had arisen in their implementation of statistics to their research. For Beth, this

singular consultant came in the form of a past graduate student from Animal & Range

Sciences who was hired to help faculty complete projects:

We have a guy who used to be a student in our department and then he
was hired on again to help finish some projects, after he got his master’s in
Statistics. He is very helpful with [pointing out what’s wrong with your
code]. He’s very good with code and if I have a quick question he can
always answer it.

For Kelly, another graduate student on her same project served as this

consultant. Kelly described turning to this particular graduate student for help with

computational problems she had encountered in her thesis; she added that other

graduate students in their department also used this person as a consultant for their

computational problems:
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The other grad student on this project is so well versed in R that he’s
unofficially become the person that people go to with questions.

Throughout her computational struggles, Catherine found assistance from

previous graduate students from the department, but she found the most assistance

from a previous graduate student “who had left the department and was off

professionally somewhere else, but he still took the time to help walk me through

[my code].”

One participant, Stephanie, an Environmental Science master’s student,

served as this singular computational consultant for many members of the Envi-

ronmental Science department. With her experiences teaching herself R, she was able

to “explain code in a way that makes sense,” says Robin, a fellow Environmental

Science doctoral student who has often sought out help from Stephanie. With an

adviser from a computational background and a project which required sophisticated

statistical modeling, Stephanie “had to learn to code.” Additionally, her laboratory

often worked in collaboration with Computer Science faculty, where she and her

lab-mates were taught computer science coding practices and jargon. “Stephanie

has gotten good at teaching it, because everyone on our floor is like ‘I can’t do this,

Stephanie help me’,” said Robin. Stephanie stated that graduate students have sought

her assistance “daily” or “at minimum two to three times a week.” In contrast, when

Stephanie experiences difficulty in performing computational tasks, she has found

solace in her lab-mates and ultimately, when necessary, with her adviser:

My entire lab works in the same room and my adviser’s door is always
open. So, if someone is having a major issue, whoever is in the room can
hear that. If [my adviser] hears me ask [a lab-mate] how to do something
and he knows how, he just shouts how to do it. So, it’s a very group
oriented dynamic. I’ve never had to go beyond the people in my lab.
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Peer Support

The third theme in acquiring computational knowledge that all participants

spoke of was the support they had received from fellow graduate students when

performing computational tasks related to applications of statistics. The students

described how, when they are unsure of how to complete a computational task for

their research and their singular consultant is not available to them, they turn to fellow

graduate students for help. Participants described instances when the computational

tasks required of them were beyond their current knowledge or occasions when they

had been unsuccessful at attempting to complete a problem and sought out help from

a fellow graduate student. For example, Kelly, an Animal & Range Science master’s

student, shared that when she reached a point in coding when she didn’t know how

to do something, she turned to one of her lab-mates:

I’ve been to a point where I didn’t know how to do something with my
knowledge or what I can find online, and then I’ll go to one of my lab-
mates.

Catherine, a master’s student in Environmental Science, spoke of the ex-

pectations of her advisers that the computational problems she was being asked to

perform were “easy, since she had all the information.” Catherine has had numerous

experiences, however, where she did not have the knowledge necessary to perform the

task or she was missing “little caveats” that kept her from fully being able to perform

the tasks. When faced with these problems, she “reached out to previous students

that had taken the course.”

Robin, a doctoral student in Environmental Science, reiterated Catherine’s

experiences, describing how she reached out to other graduate students in other

labs for help with computational problems. Alternatively, Stephanie, as a singular

consultant, voiced that when she was faced with computational problems beyond her
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knowledge, she had never been forced to “go beyond talking to her lab-mates” for

assistance.

Unfortunately, peer support did not always provide an optimal solution. This

may be a potential reason that participants sought help from peers only when

their singular consultant was unavailable. For example, Kelly described negative

experiences when seeking computational assistance from graduate students not of

close proximity to her:

When I’m struggling with something and I go to other grad students,
they’ll say “I did this the other day. I’ll send you my code.” I’ve found
most of the time I don’t understand what they’ve done enough to plug in
what I want and make it work. There have been a few times when making
tables and plots and someone sends me their code and I can just plug in
my data and it works just fine. I’ve had less success with that.

