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Abstract

In this dissertation, I will discuss three research projects: two in the field of environmental
statistics and one in the field of statistics education. In Chapter 2, we propose a novel
sampling design for animal movement studies which combines samples at regular and
random time intervals. We compare our novel sampling design, called lattice and random
intermediate point (LARI), to regular sampling designs in two data examples and one
simulation example. In these cases, LARI sampling leads to more accurate and precise
parameter estimation compared to regular sampling. In Chapter 3, we describe a flexible
model for golden eagles (Aquila chrysaetos) and other partially migrating species. We
compare our proposed approach using varying coe�cients to latent-state models, and
we show that our approach better describes dispersal, migration, and resident behaviors.
The flexibility of our approach also allows us to model behavior of less stereotypical
individuals. In Chapter 4, we describe the development, deployment, and analyses of
the Survey of Probability Attitudes (SPA), which we adapted from the existing Survey
of Attitudes Toward Statistics (SATS-36). We present validity evidence for the SPA
and used mixed e�ects models to model the gain in attitude component scores from the
beginning to the end of a probability course. We illustrate the e�ect of regression to the
mean in an attitude study and discuss the implications for future work.
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Chapter 1 |

Introduction

This dissertation makes advances to two scientific fields: environmental statistics and
statistics education. These topics are usually not studied together, and they will not be
discussed within the same chapter outside of the introduction and conclusion. However,
both environmental statistics and statistics education present a range of applied problems
that benefit from collaborative e�orts between statisticians and non-statisticians. This
work contributes to the field of environmental statistics by building and comparing
sampling and modeling approaches for animal movement. This work contributes to the
field of statistics education by developing a tool for assessing students’ attitudes toward
probability. Chapters 2 and 3 contain two projects related to animal movement modeling,
and Chapter 4 contains one statistics education project.

1.1 Overview of Research

In Chapter 2, we propose an irregular sampling design which could lead to greater
e�ciency and information gain in animal movement studies. Our novel sampling design,
called lattice and random intermediate point (LARI), combines samples at regular and
random time intervals. We compare the LARI sampling design to regular sampling
designs in an example with common black carpenter ant location data, an example with
guppy location data, and a simulation study of movement with a point of attraction.
We modify a general stochastic di�erential equation model to allow for irregular time
intervals and use this framework to compare sampling designs. When parameters are
estimated reasonably well, regular sampling results in greater precision and accuracy
in prediction of missing data. However, in each of the data and simulation examples
explored in this paper, LARI sampling results in more accurate and precise parameter
estimation, and thus better prediction of missing data as well. This result suggests that
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researchers might gain greater insight into underlying animal movement processes by
choosing LARI sampling over regular sampling.

In Chapter 3, we propose a flexible model for a partially migrating species, which we
demonstrate using yearly paths for golden eagles (Aquila chrysaetos). Our model relies on
a smoothly time-varying potential surface defined by a number of attractors. We compare
our proposed approach using varying coe�cients to a latent-state model, which we define
di�erently for migrating, dispersing, and local individuals. While latent-state models
are more common in the existing animal movement literature, varying coe�cient models
have various benefits including the ability to fit a wide range of movement strategies
without the need for major model adjustments. We compare simulations from the models
for three individuals to illustrate the ability of our model to better describe movement
behavior for specific movement strategies. We also demonstrate the flexibility of our
model by fitting several individuals whose movement behavior is less stereotypical.

Elementary probability courses are a common component of the statistics and data
science curriculum. In Chapter 4, we adapt an existing survey called the Survey of
Attitudes Toward Statistics (SATS-36) to assess students’ attitudes toward probability.
While the SATS-36 and other tools have become popular for assessing students’ attitudes
toward statistics, very few studies have assessed attitudes of students in probability
courses toward the subject of probability. We distributed our Survey of Probability
Attitudes (SPA) virtually among students at the beginning and end of 13 probability
and 7 non-probability courses at Penn State University Park and Behrend campuses
in the spring semester of 2021. The study includes 427 probability students and 159
students who were not enrolled in a probability course, all of whom completed both pre
and post versions of the SPA. We gathered validity evidence which supports the SPA
for its intended use case. We used mixed e�ects models to examine the change in five
attitude components for students who were and were not enrolled in a probability course,
and we compare this analysis approach to less nuanced approaches. The results suggest
a large e�ect of regression to the mean and a lack of evidence of di�erences between
probability attitudes in students who were and were not enrolled in a probability course.
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Chapter 2 |

A Lattice and Random Interme-

diate Point Sampling Design for

Animal Movement

This chapter was published in Environmetrics on January 3, 2020 (Eisenhauer and Hanks,
2020).

2.1 Introduction

Animal movement studies advance scientific knowledge of animal behavior in space
and time. Insight from animal movement models helps researchers understand how
animals interact with human and environmental factors. For example, researchers have
conducted analyses of wildlife telemetry data to predict the a�ect of climate change on
species range (Schloss et al., 2012) and to assess the impact of roadways on gene flow in
terrestrial vertebrate populations (Shepard et al., 2008). Furthermore, understanding
the relationships between animals and their surroundings can benefit conservation e�orts
(Festa-Bianchet and Apollonio, 2003; Chester, 2012; Berger, 2004) and provide insight
into disease dynamics (Wijeyakulasuriya et al., 2019; Conner and Miller, 2004).

Researchers often record wildlife telemetry data at regular intervals (Weimerskirch
et al., 2002; Forester et al., 2007; Kareiva and Shigesada, 1983; Parlin et al., 2018;
Roeleke et al., 2018; McDuie et al., 2019) and occasionally at higher frequencies at
times when finer movement behavior is expected (Richardson et al., 2018). There is
evidence that increasing the frequency of regular samples greatly improves estimates
of movement distance and territory size (Mills et al., 2006), but resource limitations
often lead to di�culties in consistently obtaining samples at high frequencies without
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reducing the overall length of the study. In this work, we show that the use of sampling
designs other than regular sampling can lead to better inference on parameters in animal
movement models without requiring additional samples or reducing study duration.
While Millspaugh and Marzlu� (2001) mention the application of a range of sampling
designs with stochastic components for wildlife telemetry studies, these designs have not
been thoroughly compared in context and are rarely implemented.

There is a widely accepted view in geostatistics that samples at regular intervals
in space lead to better interpolation of data, while clustered samples lead to better
estimation of spatial covariance parameters (Zimmerman, 2006). To compromise between
parameter estimation and prediction at unobserved locations, Zimmerman (2006) suggests
inclusion of samples with regular spacing as well as groups or pairs of points that are
close together. One example of this is a lattice plus close pairs approach in which at least
half of the locations form a regular lattice in 2D space, while the remaining points are
randomly assigned within a disc centered at randomly selected lattice locations (Diggle
and Lophaven, 2006). Diggle and Lophaven (2006) found that a lattice plus close pairs
design performed better than a lattice alone or a lattice and infill approach in regard to
spatial prediction.

Theoretical support for sampling at di�erent scales is lacking in the geostatistical
literature. On the contrary, systematic or regular sampling has been shown to be optimal
within some subclasses of two-dimensional sampling designs in regard to minimizing
variance of the sample mean (Bellhouse, 1977). However, few problems remain in animal
movement modeling in which the only goal is precise estimation of a population mean.
Instead, we look to the experimental literature which evidences the superiority of irregular
sampling for detection of spatial patterns (Fortin et al., 1990; Oliver and Webster, 1986).

In this paper, we propose a sampling scheme for animal telemetry data inspired by
the lattice plus close pairs geostatistical design. Our proposed approach, which we call a
lattice and random intermediate point (LARI) design, requires data collection at regular
time intervals coupled with one randomly selected time point in between each adjacent
pair of regular samples. We conjecture that the regular time intervals will result in
suitable temporal coverage while the random intermediate points will capture behavior
at short time lags. We suspect that capturing behavior at di�erent time scales will
correspond with improved estimation of movement parameters.

This LARI sampling design was motivated by a problem that arose in collection
of wood nesting carpenter ant, Camponotus pennsylvanicus, movement data at the
Pennsylvania State University. Members of the Hughes laboratory captured video footage
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of ants in a wooden nest over a 4 hour time frame and recorded coordinate locations of
the ants at 1 second intervals (Modlmeier et al., 2019). The data collection procedure
was manually expensive, requiring the recruitment, training, and labor of seventeen
undergraduate students (Modlmeier et al., 2019). As a new experiment was planned
involving a large number of nests over a longer time frame, it became apparent that
the data collection strategy previously employed would not be feasible at the necessary
scale. Thus we set out to develop a sampling design that would result in similar model
inference while reducing the manual cost. Of course, this motivation is not limited to the
ant example. Restrictions on data collection frequency and magnitude are commonplace
in animal movement studies, especially those that employ tracking devices (Tomkiewicz
et al., 2010).