Discussion

The present study, although exploratory in nature, outlines the experiences of

environmental science graduate students to shed light on the phenomenon of obtaining

the computational skills necessary to apply statistics in the context of environmental

science research. The themes identified, and their corresponding examples, illustrate

the essence of the structure of the shared experience of these participants. These

results help to illuminate the gaps that exist between the statistical computing skills

these students acquire through their curriculum and the computing skills required for

them to successfully implement statistics in their research.

Our expectation of coursework to be a primary source of statistical computing

knowledge was not found for these participants. When these graduate students

encountered a statistical computing problem, they would pull upon the knowledge

they had acquired through their graduate coursework, but this knowledge was

often insufficient. Rather, the computational understandings that these students



50

attributed to their statistics coursework were primarily low-level concepts, such as

using built-in R functions, adding comments to their code, and limited trouble-

shooting of error messages. Additionally, these low-level concepts were said to only

be fully understood through participants’ peer interactions, or as they were being

implemented independently within their own research.

Instead, participants voiced that having experiences performing independent

research substantially influenced their abilities to reason through and perform the

computational tasks required for various statistical analyses. Through independent

research, the participants were able to play with real-world data and applications

more complex than what they had encountered in the classroom. The programming

skills developed during a student’s independent research, in conjunction with peer

collaboration, were described largely as high-level concepts, such as conditional

statements, loop implementation, and user-defined functions. Students described

their independent research as having opened the door to experiencing the unease

that comes when one is asked to perform statistical computing tasks beyond

one’s knowledge, a feeling they had not encountered in their courses. In these

circumstances, students stated that they would ask for help from the people with

whom they had the most prior success or felt the most comfortable.

In a direct connection to the participants’ discomfort in asking for help from

an adviser, the theme of a singular consultant emerged. These singular consultants

served as an “all-knowing” individual, from whom the participants had either had

the “best” experiences with, where the individual spent the necessary time to explain

the concepts, or the consultant had always been capable of providing the participant

with a solution to their problem. These individuals served as the first line of defense

when statistical computing problems arose, where participants were both able to seek

computational help and acquire new computational skills and understandings through
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their interactions. If this consultant was unavailable to the graduate student due to

time or physical constraints, these students then turned to their peers.

Peer support was initially discussed by the participants in their interviews

as a mechanism they used when their “code doesn’t run” or when they were asked

(or needed) to do something beyond their current computational understandings.

However, this theme continued to emerge as the participants worked through com-

putational problems, often attributing their knowledge of a computational procedure

to a friend or fellow graduate student helping them “do it with their data.” These

peers offered a path for students to seek help, often voiced to be more comfortable

than asking an adviser, where participants described both the fear of asking and

“feeling dumb” or being “brushed off” because their adviser thought they should

“be able to figure out how to do it.” As opposed to the help participants received

from their singular consultant, these students also voiced negative experiences they

had encountered when seeking help from their peers, such as a peer sending them

“helpful” code that they did not understand.

Lastly, the adviser played an important role in students acquiring the

computational knowledge necessary to perform applications. Despite students’

reluctance to seek out computational assistance from their adviser, advisers did often

emphasize the importance of statistical computing skills, as well as introduce (or

recommend) students to store their data using a relational database. The participants’

ability to understand both data structures and sorting or filtering data was largely

attributed to their experiences working with these types of databases. Although these

interviews found that advisers were often considered as the last line of defense, they

were, however, viewed as an accessible way for students to better understand the

statistical computing necessary for their independent research projects, which overall

contributed to better computational understanding and skills for these students.
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Implications

The implications for statistics and environmental science education focus

on identifying and understanding the importance of the computational knowledge

necessary to apply statistical methods in environmental science research, and the

paths graduate students employ to acquire these essential skills. Environmental

science fields have long understood the importance of statistics education for their

students, so a preponderance of programs recommend or require at least one graduate-

level statistics course. Conversely, many of these graduate programs are not actively

incorporating computational courses into their degree, instead assuming that students

are acquiring these skills in their recommended statistics courses. Unfortunately,

computational skills necessary for research are not typically included in these statistics

courses (Friedman, 2001; Hardin et al., 2015; Nolan and Temple Lang, 2010). As

evidenced in the research on computational preparation of environmental science

students (Andelman et al., 2004; Green et al., 2005; Hampton et al., 2017; Hernandez

et al., 2012; Mislan et al., 2016; Teal et al., 2015), the experience of poor computational

preparation is not unique to students at this institution. A restructuring dilemma

is faced by both fields—statistics education and the environmental sciences—with

intractable differences between the curricula of statistics service courses and the

expectations of environmental science research.

Implications for Statistics Educators

Statistics educators should consider the power an applied statistics course

sequence has to provide graduate students with a year-long introduction to statistical

computing. As seen by Stephanie, who entered graduate school after completing

a year’s work as a research assistant working in R, these learning experiences can
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help to alleviate the power differential students feel when asking their advisers or

peers for assistance. However, the content covered by graduate applied statistics

sequences is expected to paint a vast picture of the field of Statistics, with topics

ranging from a difference in means to mixed-models. Consequently, many educators

feel they do not have the time to incorporate statistical computing into the classroom,

and some feel that they have limited computational expertise to teach these concepts

(Hampton et al., 2017; Nolan and Temple Lang, 2010). The inflexibility of graduate

programs further complicates this issue, as many graduate students are unable to

enroll directly in a statistical computing course due to an already full and demanding

course load. Thus, questions should be raised about how to best bridge this gap

between coursework and research expectations for statistical computing skills.

The importance of playing with statistical applications on real-world data,

as voiced by these participants, should also be considered by statistics educators

at all levels. This transition to incorporating authentic, research-like tasks, which

engage students in statistical computing, can be supported by online resources,

data-discovery tools, example datasets and code, and instructional tools, along with

collaborative course designs and the sharing of instructional materials.

Implications for Environmental Science Educators

Due to the extensive research on computational preparation of environmental

science graduate students, faculty in these fields have a growing awareness of these

issues of computational ill preparation. Yet, most of this research has focused on

a vast array of computational skills students do not possess, rather than focusing

on the computational skills necessary to implement statistics in their research.

Environmental science faculty should thus have an increased awareness of the

statistical computing preparation with which graduate students leave the statistics
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classroom. As echoed by the participants in this study, the implementation of

statistics in the context of environmental science research is not always as tidy as is

presented in the classroom. Hence, to better support these students’ acquisition of the

computational skills necessary for implementing statistics in their research, additional

preparation focusing specifically on statistical computing should be considered by

faculty in these fields.

The impact of an undergraduate education on students’ experiences as

graduate researchers should be considered by all statistics and environmental science

faculty in higher education when recognizing the importance of developing data-

intensive statistical computing skills early on in undergraduate statistics courses.

In this study, none of the participants voiced having any experience working with

R in their undergraduate coursework. Instead, these students encountered R for the

first time in their first semester of graduate school during the first graduate-level

Applied Statistics course. The participants who had computing experiences in their

undergraduate coursework or post baccalaureate research work or experience with

Access databases were able to navigate learning R with greater ease than students

with no computing experiences. This lack of computing experience was further

compounded when students began their independent research, where students with

fewer computational skills and understandings had substantially different independent

research experiences than their counterparts with more. The frustrations of simple

tasks, such as subsetting data or removing NA’s, were felt by the participants who

had completed a bachelor’s without any computational elements to their coursework,

whereas those who were exposed to even small amounts of computing in their

undergraduate coursework were able to begin computational tasks in their research

walking and not crawling.
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Limitations and Future Research

Although the methodology we used to describe the phenomenon of acquiring

the computing knowledge necessary to implement statistics for graduate students

in the environmental sciences provided important themes of knowledge acquisition,

it is not without its limitations. Eliciting descriptions of computational knowledge

acquisition yielded varied experiences with each of the main themes, but richer

data could be gathered in a future longitudinal study. Following graduate students

throughout their program of study could further identify where students are acquiring

statistical computing knowledge, as well as instructional methods that best assist

students in obtaining these understandings. To better inform environmental science

and statistics faculty, a thorough investigation of both the coursework and structure

of courses completed by these participants could be performed. This would allow

for a discussion of how to best integrate these computational concepts into current

coursework requirements, so that students leave the classroom with understandings

they can implement immediately in their own research.