We describe the LARI sampling scheme in detail in Section 2.2. In Section 3.3 we
outline a stochastic di�erential equation (SDE) model for movement similar to that of
Russell et al. (2018). In Section 2.4, we compare parameter estimation and prediction
accuracy between sampling designs via a simulated example. In Section 2.5, we compare
parameter estimates between sampling designs using subsamples of guppy movement
data. In Section 2.6, we present a novel modeling framework which we apply to the high
resolution carpenter ant movement data and implement to compare sampling designs.

2.2 A Lattice and Random Intermediate Points Sampling

Scheme

In a given animal movement study, assume data collection is set to begin at time 0 and
end at time T . Assume resources are limited and only n samples will be collected in
this time frame for a single individual. Sampling the animal’s position at regular time
intervals of length h = T

n≠1 results in the data matrix

DRegular ©
S

U 0 h 2h . . . T ≠ h T

r0 rh r2h . . . rT ≠h rT

T

V
Õ

(2.1)

where rt ©
Ë
xt yt

ÈÕ
is the x- and y-coordinate vector of the animal’s position at time

t œ {0, h, 2h, . . . , T ≠ h, T}. While regular sampling minimizes the maximum time
between observations, movement behavior occurring at finer time scales than those
sampled is not captured in the observed data.

We propose a lattice and random intermediate points (LARI) sampling scheme, which
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produces the data matrix

DLARI ©
S

U
0 tú

0 2h tú
1 4h . . . T ≠ 2h tú

n
2

T

r0 rtú
0

r2h rtú
1

r4h . . . rT ≠2h rtú
n
2

rT

T

V

Õ

(2.2)

where

tú
i ≥ Uniform (2hi, 2h(i + 1)) , i œ

;
0, 1, 2, . . . ,

n

2

<
.

In practice, it may be more realistic to choose tú
i from a Discrete Uniform distribution

depending on the sampling resolution.
Both data matrices DRegular and DLARI contain n observations for a single individual.

To collect data for multiple individuals over multiple time frames, repeat this procedure
as necessary.

2.3 Stochastic Di�erential Equation Model for Animal

Movement

We follow Russell et al. (2018) and Hanks et al. (2017) and consider a flexible stochastic
di�erential equation (SDE) model for an animal’s position rt at time t

drt = vtdt (2.3)

dvt = ≠—(vt ≠ µ(rt))dt + c(rt)Idwt (2.4)

where vt is the velocity of the animal at time t, — is the coe�cient of friction (Nelson,
1967) which controls autocorrelation in movement, µ(rt) is the mean drift in the direction
of movement, c(rt) is a scalar that controls the variance in the stochastic term, I is a 2◊2
identity matrix, and wt is independent Brownian motion in R2. This SDE framework is
attractive because of the wide range of movement behavior which can be modeled. For
example, the right hand side of (2.4) can be viewed as the sum of forces acting on the
animal at time t and at position rt. For instance, there could be a force toward the center
of the animal’s home range, toward the nearest food source, toward breeding grounds,
toward higher or lower elevation, away from the nearest predator, or away from cooler
temperatures. Depending on the time frame and study species, these forces could vary
over time or space.
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Brillinger et al. (2012) used a similar SDE framework and adopted potential functions
from particle and planetary movement models to model elk movement by setting µ(rt) =
≠Op(rt), the negative gradient of a potential surface p(rt). The potential surface is a
continuous surface or grid with the highest values on the surface at repulsive locations,
lowest values at attractive locations, and relatively central values in areas where the force
is neutral. Under this model, the average animal in a population moves around the space
avoiding those points of repulsion or areas with high potential and moving toward points
of attraction or areas with low potential. A simple example of a potential surface is the
quadratic function k(x2 + y2) which will be used in a simulation example in Section 2.4.
This quadratic potential surface has a single point of attraction at the origin, as shown
in Figure 2.1 with the parameter k = 1. The white arrows displayed in Figure 2.1 point
down the gradient of the potential surface, in the direction of mean drift. One might
utilize this potential surface in a model for movement of a central place forager, with
movement centered around

Ë
0 0

ÈÕ
and k controlling the strength of attraction to this

central location. Potential surfaces can be much more complex than this example, as
we will see in Section 2.6. For further detail on the use of potential surfaces to model
animal movement, see Preisler et al. (2013).

x
y

p
o
te
n
ti
a
l

(0, 0)

Figure 2.1. Quadratic potential surface with a single attraction point at the origin.

Russell et al. (2017, 2018) expanded the SDE framework of Brillinger et al. (2012)
to include motility surfaces, which describe overall speed independent of direction as a
function of location. The motility surface is a surface or grid of values assigned on the
space inhabited by the animal. High motility values are indicative of fast movement or
high speed in the corresponding location. Low motility is indicative of slow movement.

The SDE model we define in this section is similar to that of Russell et al. (2018) with
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zero measurement error and assuming the motility surface is smooth. As in Russell et al.
(2018), we define the mean drift and magnitude of stochasticity with spatially-varying
motility and potential surfaces. The potential surface p(rt) captures spatially-varying
directional bias (drift) through ≠Op(rt), while the motility surface m(rt) models spatial
variation in speed without directional bias by compressing and dilating time. The mean
drift µ(rt) and magnitude of stochasticity c(rt) are defined

µ(rt) © m(rt)[≠Op(rt)] (2.5)

c(rt) © ‡m(rt) (2.6)

where ‡ controls the magnitude of the random forces acting on the animal. We chose to
ignore measurement error because the measurement error in our ant data is negligible.
As sophisticated technology allows for greater accuracy in animal tracking, we expect
the need for measurement error specification for animal location to diminish. When
movement error is not negligible, state-space models can be used with the SDE model
(2.3)–(2.6) being a model for the true, but latent, animal position over time.

2.3.1 Numerical Approximations

A closed-form solution to (2.3)–(2.6) only exists for very simple choices of m(·) and p(·).
There is no closed-form solution whenever spatial constraints are present (e.g., Hanks
et al. (2017); Russell et al. (2018)). In this section, we present a general numerical
approximation to the SDE which is applicable in a broad range of settings including
those where there is no closed-form solution.

Hanks et al. (2017) and Russell et al. (2018, 2017) describe numerical approximations
using samples at regular time intervals and do not consider irregular time lags between
samples. Our discrete-time approximation approach is similar to that of Russell et al.
(2018), but we extend their framework to the case where the intervals between observation
times can vary. Developing numerical methods for irregular time intervals will make
inference more straightforward when data are missing or irregularly sampled. To simplify
notation for irregular samples, we now change the subscript in equations from continuous
time t to ordered observation number · . Henceforth, r· is the vector of elements in
column · , row 2 of a data matrix of the form (2.1) or (2.2).

Euler-Maruyama approximations are derived from Taylor series expansions (Kloeden
and Platen, 2013) and are commonly used to numerically approximate SDE models
because they are easy to calculate. The Euler-Maruyama method approximates (2.3)–(2.4)
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by

r·+1 = r· + v· h· (2.7)

v·+1 = v· ≠ —(v· ≠ µ(r· ))h· + c(r· )Idw· (2.8)

where h· is the change in time from observation · to observation · +1. Here our approach
di�ers from the SDE model of Russell et al. (2018) where h· was constant with respect
to · . Substituting (2.7) into (2.8) following Hanks et al. (2017) results in

r·+2 ≠ r·+1
h·+1

≠ r·+1 ≠ r·

h·
= —h·

3
µ(r· ) ≠ r·+1 ≠ r·

h·

4
+ c(r· )h1/2

· ‘· (2.9)

where ‘·
iid≥ N(0, I) and 0 is the zero vector in R2. This can be re-expressed as

r·+2 = r·+1 + h·+1
h·

(r·+1 ≠ r· ) + —h· h·+1

3
µ(r· ) ≠ r·+1 ≠ r·

h·

4
+ c(r· )h1/2

· h·+1‘· ,

(2.10)

an equation in which the ant’s position is a function of the two previous observed
positions.

In Supplemental Material S2.1, we provide examples of potential and motility surfaces,
which we simulate from using (2.10). These examples illustrate how changing the motility
and potential surfaces e�ects the movement behavior described by the model.