The focus of this study of environmental science graduate students’ experi-

ences acquiring the statistical computing skills necessary for their research should

not be generalized to experiences acquiring general computing or programming skills.

Whereas general programming skills may overlap with statistical computing skills, the

foundation of study of each set of skills differs. Rather than focusing on computer

architecture, design, and application, statistical computing skills center around the

study of data. Select universities have, however, begun to require general computing

courses for undergraduates majoring in environmental science fields (Cortina, 2007;

Rubinstein and Chor, 2014; Wilson et al., 2008). The doors to future research will

open as these students begin to enroll in graduate programs in environmental sciences.

This future research can instead focus on understanding how students transfer their
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general programming knowledge to acquiring statistical computing knowledge, and

which skills possess the greatest overlap.

Conclusion

Statistical computing has become a foundational aspect of research in the

environmental sciences. This small-scale exploratory study brings forward the expe-

riences of graduate environmental science students in acquiring the computational

understandings necessary to successfully perform statistical applications for indepen-

dent research. Participants found the greatest success in acquiring the computational

skills required for their research through independent research, a singular consultant,

and peers. Whereas others have noted the importance of integrating computing

into the statistics curriculum (Friedman, 2001; Hardin et al., 2015; Nolan and

Temple Lang, 2010) or the lack of computational preparation for environmental

science graduate students (Andelman et al., 2004; Green et al., 2005; Hampton et al.,

2017; Hernandez et al., 2012; Mislan et al., 2016; Teal et al., 2015), we instead explored

the phenomenon of acquiring the computational knowledge necessary to implement

statistics in graduate environmental science research. The computational burdens

experienced by these participants when implementing statistics in the context of

their research and the computational understanding with which they left the statistics

classroom suggest the need for integration of formal computational training into these

programs. The present study helps to emphasize the importance of computing skills

necessary for data-intensive environmental science research.
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CONCLUSION

This body of research is intended to provoke thought and discussion sur-

rounding the computational preparation of graduate students in the environmental

sciences with the data science skills necessary to engage in the entire cycle of data

analysis. We began by outlining the evolution of the fields of statistics and the

environmental sciences, catalyzed by the rapid increase in the volume and variety of

data, and the computational tools available for analysis. These dramatic changes to

the data landscape created a crucial need to re-evaluate the preparation of scientific

researchers. Calls for this revitalization were echoed across both statistics and the

environmental sciences, yet environmental science researchers continue to report that

students are are not learning these critical skills in their curriculum (Hampton et al.,

2017; Hernandez et al., 2012; Teal et al., 2015).

While Hernandez et al. outlined the shape of this ill preparation by describing

the coursework and topics that students reported never encountering in their graduate

program, no study had focused on the experiences of graduate students acquiring the

computing skills necessary to analyze their data. This gap in knowledge inspired me to

investigate how environmental science graduate students experience the phenomenon

of acquiring the computing skills necessary to implement statistics in the context

of their research. Through in-depth interviews with five environmental science

graduate students, we uncovered three themes in students’ paths to computational

knowledge acquisition: use of peer support, seeking out a singular “consultant,”

and learning through independent research experiences. Furthermore, we described

the statistical computing skills students reported leaving the statistics classroom

with, and how their backgrounds affected their experiences acquiring these necessary

skills. By in large, these students reported learning the computing skills necessary
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to analyze their data on their own or through information that was passed down

within their social network. As suggested by statistics and environmental science

educators alike, this “do it yourself” system results in substantial hidden costs

and impedes the progress of scientific research (Nolan and Temple Lang, 2010;

Teal et al., 2015). Because the computing included in the environmental science

curriculum continues to lag behind, environmental science educators have repeatedly

recommended extracurricular workshops as a bridge for students to acquire the

foundational data science skills needed to conduct research (Hampton et al., 2017;

Hernandez et al., 2012; Teal et al., 2015; Wilson, 2006).

The computational ill preparation of environmental science graduate students

by their curriculum leaves a need for high-quality, relevant, and accessible trainings,

equipping students with the data science skills needed to conduct research in their

field. Although Data Carpentry workshops offer domain-specific training intended

to provide researchers with the foundational skills necessary for data-driven research

(Data Carpentry, 2020), no attention had been paid to the relevance of the content

of these workshops to specific populations of researchers. This need motivated

me to investigate how these discipline-specific workshops could be tailored to meet

the needs of environmental science graduate students. However, this investigation

required a more comprehensive understanding of the computing skills necessary for

environmental science graduate students throughout their data analysis cycle.

Through interviews with environmental science faculty, we learned that faculty

believed students need extensive experiences working with data and visualizing data,

both using reproducible tools. Additionally, these faculty reiterated sentiments heard

throughout the environmental science literature, that these students are not learning

the data skills necessary for their research in the coursework required for their

degree. The foundational data skills outlined by these faculty were then infused
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into Data Carpentry’s Data Analysis and Visualization in R for Ecologists lesson

(Michonneau et al., 2019). In addition, faculty also outlined data skills, such as

conditional statements and repeated operations, that were not currently included

in this Data Carpentry lesson. Software Carpentry, however, offers a lesson for

learning to program in R, which teaches many of these additional programming skills

(Wright and Zimmerman, 2016). Thus, these additional skills were integrated into the

R for Reproducible Scientific Analysis lesson, tailored to have the same environmental

science context as the other workshops. In the end, a suite of four workshops were

developed: Introduction to R, Intermediate R, Data Wrangling with dplyr and tidyr,

and Data Visualization with ggplot2.

During the 2018-2019 academic year, this suite of workshops was offered

through a partnership with the Montana State University library. Advertised across

campus, a total of 202 students, faculty, and staff attended at least one of the

workshops. Although, many of the attendees solely attended the Introduction to

R workshop, many attendees still selected to return for subsequent workshops. The

attendees’ pre-workshop surveys were consistent with what had been heard in the

literature, as over 75% of workshop attendees had completed no formal courses in

computer programming (Andelman et al., 2004; Hampton et al., 2017; Hernandez

et al., 2012; Teal et al., 2015). Additionally, we discovered that the preponderance

of these attendees had only taken a single statistics course, covering introductory

concepts. As might be expected from the prevalent use of R in environmental science

research (Lai et al., 2019; Mislan et al., 2016) and the current state of computing in

the environmental science curriculum, over half of the master’s and doctoral workshop

participants attended the workshops for assistance with their research. Furthermore,

the majority of these attendees reported using the internet and their peer networks

as the main resource for learning R, consonant with the suspicions of environmental
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science educators (Teal et al., 2015). Finally, numerous participants reported that, at

the workshop, they were hoping to learn something related to analyzing data, a desire

which reiterates the importance of data science skills throughout the data analysis

cycle.

The iterative nature of design-based implementation research demands the

researcher revisit the content of their teaching innovation, to reassess its alignment

with the desired learning outcomes. As the goal of these workshops is to equip

environmental science graduate students with the data science skills necessary

to conduct their research, this reevaluation of the workshop content requires an

understanding of the data science skills these students are actually using in their

research. Paired with the need to distill the broad classes of computing skills

outlined by statistics and environmental science educators (Hampton et al., 2017;

Nolan and Temple Lang, 2010), I embarked on research which would illuminate these

foundational skills.

Case study research allows for the investigation of “a contemporary phe-

nomenon within its real-life context,” (Yin, 2009, p. 18) when the boundaries

between the phenomenon and the context are not easily deciphered. Where the

prevalence of the phenomenon of environmental science graduate students acquiring

the computing skills necessary for their research has been outlined by environmental

science educators (Hampton et al., 2017; Hernandez et al., 2012; Strasser and

Hampton, 2012; Teal et al., 2015) and the first arm of this research (Theobold and

Hancock, 2019), none of these studies have sought to understand this phenomenon

in the context of students and their research. To illuminate the data science skills

environmental science students use throughout the data analysis cycle, we conducted

an embedded, comparative case study. By analyzing the research code generated by

two environmental science graduate students, Alicia and Ellie, we identified themes of
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data science skills each student used throughout their code and created concept maps

outlining the interwoven nature of these skills. This longitudinal exploration of the

data science skills used by each of these women allowed us to map how each student’s

skills evolved over time. Furthermore, interviews with these women regarding their

experiences acquiring the data science skills they made use of adds new perspectives

to the discussions surrounding the computational preparation of graduate students in

the environmental sciences by contrasting the computational preparation and support

Ellie experienced with that of Alicia.