2.4 Simulation Example

2.4.1 Simulation from an SDE Model with Quadratic Potential Func-

tion

We conducted a simulation example to compare the sampling schemes in (2.1) and (2.2).
We simulated data at a fine temporal scale from an SDE model with a quadratic potential
function and constant motility surface. The quadratic function biases movement toward
a single attraction point at

Ë
0 0

ÈÕ
. This approximates real movement behavior exhibited

by central place foragers such as white-tailed deer (Tierson et al., 1985). In this example,

m(r· ) © 1

p(r· ) © krÕ
· r·
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where k œ R controls the strength of attraction to the central location
Ë
0 0

ÈÕ
. Conse-

quently,

µ(r· ) = ≠Op(r· ) = ≠2kr·

c(r· ) = ‡.

The set of SDEs (2.3) and (2.4) become

drt = vtdt (2.11)

dvt = ≠—[vt ≠ (≠2kr· )]dt + ‡Idwt (2.12)

and the numerical approximation (2.9) becomes

r·+2 ≠ r·+1
h·+1

≠ r·+1 ≠ r·

h·
= —h·

3
≠2kr· ≠ r·+1 ≠ r·

h·

4
+ h

1/2
· ‡‘· . (2.13)

Since the simulated data is generated at regular time steps, we set h· = h for all
observations · and solve for r·+2 to get

r·+2 = r·+1(2 ≠ —h) + r· (—h ≠ 1 ≠ 2—kh2) + h
3/2‡‘· (2.14)

which is an autoregressive model of order 2.
We simulated movement data for one individual over n = 500 time points with time

step h = 1 and model parameters — = 0.4, – © k— = 0.08, and ‡ = 0.5. Since simulation
of observation · requires observations · ≠1 and · ≠2 as input, we fixed the positions at the
first two time points near the point of attraction

Ë
0 0

ÈÕ
. Specifically, r1 = r2 =

Ë
1 1

ÈÕ
.

The next 498 time points were simulated recursively from (2.14). Figure 2.2 depicts one
path simulated with this procedure. We will simulate 150 paths and consider each path
separately. We will compare regular and LARI sampling schemes by subsampling each
simulated path using (2.1)–(2.2) with h = 5 and comparing subsamples.

We refer to the full simulation containing all x- and y-coordinates by {r}. The general
notation for the positions included in the LARI or regular subsample is {r}obs and the
positions removed by the subsampling procedure are {r}unobs. Thus, the subsampling
procedure is represented by

{r}obs = {r} \ {r}unobs.
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Figure 2.2. (A) Simulated data for an individual with grey lines connecting those data points
that are adjacent in time. The single attraction point is displayed as a red "+". (B) The
quadratic potential surface with simulated positions for a single individual depicted in white.

2.4.2 Parameter Identifiability

In Kloeden and Platen (2013), the authors derive vector and matrix ordinary di�erential
equations for the vector mean and second moment of a general vector linear SDE. In
this subsection, we will interpret this derivation in the context of (2.11) and (2.12). For
simplicity, we describe this result in the x direction only, where rx(t) is the x component
of the coordinate vector rt, vx(t) is the x component of the coordinate vector vt, and
wx(t) is independent Brownian motion in R1.

We are interested in determining whether the parameters we intend to estimate (—,
‡, and –) are identifiable as we approach the stationary distribution (i.e., as t æ Œ).
By combining (2.11) and (2.12), we obtain the vector SDE

d

S

Urx(t)
vx(t)

T

V =
S

U 0 1
≠2– ≠—

T

V

S

Urx

vx

T

V

t

dt +
S

U0
‡

T

V dwx(t), (2.15)

which allows us to derive the vector mean

n(t) = E
Q

a

S

Urx(t)
vx(t)

T

V

R

b =
S

U 0 1
≠2– ≠—

T

V
≠1

dn(t)
dt

. (2.16)

As we approach the stationary distribution and dn(t)
dt = 0, the mean vector

n(t) = 0.
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Therefore, the second moment of the stationary distribution

S(t) = E
Q

a

S

Urx(t)
vx(t)

T

V

S

Urx(t)
vx(t)

T

V
ÕR

b = Var
Q

a

S

Urx(t)
vx(t)

T

V

R

b (2.17)

is found by solving the system of equations

dS(t)
dt

=
S

U 0 1
≠2– ≠—

T

V S(t) + S(t)
S

U 0 1
≠2– ≠—

T

V +
S

U0
‡

T

V

S

U0
‡

T

V
Õ

. (2.18)

The stationarity of the distribution implies dS(t)
dt = 0, which along with (2.18) yeilds

S(t) =
S

U
‡2

2— 0
0 ‡2

4—–

T

V . (2.19)

Thus, we have 2 equations and 3 unknowns, rendering ‡, —, and – unidentifiable.
This result highlights the value of having samples at short time lags. When telemetry

data are sampled regularly at large time lags, the transient distribution will be well-
approximated by the stationary distribution, and parameters in the model may become
unidentifiable, or only weakly identifiable. Thus, we expect the regular subsample
will lead to unidentifiability in parameter estimation. In Section 2.4.3, we outline the
model-fitting procedure applied to the LARI and regular subsamples.

2.4.3 Estimation of Model Parameters and Missing Values

Initially, we attempted posterior approximation of the model parameters ignoring the
missing data. However, this approach led to poor parameter inference (see Supporting
Material S2.2), which could be due to the large reduction in movement variability
that occurs when data are subsampled. These results led to our decision to estimate
the positions at unobserved time points, thus reintroducing an appropriate amount of
variability into the movement paths.

To estimate —, –, ‡, and {r}unobs, we took a Bayesian approach and constructed
an MCMC algorithm to sample from the joint posterior fi(–, —, ‡, {r}unobs|{r}obs). For
details on the posterior distribution and MCMC sampler, see Supporting Material S2.3.

12



2.4.4 Simulation Example Results

We simulated 150 paths, subsampled the paths using both a LARI and regular design,
and individually fit each subsample using the estimation approach described in Section
2.4.3. We assessed convergence of the MCMC algorithm in each case using the Geweke
diagnostic (Geweke, 1991). The Geweke convergence diagnostic quantifies the dissimilarity
of the means of the first 10% and last 50% of the Markov chain iterations. In the Geweke
diagnostic, the test statistic for variable ÷ is a z-score

z = ÷̄(first 10%) ≠ ÷̄(last 50%)

‰SE

where ÷̄(first 10%) is the sample mean of the first 10% of the Markov chain, ÷̄(last 50%) is
the sample mean of the last 50% of the chain, and ‰SE is the asymptotic standard error
of the di�erence, computed using spectral density estimates for the two sections of the
chain.

For each subsample and each simulated path, the Geweke diagnostic was computed
for the three parameters –, —, and ‡. We labelled a subsample "converged" if the absolute
values of the Geweke diagnostics for all three chains were less than 3. By this definition,
of the 300 subsamples, 76.3% converged. Specifically, 84% of the LARI subsamples and
68.7% of the regular subsamples converged. We removed all simulations where at least
one subsample (regular or LARI) did not converge, leaving 87 of the 150 simulations for
analysis.

0.0 0.5 1.0 1.5

α

1 2 3

β

0.5 1.0 1.5 2.0

σ

LARI Regular True Value

Figure 2.3. 95% equal-tailed credible intervals for each subsample.
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95% equal-tailed credible intervals for the model parameters are shown for the 174
remaining subsamples in Figure 2.3. As depicted in Figure 2.3, many of the regular
subsamples result in poor estimation of the model parameters. Only 46.6% of the 87
regular subsamples resulted in credible intervals containing all three true parameter
values, compared to 78.4% of the 87 LARI subsamples. This result is consistent with the
theoretical justification in Section 2.4.2, which suggests unidentifiability when we use a
regular subsample at large enough time steps.

Although we have already obtained evidence in favor of LARI sampling for parameter
estimation, we are also interested in the "best case" scenario where both subsamples
capture the true parameter values in their 95% credible intervals. There are 34 remaining
simulations in this "best case" subset. The model parameter 95% credible intervals for
the "best case" subsamples are shown in Figure 2.4.

0.1 0.2 0.3

α

0.4 0.6 0.8 1.0

β

0.50 0.75 1.00

σ

LARI Regular True Value

Figure 2.4. 95% equal-tailed credible intervals for the "best case" subset.

We are now limited to 2 subsets; the subsamples which led to convergence by our
definition and the "best case" subsamples. For each of these subsets, we will compare
parameter estimation and prediction of missing values between the LARI and regular
sampling designs with 8 metrics. We define these metrics in the following passages and
display our results in Figures 2.5 and 2.6.