Rather than generating extensive evidence of the need for training for

environmental science graduate students in the computing skills related to data, our

research has focused on describing and understanding the nature of this need, through

the voices of the graduate students. Our research has described these students’

experiences acquiring the computing skills necessary to implement statistics in their

research, explored how extracurricular workshops can be tailored to meet the needs

of this population of researchers, and began the work toward identifying key data

science skills necessary for these students as they engage in the data analysis cycle.

Moreover, this research attests to the inseparable nature of statistics and data science,

consistently focusing on the data science skills necessary for environmental science

graduate students as they endeavor to implement the statistical analyses dictated by

their research.

Directions for Future Research

Data science is here to stay—giving a name to the computing skills necessary

for researchers to engage in the entire data analysis cycle. Potentially reflecting the

growing awareness that statistical analyses are but one piece in the puzzle, the Google

searches for “data science” now greatly overshadow that of “statistics” (Figure 3.1).
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However, this dramatic shift has left statistics and environmental science educators

grappling with what data science topics belong in the curriculum, when to teach

them, and how they should be taught.

Figure 3.1: Google trends for search terms “data science” and “statistics” as of
February 23, 2020. The y-axis represents search interest relative to the highest point
on the chart between 2004 and 2020, where 100 is the peak popularity for the term.

While these disciplines have extensively outlined data science topics of

potential relevance to researchers in their respective field, there currently is no

understanding of how students learn concepts in data science, how these concepts

build on each other, and what understandings foster or inhibit new learning. Research

outlining a learning trajectory for data science concepts should be of utmost concern

to the discipline of statistics education. The beginnings of this research can be seen

as Alicia acquired the ability to filter rows of her data using a variety of tools, but

lacked the ability to synthesize how each tool could solve a broader array of data tasks.

Would Alicia’s understanding of selecting columns have fostered her understanding

of how to filter her data? Or could this understanding have been built from a fluency
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with data structures?

Statistics educators are in a position of great responsibility to communicate

how to appropriately teach data science concepts. With data science growing in

popularity, we need to remind researchers that statistics is more than data analysis.

Rather, statistics, like data science, encompasses the entire process of “extracting

value from data” (Wing, 2019). We hope to have provided environmental science

researchers with an understanding and appreciation for the computing skills necessary

for graduate students to implement statistics, while also emphasizing to statistics

educators the importance of incorporating data science concepts into every statistics

course.
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We have data on fish caught in the Blackfoot River by Fish, Wildlife, & Parks
personnel over a number of years. They used electrofishing equipment to attract the
fish to the boat, then dipped them out of the water with nets, measured length in
cm and weight in grams. They are often working in cold conditions in late autumn
or early spring, so some measurement error is expected.

These data are not from a random sample. The goal is to catch all fish within
a reach or section of the Blackfoot River every few years to assess the health of the
population. Changes over years are important to the biologists.

The data were collected by making two trips per section (Johnsrud or Scotty
Brown) each sampling year. The fish caught each trip of a given year, had their
weight, length, and species recorded.

head(blackfoot)

## trip length weight year section species
## 1 1 288 175 1989 Johnsrud RBT
## 2 1 288 190 1989 Johnsrud RBT
## 3 1 285 245 1989 Johnsrud RBT
## 4 1 322 275 1989 Johnsrud RBT
## 5 1 312 300 1989 Johnsrud RBT
## 6 1 363 380 1989 Johnsrud RBT

summary(blackfoot)

## trip length weight year
## Min. :1.0 Min. : 16 Min. : 0 Min. :1989
## 1st Qu.:1.0 1st Qu.:186 1st Qu.: 65 1st Qu.:1991
## Median :2.0 Median :250 Median : 150 Median :1996
## Mean :1.5 Mean :262 Mean : 246 Mean :1997
## 3rd Qu.:2.0 3rd Qu.:330 3rd Qu.: 330 3rd Qu.:2002
## Max. :2.0 Max. :986 Max. :4677 Max. :2006
## NA's :1796
## section species
## Length:18352 Length:18352
## Class :character Class :character
## Mode :character Mode :character
##
##
##
##
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str(blackfoot)

## Observations: 18,352
## Variables: 6
## $ trip <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ length <dbl> 288, 288, 285, 322, 312, 363, 269, 160, 213, ...
## $ weight <dbl> 175, 190, 245, 275, 300, 380, 170, 40, 80, ...
## $ year <dbl> 1989, 1989, 1989, 1989, 1989, 1989, 1989, ...
## $ section <chr> "Johnsrud", "Johnsrud", "Johnsrud", ...
## $ species <chr> "RBT", "RBT", "RBT", "RBT", "RBT", "RBT", ...

• What type of variable did R store species and section as? How would you
change species and section to categorical variables?

• If the researchers were only interested in Rainbow trout and Brown trout, how
would you remove Bull trout and WCT (whitefish) from the data set?

• Sometimes when sampling the fish, a technician fails to record one of the
variables. How would you remove all the fish with missing values? How would
this change if you instead removed the fish with only missing weight?

• The sampling methods used by Fish, Wildlife, & Parks on the Blackfoot River
has changed over the years. In the years 1989 - 1996 they used gill nets and
since 1996 they have used electrofishing. How would you create a new variable
named method to reflect these different sampling methods used over the years?

• The researchers are interested in how many fish are caught each year that weigh
over 1500 grams. How would you find these numbers to report?

• Which pairs of (weight, length) combinations seem difficult to believe? One
way to look for unusual pairs is to use what fisheries biologists call a “condition
index”: w1/3

l
×50, where w = weight and l = length of the fish. If fish are highly

unusual in this scale, it would be best to remove them, but you might need to
compare only within species.

• How would you calculate each trout’s condition number?

• How would you summarize these condition numbers for each of the two species
of trout (Rainbow and Brown)?

• How would you plot the condition numbers of each trout, making sure to
differentiate between Rainbow and Brown trout?
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• The researchers are interested in trends in fish size over the sampling period
(1989-2006). How would you create a visualization of fish lengths over the
sampling period?

• Researchers are also interested in the number of fish from each species caught
each year. How would you create a visualization of the number of fish caught
from each species over the sampling period?

Lastly, the researchers are interested in trends in average fish weight over the sampling
period. They want you to create a visualization of the average fish weight across years,
differentiated by species of trout.

• First, you need to create a data frame of the mean weight of fish caught each
year for the two species of trout. The end product should look something like
the data frame below. How would you create this data frame of mean weights?

## year species mean
## 1 1989 Brown 297
## 2 1989 Bull 429
## 3 1989 RBT 101
## 4 1989 WCT 120
## 5 1990 Brown 380
## 6 1990 Bull 422

• Next, to plot these mean weights for each year you need to transform the data
from the current long format to wide format. This process is done by spreading
the year variable across 10 different columns, one for each year (1989, 1990,
etc.). The end product should look something like the data frame below. How
would you transform these data from long format to wide format?

## species 1989 1990 1991 1993 1996 1998 2000 2002 2004 2006
## 1 Brown 297 380 435 391 571 543 408 530 420 326
## 2 RBT 101 142 187 209 245 156 179 321 216 173

• There are additional data about the sections of the Blackfoot river for the
sampling days each year. Researchers wish to merge these data (shown below)
with the data on the fish caught during the sampling period. The year, trip,
and section variables are keys that connect the two data sets. How would you
merge these two data sets together?
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head(water)

## trip year section temp water_level
## 1 1 1989 Scotty Brown 48.9 3.74
## 2 2 1989 Johnsrud 64.2 3.69
## 3 1 1990 Scotty Brown 53.9 3.37
## 4 2 1990 Johnsrud 65.3 3.69
## 5 1 1991 Scotty Brown 40.1 3.67
## 6 2 1991 Johnsrud 52.0 3.53
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