To assess parameter estimation accuracy, we found the posterior mean squared error
(PMSE) for each of the model parameters, –, —, and ‡2. The PMSE of variable ÷ is the
mean squared di�erence between the MCMC draws ÷(i) and the true parameter value
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÷true

PMSE(÷) =
⁄

(÷ ≠ ÷true)2fi(÷|{r}obs)d÷

¥ 1
100, 000

100,000ÿ

i=1
(÷(i) ≠ ÷true)2.

We constructed 95% equal-tailed credible intervals for –, —, and ‡2 and recorded credible
interval width to assess parameter estimation precision.

To assess prediction accuracy for missing time points, mean squared predictive errors
(MSPE) were found for each subsample, where

MSPE({r}unobs) =
ÿ

kœ{· : r· œ{r}unobs}

Ë
r̄(i)

k ≠ rk

ÈÕ Ë
r̄(i)

k ≠ rk

È
,

rk is the true location of observation k, r(i)
k is the ith sample from the posterior distribution

of rk, and r̄(i)
k =

q100,000
i=1 r(i)

k

100,000 . We found the mean width of 95% equal-tailed credible
intervals for missing values {r}unobs to assess precision of the predictions.

Figure 2.5 depicts the statistics for all converged simulations (that is, all with Geweke
Z-scores for –, —, and ‡2 less then 3), and Figure 2.6 looks at a further subset, the "best
case" simulations (those which included the true values of –, —, and ‡2 in their equal-tailed
95% credible intervals). The results displayed in Figure 2.5 indicate the LARI subsamples
outperform the regular subsamples with respect to 95% credible interval width and
PMSE for –, —, and ‡2. The LARI subsamples also outperform the regular subsamples
on average when we compare them based on the metrics for predicting missing data.
However, in the "best case" subset where LARI and regular subsamples both estimate
the parameters well, the regular subsamples more accurately predict missing data. The
missing data MSPEs from all but one of the LARI subsamples are lower than all MSPEs
from the regular subsamples.

Thus, for the simulations that converged, the LARI sampling design led to better
estimation of the model parameters –, —, and ‡ as well as better prediction of missing
locations; but when both LARI and regular subsamples estimated the parameters well,
the regular sampling design led to greater accuracy and precision in prediction of missing
data points. This result is consistent with the hypothesis that the variability in time
intervals between observations in the LARI design leads to a better understanding of
movement behavior through greater accuracy in model parameter estimation.

15



PMSE(σ) σ 95% Credible Interval Width

PMSE(β) β 95% Credible Interval Width Missing Data Mean 95% CI Width

PMSE(α) α 95% Credible Interval Width Missing Data MSPE

LARI

Regular

0.0 0.5 1.0 1.5 0.0 0.5 1.0

0 1 2 3 4 5 0 1 2 3 4 5 6 7

0.00 0.25 0.50 0.75 0.0 0.5 1.0 1.5 2 4 6
0

10
20
30
40

0
5

10
15
20
25

0

30

60

90

0

20

40

60

0

10

20

30

40

0

50

100

0

50

100

0
25
50
75

100

Figure 2.5. Stacked histograms using all converged simulations (the absolute values of Geweke
Z-scores for –, —, and ‡2 were all less then 3). The dotted line delineates the mean of the
LARI subsamples, and the solid line portrays the mean of the regular subsamples.
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Figure 2.6. Stacked histograms from the "best case" simulations. The dotted line is positioned
at the mean of the LARI subsamples and the solid line at the mean of the regular subsamples.
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Figure 2.7. The first 50 time points with the true simulated values connected by a black line
and 95% credible intervals depicted as orange bands. Grey dashed lines indicate the time points
that were observed in the sample. The panels on the left (A and C) depict the results for the
regular sample and the panels on the right (B and D) depict the results for the LARI sample.

To better understand the missing data prediction results, we explore one of the "best
case" simulations. In Figure 2.7, we plot the true x- and y-coordinates for the first 50
time points with corresponding 95% credible intervals. As shown in Figure 2.7, sampling
at regular intervals often results in smaller credible intervals for unobserved values. We
suspect this is because the LARI design includes larger time gaps than regular sampling,
which disproportionately a�ects the mean of credible interval widths.

2.5 Guppy Data Example

In our first data example, we will use movement data from a captive population of
guppies (Poecilia reticulata). The group of guppies were released in the bottom right
corner of a flat-bottomed square tank and swam toward a sheltered area in the opposite
corner of the tank. The data consists of 360 observations recorded at 0.1 second intervals
for each of 10 guppies. For more information regarding data collection, see Bode et al.
(2012). After fitting a SDE to the full data, we will compare the sampling schemes in
(2.1) and (2.2) by subsampling the data and comparing the resulting model fits.
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2.5.1 SDE Model

As in the simulation example, we can represent the movement of individual guppies with
a set of SDEs. In this example, we define motility and potential surfaces

m(r· ) © 1

p(r· ) © k|r· ≠ a|

where k œ R controls the strength of the drift toward a known point of attraction
a =

Ë
281 434

ÈÕ
in the sheltered corner of the tank. The potential surface is defined in

this way to elicit a constant force toward the point of attraction. This specification of
potential and motility surfaces results in mean drift and magnitude of stochasticity

µ(r· ) = ≠Op(r· ) = ≠k ◊ sign(r· ≠ a)

c(r· ) = ‡.

The set of SDEs (2.3) and (2.4) become

drt = vtdt (2.20)

dvt = ≠—[vt ≠ (≠k ◊ sign(r· ≠ a))]dt + ‡Idwt (2.21)

and the numerical approximation (2.9) becomes

r·+2 ≠ r·+1
h·+1

≠ r·+1 ≠ r·

h·
= —h·

3
≠k ◊ sign(r· ≠ a) ≠ r·+1 ≠ r·

h·

4
+ h

1/2
· ‡‘· . (2.22)

Linear regression was implemented to estimate k, —, and ‡2.

2.5.2 Results

We implemented a data subsampling procedure which resulted in 3 regular subsamples
and 300 LARI subsamples. The regular subsamples were recorded at 0.3 second intervals
beginning at each of the first 3 time points. For each of the regular subsamples, 100
corresponding LARI subsamples were collected which consisted of every other sample
from the regular data (i.e., regular samples at 0.6 second intervals) coupled with a random
time point selected from the observations in each subinterval. This resulted in 3 groups
of subsamples, each consisting of one regular subsample and 100 corresponding LARI
subsamples.
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Figure 2.8. The estimated potential surface using the full data. Observations are shown in
white.
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Figure 2.9. The estimated values of the parameters k, — and ‡2 from a regular subsample
and 100 corresponding LARI subsamples (orange empirical density).

The potential surface estimated with the full data is shown in Figure 2.8 with
observations depicted in white. The potential surfaces estimated with subsampled data
are similar in appearance, so we analyze them by comparing estimates of k, —, and ‡2.
The 3 groups of subsamples resulted in identical conclusions, so we chose a random group
to plot in Figure 2.9. In Figure 2.9, we display the parameter estimation results for k, —,
and ‡2. While all subsamples led to underestimation of the model parameters compared
to the full data, the LARI subsamples are closer to the full data. In particular, when
estimating ‡2, the LARI subsamples always outperform the regular subsample.
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2.6 Carpenter Ant Example

Figure 2.10. 14, 401 positions over 4 hours for each of the 73 ants, color coded by individual.

We now turn to the dataset introduced in Section 2.1, which consists of the positions
of 78 ants at 1 second intervals over a 4 hour time frame (14,401 total observations per
ant). Researchers observed the ants in a 200 ◊ 65 ◊ 6 mm wooden nest, shown in Figure
2.10 along with the positions of all ants at all time points. The ants could enter or exit
the nest at any time to utilize a separate foraging area. The data collection procedure
is described in further detail by Modlmeier et al. (2019). In Figure 2.11, we illustrate
movement observed for one individual who stayed inside the nest throughout the 4 hour
time frame.

��
�

��
�
�
�

�������
�

��

�� �����
�
�
��

�
��

����
���

���
�
��������������
��
��
��
�
���
��
�
���

���
�����

�
� �
��
�����
�
����
��

�
�����
��
���
����
��

�
�����
������ ���
���
�
� ��������
�
���

�
�
�

�
�
��
�
�
���
�
�

�

�

�
����

�

�
��

��

����

�

��

�

�

�
�
����

�
��
��

�
� ��

� ��
�� ������
�������
�

��
�

�

��
��
�
� �

� ���
�
�����
�
�� ��
��
�
�
����
�
��

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
���

��

�

�

��� �������������������
�

�

�

��

�

�

����

� � � �
� � � �

� �

�

�

�

�

� �

��

�

�

�
�

�
��

�

�

�

�

����

�

���
��

� �
�����
���
��
�

��������
��

�
�
�
���
�
�

���

�
��

����
�

�

��
�

�

�
������ � ���������

���

�
�

�

�

� �
�

�

�

�

�

��
�

��
�

�
�
���
��
��������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������

�

���
�
��

����

�
�

�

�

�

�
��
����

�
������������������������������������

��

�

�

�

� �
�����

��
���
��� ���

�
���

�
�

��
�

�
���

��
���
�
� ��

�
����������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������
����
�

� �
�
��

�

�����������
�����
���
�
���
�� ���������������

�
��

�����
��
�
�

�
��
�

� �� �����������

��
�

��
����
�

�

�

�

�
�
�
�
�� �

����
������

�

�
�

�

�

�

�
�

�

�

�
�

�

�
��

������ ��
�
����

� �����
���� �

�
��

�

�
����

��

�

���
�

��

�
���������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������
�

�����
�
���

�
������������������������

�
�����������������������������������������������������������������������������������������������������������������������������������������
�

�
���

����

�
�

�����
�

�

�
�������

��

�
�

�
�

�

�

�

�

�

�
�
� �
�
�
�

��
�� �

���
���
�����������������

� �
�

�
�

�
�
��
����� ������

��� �
�

�

�

�

�

�

�

�

��

�

�

�

������
��
����
�� �

�
�
�
��

���
���
����

��� �
�����

�

�
�
��
�

���
������

�

�
�
�

�

�

�

�

�
���

����

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�
�

�

�
�
����

�

�

�

�

�

� �

� � � � �

�

�

�

�

�

�

�

� � �
�

�
�
�

�

�

��
�
��
�
�

� �

�

�
�

��
�
�

��

�

��
�

�

�
�����

�
��
���

��
�

�
��
�������������������������
�
�

�
����
��������������������
��������������������
�������
���������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������
����
����
��
�����������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�
��������������������
������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������
���

�
�

�
����

�
�

�

�
�
��

��

�
�

�
�
�
���

�

�

�
�

�
��������
�
�

�
��
�
�
�

�

�

��
�����
�������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������ �����
�����
���
�

�
�

�
�
���

��
�������������������

�

�

��
�

�
����

�
�

�

��
�
�
�

�

�

�

�
���

��

�

����
� �

�

��
�

�
�

����

�
�

�

�

�
� �

� �
�

�

�

�
�
�� � �

�

�

�
�

��
�
�� �
��

�����
�������

�

��

�

�����
�������

����������� �

�� �
�
�

������
� �

�����
����������

�
�

�
��������������
���������

�

�

�

�
�

�

�
�
��������
� �

�

�

�

�

�
�����

�

�

�
�

���

���

��

��

�
�
�
�

��
���

�

�
�
���

��

�

�

�
�
�
���

��
����
��

��

�
������ ����������������� ��

��

�

�
�

�
�

�
�

�������
�

������������������������������������������������������������������������������������������������
�

��������
�
����������������������

�
�

����������������������� ��
�����������������������
����������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������
���

�
��
�����������������������������������������������
��
��
����

�

�
��
�������������������������������������������������������������������������������

�
�
�
�
�

�
�
��

�
����

��
��
���

���

�

�
���
��

�

�

� ����
�����

����
�

��
��

�����
����������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������

���
���������

���

�
������
�����������������������������������������
���
��

��
�
��

�
�

�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

���
��

�

�

�

�

�

�

��

�

�

�
�

�

�
���

�

���
����
�

�
�
��� �

�
�����������

��
��
�
���

�
����

�
�������������������
���
������� ��

�

���

�
�� � � ��

�����������
�������������������

�
���
���

�

�

�

��
��
���
�

�
�

�

��

�
������������������������������������������������������������������������������������������������
�
���������

���������
����

��
��
������
��

�
�
�

�
�
���

�����������
�����
�

�

�

����������������������������������������

��
��
����

�

��
��
�

�

�
�

�
� �

�
��

�

�
�

�

�

�

�

�

�� �
���
��

�
�����

�
������� �

�
�
�

�

��
������������
�����

�
�� �������

����������������

�
�

���
�

�

�

�

�
�� ����

����
������

����������
�

�
�
�

�
�����������������

�������������
�
�������������������������
������������������������������������������������������������������������������������������������������
����������
������������������

�
��

�
� �

�����
���
�
���
�
�
�

������������

��
�����
�
���
��
�

����
�

�

� ����
��

�
�
��
�������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������
��
����������������������

�
��
�

��� �
�

�� ����������������������������������������������������������������������������������������������������������������������������������
�
��
���
�
�

��
�
��
��
����
�
��
��������
�����������������������
���
���
���������

��������������������������������������������������������
�
��
����������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�
������

���
���
�

��
��
�
����������������������������������������������������������������������������������������������������������

�����

�
����

�

�
�������
������

�
���

�
�

��

�

�

� �

�
����

������������������� ��������� �
�� �

�
�����������
��������������
��

�
�����������
�

�
���

��
����
��

�
�
�
� �

�
����

�������

��
���

�

�
�
���������������������������������������
��������������������������
���
�

�
��

�

�

���

�

�

��

�

�
�

��
��

��
�

�
�
�����������
������
����������

�
��
�
��
��������������������������
���
�
��

�
���
�
�
����

�

�
���

������������������������������������������������������

��
��
���

�
�
�

�
�
�����

����
�
��
��
�
����

������������������������������������������������������������
��
����������
�� �

�

�

��
�����

��
���������������������������������

�

�

�
�
�
�
�

��
�
��

�
���
��

�����
��
��

�

�
�
���

�
��

�

�
�����

�

�

�

�

�

�

�

��

�

�
�

�

�
�

�

�

�

�

�

���
�����

�� �� �
� � ��� � � � � � ��

�

�

�

�

����������
�

�

��
��

����
�

��

��

������
��� ���

�

�

������
�����
�����

����

������
��

��
�
������

������
����������������������������������������������������������������������������������������������������������������

��
��������

�
�

�

�
�

� �� �

�

�����
�����������
�

��
��
���
������

�

�������

���

����������

�

��
��

�

�
��

���
���

���

��������������

�����

�
������

���������

�

�
�
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����
�����������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���

� �
�����

��������

�
��������������������������������������������������������������������������������

�

�
�
����������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����
��

��

������
�������

��
���������
����������
��

�
���
���
�
�������������������������

��
�
�����
��
���������

��

� � �
�

���

�
��

����
��������������
������������������

�
�����������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ��

����
������������������������������������������������������������������������
���

������

������
�������
�

�
���

����
�
�

����
�

�
�
�

�

�

�

�

�
�

�

��
��

�
��
��

���

�������
��

�
�
��

�������
��� �
��
����

�
�
��

������

��

�
���

�

�

��������
����
��

������
����
����
���
��������� ���

���
�������

�

�

�

�

�

����
�
����

�
����

�
�
�

�

�

�

�

�
�
����

�
�
�
�

�
���

�
������ ����

����������
����

������

�

�

�

�

�

�

�

���
��

�

�

���

� � ���

�����
��

�

����

�

�
��

�����
��������������

�
��

�

�

��

����������������

�

�

��
�
�� ����

�
�
������
�����
����

����
�

��������������
�����

�������������
��

�
�

�
���
�

�

������������
����
���

�

�

�

�

�

�
�
�

�
�
� �

�
�

�

�

�

�����
�

� �
���

� ����

�

���

�

�
�
�
��
�

�
�

���
��

�
�����

�
���

�
��

��

��
��
�
����

��������������������������������

�������������������������������� ����

� �
��

�

�

���
����

�

� �� �
��������������������

� ���

�

�
�

�

�

�
�

����
�������

�
��
��������

�

�

�

�

�
�

�

�
�

�

�

�
�

�������

�

�

�

�

�

���

�

�

�

�

�

�
����

�

�

�

�

�

�

�

�

� �
�

�
�

� �

�
�

�

�

�

�

�

��
�
��

��
� �

� � � � �

�

�

�

�

� �

�

�

�

�
�

��
�

�
� �

��
�
�

�

�

�

��

���
������

�

�

�

�

�

�
�

�

�

��������

����

��
�
������

��

��
�
����
���
����

��
��
�

�

�

���������� ��
��
�

�
�
�

� � �
��
���
�������������

�
����� �

�
�

�

�

��
�

�

���
��

�

������
�������������������������������������������������������

��

���
������������������������������������������������������������

�
��
���
����

�
���

��

�

�

�
�

�

�
���

�����
�
�
�����
�����������

�����

���

��
��

�����
�����������������������������������������������������������������������������������������

�

���

�

�
�
����
���

���������
����������

������������������������
���
�
�

�

�

�

���
�
� �����

�

�
�����

��

��
�
����

�

��

���
��������

�����
��

�

� �

��
��

�

��
������� �

�
����

�����������

��

��
��

�
��
�
���������
�����
��

��
������������������������������������������

����
�
��������

�

�
� �
��

�

�

�

�

������������
����

���

��

�

�

�

�
�
�
��

�

�

�

�
�
�

�
���
�

�
����

��������
��

��

��
����

�

������������������������������������
�

�
��

��
�

�

�
�����

��������
��������

�������
���������������������������������������������������������������������������������
��
��
��������������������������
�����������
�����
�

�

�������

�� �
���
��
���
����

���� �����

�

�

�

�

��

��
��
������������������������������������������������������

����������� �� ��������
����� � �

��

�

�

�

�
��

�

�

�
�

�

�

�

�

�

�� �
�

�
�
����
����������������������������

�����������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���

���
�
��

���
���������������������������������������������������������������������������
���������������������������������������������������������

����

�
�
�
������
���������������������

����������������������������������������
������������������������������������������������������������������

�������������� ��

�

��
����
�����������
����������������������������������������������������
��������������������������������
�

���� ��������
��������������

�����
������������������
�����
��

�����
���
��� ������

�������������
�����������������������������������������

����
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��
����������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������
�

�

�
�

��
�

�
����
���������������������������
��

���
��������������������������������������

�����

��������������������������������������������������������������������

�

� �

�

�
��
������

��
��
���������������

�
��

�
��

�
��
�

�
��

����
��
����������
���������������������
���������������������

���
��
��������������������������
��
���
���
�
��

�������
���

�

�

�

�

���
����

�����������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������

���
��

�

���

�
�
�

��
�

��
�
� �

�

�

��

�

���

�
��
�
�

�
���
�

�
��

�

�
�

��

�
������

�
����
����������
������
��������
����
��

��
������
������ �����
����

��
���
�

��
�

��
���

���
�������

�����������������������������������������������������������������������������������������
�������

0 s 2000 s 4000 s 6000 s 8000 s 10000 s 12000 s 14000 s

Figure 2.11. 14, 401 positions over 4 hours for a single ant, color coded by observation time.

From this data we obtained four datasets for comparison, one of which is the full
data (1 second intervals). The three additional datasets are subsamples from the full
data; we produced one with the regular sampling design using h = 3 seconds, one dataset
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with the LARI sampling design using h = 5 seconds, and one with the regular sampling
design using h = 5 seconds. Ants display stop and start behavior, but the SDE model
alone cannot handle state switching. Thus, we removed observations where the ants
were stationary within each dataset. After removal of stationary observations, a total
of 232, 571 observations remained in the full dataset, the largest of the four datasets.
Similar to Russell et al. (2018), we only consider modeling ant movement when ants are
moving.

2.6.1 Ant Movement Model

In this example, we apply the framework from (2.9) to model ant movement behavior.
We represent the surface of the ant nest using J = 9, 998 grid cells (1 ◊ 1 mm). Following
Russell et al. (2018), we specify spatially-varying motility and potential surfaces to
capture spatial heterogeneity in ant movement. The zeroth order spline representations
of the potential and motility surfaces evaluated at position r· are

p(r· ) ©
Jÿ

j=1
pjsj(r· )

m(r· ) ©
Jÿ

j=1
mjsj(r· )

where

sj(r· ) ©

Y
_]

_[

1, r· in jth grid cell

0, otherwise

and pj and mj are the potential and motility surfaces respectively, evaluated in grid cell
j. Of course, there are other basis functions we could use to build potential and motility
surfaces, such as thin plate splines. However, thin plate splines and other bases are more
di�cult work with in the constrained geometry of the ant nest.

The model equation (2.9) has infinitely many solutions if constraints are not imposed.
To obtain identifiability, we fix ‡ = 1 as in Russell et al. (2018). Russell et al. (2018)
took a Bayesian approach to parameter estimation with a similar model. However, our
novel approximation in (2.10) allows for a direct evaluation of the likelihood of animal
locations observed at irregular time intervals. We propose an algorithm for estimation
of model parameters based on maximizing the likelihood (2.10) while penalizing the
roughness of the potential and motility surfaces. Modlmeier et al. (2019) used a related
algorithm, but only allowing for regularly sampled data. Modlmeier et al. (2019) also do
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not provide full mathematical details of the algorithm, which we provide in summary
here and in detail in Supplemental Materials S2.4.

We estimate p ©
Ë
p1 . . . pJ

ÈÕ
and m ©

Ë
m1 . . . mJ

ÈÕ
with an iterative procedure

beginning with the model equation (2.9). Rewriting (2.9), we have

r·+2 ≠ r·+1
h·+1

≠ r·+1 ≠ r·

h·
≥ N

3
—h·

3
µ(r· ) ≠ r·+1 ≠ r·

h·

4
, diag(c2(r· )h· )

4
(2.23)

where µ(r· ) = m(r· )[≠Op(r· )] is estimated as a function of m and p and c(r· ) = m(r· )
is estimated as a function of m. Thus, we refer to p as a mean parameter, and m could
be considered both a mean and a variance parameter. However, we will estimate m using
the variance and thus we refer to it as a variance parameter.

We hold out 20% of the data to use when choosing the tuning parameter ⁄, which
controls the smoothness of the surfaces, later in the procedure. The remaining 80% of
the data are fit simultaneously for all ants, assuming ants move independently and there
is no correlation in the x- and y-components of movement. The procedure is similar to
restricted maximum likelihood (REML) approaches common in mixed models, as we
use residuals to estimate covariance parameters, which are then used to estimate mean
parameters. Our proposed approach is as follows:

1. Obtain a preliminary estimate of mean parameters (— and p) assuming the motility
surface is constant (model errors are independent and identically distributed).

2. Estimate variance parameters (m) using residuals from step 1.

3. Estimate mean parameters (— and p) conditioned on the variance estimates from
step 2.

For details about the estimation approach, refer to Supplemental Material S2.4.

2.6.2 Results

Section 2.6.1 describes a computationally e�cient method of fitting spatially-varying
coe�cients in SDE movement models. We completed the 3-step procedure for 17 values
of the tuning parameter using the full data (232,571 total observations) in less than 25
minutes. We completed the procedure in the programming language R (version 3.5.2) on
a MacBook Pro with a 2.9 GHz Intel Core i5 processor and 8 GB of 2133 MHz LPDDR3
RAM.
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We estimated motility and potential surfaces for four samples: the full data with
observations at 1 second intervals, a subsample with observations every 3 seconds, a
subsample with observations every 5 seconds, and a LARI subsample with regular samples
every 10 seconds coupled with a random point in between each pair of regular samples.
The 10 second LARI sample and every 5 second regular sample have an equal number of
observations, so comparison of the results from these two datasets amounts to a direct
comparison of the LARI sampling scheme to the regular sampling scheme for this data.

For each of the four samples, we chose the optimal value of ⁄ separately based on
prediction accuracy on the holdout set. We chose log(⁄) = 0 for the full data, log(⁄) = 2
for the every 3 seconds sample, log(⁄) = 3 for the every 5 seconds sample, and log(⁄) = 4
for the 10 second LARI sample.

Figure 2.12 displays the estimated log motility surfaces for the four datasets. Since
high motility indicates high activity, it is evident from the plots that the ants moved
more quickly in the center chambers (Modlmeier et al., 2019). Assuming the motility
surface generated with the full data is closest to the truth, we found mean squared errors
(MSE) of the log motility surfaces in Figure 2.12(B–D) by summing squared di�erences
between those surfaces and the surface in Figure 2.12(A) over all grid cells. As shown in
the text in Figure 2.12, the MSE for the 10 second LARI sampling scheme is smaller
than the every 5 seconds sampling scheme, which suggests that the motility surface was
better estimated with the LARI subsample than the regular subsample of the same size.
Each of the three subsamples underestimated the motility surface compared to the full
data, a sign that regardless of sampling design, we lost information about the motility
surface by subsampling (Figure 2.13).

In Figure 2.14, we show the estimated potential surfaces with gradient vectors pointing
down the gradient of potential surface. The gradient vectors depict the negative gradient
of the potential surface scaled by 5 to improve visibility. We chose to plot the gradient
vectors in every third grid cell for visual clarity. Since the potential surface is identifiable
only up to an additive constant, we subtracted the mean from each potential surface to
view them on roughly the same scale. We carried out comparisons between potential
surfaces through mean squared distance (MSD) between the ends of the gradient vectors
generated from the full data and those generated from the subsample. Of the three
subsamples, the potential surface estimated with the 10 second LARI subsample had the
smallest MSD (Table 2.1). We then decomposed the MSD into two additional metrics:
mean error in magnitude and angle of the gradient vectors. The 10 second LARI design
resulted in a smaller error in the angle of the gradient vectors compared to the every
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Every 3 Seconds Every 5 Seconds 10s LARI
Mean Error in Gradient

Vector Magnitude -0.2216 -0.5045 -1.624

Mean Error in Gradient
Vector Angle -0.0317 0.0565 0.0164

MSD between Gradient Vectors 18.1455 21.2761 14.8337
Table 2.1. Potential surface error statistics for the three subsamples.

5 second design, but the 5 second design resulted in a smaller mean error in gradient
vector magnitude (Table 2.1). On average, all three potential surfaces estimated with
subsamples of the data are too smooth, i.e., the gradient vectors are biased toward zero
(Table 2.1).

Since the LARI sampling scheme requires random samples in each 10 second time
interval, there are 91,439 possible 10 second LARI subsamples. To evaluate the variability
attributed to this random component, we took 50 di�erent 10 second LARI subsamples
and fit each subsample separately. We found that the 10 second LARI subsample
consistently outperformed the every 5 second subsample in regard to all the metrics we
looked at except magnitude of potential surface gradient vectors (Figure 2.15).

(A) Full Data (B) Every 3 Seconds, MSE = 0.7858

(C) Every 5 Seconds, MSE = 1.9219 (D) 10 Second LARI, MSE = 1.2579

−5

−4

−3

−2

−1

0

1

Figure 2.12. The natural log of the motility surfaces estimated using the full data (A) and 3
subsamples (B)-(D).
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Difference in Log Motility

−2.0 −1.5 −1.0 −0.5

(A) Every 3s − Every 1s

(B) Every 5s − Every 1s (C) 10s LARI − Every 1s

Figure 2.13. Di�erences between the estimated log motility surfaces from each of the subsam-
ples and the full data (calculated by grid cell). Negative values indicate underestimation of the
motility surface.
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(A) Full Data

(B) Every 3 Seconds, MSD = 18.1455

(C) Every 5 Seconds, MSD = 21.2761

(D) 10 Second LARI, MSD = 14.8337 −40

−20

0

20

40

60

Figure 2.14. Potential surfaces estimated with the four samples. The same potential surfaces
are plotted in three dimensions on the left (using the rayshader R package) and in two
dimensions on the right.
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(A) Potential Surface MSD
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(D) Mean Error in Potential Gradient Vector Angle

Figure 2.15. Statistics calculated for the motility and potential surfaces fit using 50 di�erent 10
second LARI subsamples (orange) are compared to statistics from the every 5 second subsample
(blue).

2.7 Discussion

The simulation, guppy data, and ant data examples describe vastly di�erent systems, but
the sampling procedures laid out in Section 2.2 and general model framework described in
Section 3.3 were applicable in all three cases. We chose to highlight these three examples
to emphasize the generalizability of the SDE framework and our proposed sampling
approach. In all of the examples, the LARI sampling design led to greater accuracy in
parameter estimation compared to samples at regular time intervals. As shown in the
simulation example in Section 2.4, the LARI subsample also resulted in better prediction
of missing values compared to the regular subsample. We conclude that when conducting
animal movement research on data similar to that examined in this paper, a LARI sample
is preferable to a regular sample of the same sample size and duration.

We determined that predicting finer scale movement (infill) was greatly useful for
parameter estimation in the simulation example (see Supporting Materials S2.2 for
details). This result implies that imputation of missing data at a finer scale might
improve parameter estimation in the guppy and ant data examples as well. In the ant
example, we found that the motility surfaces were underestimated using both regular
and LARI sampling schemes. Augmenting observations with additional latent infill
points in the ant example would introduce more variation in the movement paths,
potentially reducing the underestimation of the motility surface. In the guppy example,
all three parameters were underestimated when the data were subsampled, suggestion that
augmenting observations might be useful here as well. However, in the simulation example,
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predicting missing data with the Metropolis-within-Gibbs algorithm was computationally
intensive. We needed 90 hours of computational time on a high-performance computing
cluster to simulate, subsample, and fit each of the 150 datasets.

While computational complexity was an issue in the simulation example, the multi-
step model-fitting procedure in the ant example was extremely computationally e�cient.
For each sample, less than 25 minutes on a laptop computer were required to fit the model
with a range of 17 di�erent tuning parameter values. The scalability and computational
feasibility of adding components to this model are huge assets.

In this paper, we presented a general SDE modeling framework along with three
model-fitting procedures. The SDE framework has a wide range of possible extensions,
including the addition of known seasonal variation, asynchronous movement across
individuals, and state switching. The model framework as presented here assumes the
animals are in constant motion throughout the study period, allowing us to describe
movement behavior while an individual is in motion but not when the individual is
stationary. In the ant example, we met this restriction by removing all data points where
the ants were not moving. The addition of state switching would allow us to capture
the start and stop behavior in the ant data and could be used to predict finer scale
movement.

In this paper, we have compared two sampling designs in the context of animal
movement. Thus, we have barely scraped the surface of a research area which is
largely unexplored: optimal sampling for animal movement. As of present, there is no
comprehensive guide to sampling design for animal movement. A thorough examination
of sampling design for animal movement would allow researchers to allocate resources
more e�ciently and discover details of animal movement behavior that might otherwise
be lost.
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2.8 Data availability

The raw carpenter ant data is available through Dryad (DOI: 10.5061/dryad.sh4m4s6),
as is the guppy data (DOI: 10.5061/dryad.kt3109v7).

S2 Supplement to a Lattice and Random Intermediate

Point Sampling Design for Animal Movement

S2.1 Examples of Model Capabilities

We will briefly examine data simulated from (10) in the main text with 3 di�erent sets
of parameters. In all 3 simulations, we started the simulation at

Ë
0 0

ÈÕ
for the first 2

time steps and used — = 0.4 and ‡ = 0.5. In the first simulation,

p(r· ) = x· (2.24)

m(r· ) =

Y
_]

_[

5, y· Æ 0

20, y· > 0
(2.25)

result in movement with average drift in the negative x direction and where the average
speed is higher in the space where y > 0 than where y Æ 0. Since in (10) each simulated
value r· is a function of the motility evaluated two observations prior, the average speed
at r· is higher (and step size smaller) when y·≠2 > 0 than when y·≠2 Æ 0. The first
20 simulated time points are plotted in Figure 2.16A-B with the potential and motility
surfaces which generated them. Figure 2.16C depicts the di�erence in average step size
attributed to the motility surface in a simulation of 1,000 time steps.
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Figure 2.16. Panels (A)-(B): 20 locations simulated from (10) with parameters (2.24)–(2.25).
The simulations are shown with the potential surface (A) and motility surface (B). The arrow
points in the direction the simulated individual is heading. Panel (C): 1,000 locations simulated
from (10) with parameters (2.24)–(2.25). Panel (C) displays histograms of the distances from
r·≠1 to r· for each possible value of m(r·≠2). Black vertical lines represent the means for each
group.

We reran the simulation with

m(r· ) =

Y
_]

_[

5, y· Æ 0,

10, y· > 0.
(2.26)

This change left the average step size in the low motility area unchanged but led to a
reduction in the average step size in the high motility area (Figure 2.17).
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Figure 2.17. Plots are as in Figure 2.16 using parameters (2.24) and (2.26).

Lastly, we used the original motility surface (2.25) and reduced the severity of the
gradient of the potential surface by letting

p(r· ) = 0.5x· (2.27)

which led to a reduced average step size in both groups (Figure 2.18C) as well as less
direct movement down the gradient of the potential surface (Figure 2.18A-B).
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Figure 2.18. Plots are as in Figure 2.16 using parameters (2.27) and (2.25).

S2.2 Simulation Example without Infill

Dividing equation (2.13) in the main text by h1/2
· results in

r·+2 ≠ r·+1

h·+1h
1/2
·

≠ r·+1 ≠ r·

h
3/2
·

= –
1
≠2h

1/2
· r·

2
≠ —

A
r·+1 ≠ r·

h
1/2
·

B

+ ‡‘· , (2.28)

which is a linear model with independent and identically distributed errors. We could
then fit (2.28) with simple linear regression. Assessment of linear regression estimation
accuracy was carried out on a subsample including every other simulated data value.
Thus, the subsample is very similar to the true data. However, of the 95% confidence
intervals constructed for —, –, and ‡, only the confidence interval for — captured the true
parameter value. Adoption of a Bayesian approach would allow us to place priors on the
parameters that may lead to better approximations.

Model Parameter Estimation for Subsample Including Every 2 Timepoints
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σ

Figure 2.19. MCMC draws from the posterior distribution conditioned on a regular subsample
with every other timepoint. The MCMC draws are plotted in blue, the red lines bound equal-
tailed 95% credible intervals, the black dashed line is the estimated posterior mean and the
black solid line is the true parameter value.
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Vague priors

fi(‡) = InverseGamma (1, 1) (2.29)

fi(—) = Exponential (1) (2.30)

fi(–) = Normal
1
0, 102

2
(2.31)

were placed on the parameters and Metropolis-Hastings samples were drawn from the
posterior distribution. As in the linear regression model, we subset the data to include
every other time point. Despite this subset being very close to the original simulation,
only — was captured in its equal-tailed 95% credible interval, as shown in Figure 2.19.

S2.3 Bayesian framework

To estimate —, –, ‡, and {r}unobs as alluded to in Section 4.3, we took a Bayesian
approach and constructed an MCMC algorithm to sample from the joint posterior
fi(–, —, ‡, {r}unobs|{r}obs) where

fi(–, —, ‡, {r}unobs|{r}obs) Ã P ({r}|—, ‡, –)fi(—)fi(‡)fi(–).

Vague priors (2.29)–(2.31) were placed on the model parameters. We also tried increasing
the variance of these prior distributions by a factor of 10, but we saw no meaningful
di�erence in the resulting empirical posterior distributions.

The initial positions r· =
Ë
x· y·

ÈÕ
, · = 1, 2 were assigned independent uniform

priors

x1 ≥ Uniform (min{x}obs, max{x}obs)

y1 ≥ Uniform (min{y}obs, max{y}obs)

x2 ≥ Uniform (min{x}obs, max{x}obs)

y2 ≥ Uniform (min{y}obs, max{y}obs)

resulting in the joint distribution of the observed and unobserved positions

P ({r}|—, ‡, –) = P (x1)P (y1)P (x2)P (y2)
n≠2Ÿ

·=1
P (r·+2|r·+1, r· , —, ‡, –).

We employed a Metropolis-within-Gibbs sampler where –, —, ‡, and the elements of
{r}unobs are updated in turn. We performed updates using random walk Metropolis steps
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for all parameters with adaptive tuning (Haario et al., 2001; Roberts and Rosenthal,
2009) (also see Craiu and Rosenthal (2014)) to improve mixing. We ran the adaptive
algorithm for 100, 000 iterations, which were subsequently discarded as burn-in, to tune
the proposal covariance matrix. We drew the next 100, 000 MCMC samples using the
tuned proposal covariance matrix from the first 100, 000 iterations. Finally, we used
these 100, 000 iterations for posterior estimation. This procedure took about 90 hours
of computational time on a high-performance computing cluster. While not all chains
converged in this many iterations, running all chains until convergence would have been
infeasible in this framework. Thus, we chose to assess convergence at an individual level
and remove the simulated paths which failed to meet the convergence criterion.

S2.4 Estimation

The model equation based on (9) in the main text is

gx· = vx· — + m(r· )aÕ
x· “ + ‘· (2.32)

where

gx· © x·+2 ≠ x·+1
h·+1

≠ x·+1 ≠ x·

h·
(2.33)

vx· © x· ≠ x·+1 (2.34)

“ ©
Ë
≠—p1 ≠—p2 . . . ≠—pJ

ÈÕ
(2.35)

‘· ≥ N(0, h· ‡2m2(r· )). (2.36)

Element u = 1, . . . , J of column vector ax· is 1
2h· if grid cell u contains

Ë
x· + 1 y·

ÈÕ
,

≠1
2h· if grid cell u contains

Ë
x· ≠ 1 y·

ÈÕ
, and 0 otherwise. This formulation comes from

the use of a raster-based centered di�erence equation to approximate the gradient of the
potential surface. We include h· in ax· instead of keeping the two separate for ease of
vector notation in (2.32). If we multiply aÕ

x· by a vector of grid cell values, we get the
product of h· and the x component of the estimated gradient of the gridded surface at
r· . Thus, we approximate

—h· m(r· )
C

≠ ˆ

ˆx
p(r· )

D

¥ m(r· )aÕ
x· “
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= ≠—h· m(r· )
p

3Ë
x· + 1 y·

ÈÕ
4

≠ p
3Ë

x· ≠ 1 y·

ÈÕ
4

2 .

Similarly, we could construct (2.32)–(2.36) in the y direction by replacing each x with
y. Element u = 1, . . . , J of ay· is 1

2h· if grid cell u contains
Ë
x· y· + 1

ÈÕ
, ≠1

2h· if grid
cell u contains

Ë
x· y· ≠ 1

ÈÕ
, and 0 otherwise.

We estimate p ©
Ë
p1 . . . pJ

ÈÕ
and m ©

Ë
m1 . . . mJ

ÈÕ
with an iterative procedure.

Our proposed approach is as follows:

1. Obtain a preliminary estimate of mean parameters (— and p) assuming the motil-
ity surface is constant (model errors in (2.36) are independent and identically
distributed).

2. Estimate variance parameters (m) using residuals from step 1.

3. Estimate mean parameters (— and p) conditioned on the variance estimates from
step 2.

In step 1, we assume the motility surface is approximately constant (i.e., mj is similar
to the motility surface evaluated in grid cells adjacent to cell j) so that the error variance
in (2.36) is constant and we can absorb m(r· ) in the estimate of “ when we fit the model
(2.32). Let E ©

Ë
v A

È
where v is a column vector of all vx· and vy· that are not in the

holdout set and A is a matrix with rows consisting of all aÕ
x· and aÕ

y· that are not in the
holdout set. Let g be the column vector containing all gx· and gy· that are not in the
holdout set. When combining over the indices x· and y· , we ensure the combined values
are ordered in the same way each time by ant, time, and direction.

We obtain preliminary estimates of — and “ using penalized least squares estimation
S

U—̂

“̂

T

V = argmin—,“

Y
]

[

Q

ag ≠ E
S

U—

“

T

V

R

b
Õ Q

ag ≠ E
S

U—

“

T

V

R

b + ⁄

S

U—

“

T

V
Õ

Q
S

U—

“

T

V

Z
^

\

= (EÕE + ⁄Q)≠1EÕg

where the (J + 1) ◊ (J + 1) penalty matrix Q ensures the potential surface is smooth.
To bypass penalization in estimation of —, we let the first row and column of Q be 0
vectors. If we ignore the first row and column of Q, the elements of the J ◊ J submatrix
are {Qij : i, j = 1, . . . , J}. Q penalizes the sum of squared first di�erences between the
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estimated potential surface in neighboring grid cells, i.e.,
S

U—

“

T

V
Õ

Q
S

U—

“

T

V =
ÿ

i,j adjacent grid cells
(“i ≠ “j)2

=
ÿ

i,j adjacent grid cells
(—pj ≠ —pi)2 .

This is accomplished by letting Qii be the count of grid cells adjacent to grid cell i. The
o�-diagonal elements {Qij : i ”= j} are defined

Qij =

Y
_]

_[

≠1, grid cells i and j are adjacent

0, otherwise.

As the tuning parameter ⁄ increases, the estimated potential surface becomes smoother.
This is similar to putting a conditional autoregressive prior on “.

In step 2, we use the residual term

‘̂ © g ≠ E
S

U—̂

“̂

T

V

from the preliminary estimation procedure in step 1 to estimate the motility surface.
Similar to restricted maximum likelihood estimation, we estimate error variance using ‘̂2.
In (2.36), Var(‘· ) = E(‘2

· ) = h· ‡2m2(r· ). We want to estimate m2(r· ) = E(‘2
· h≠1

· ‡≠2) =
E(‘2

· h≠1
· ) (recall ‡ = 1). To avoid negative estimates of m2(r· ), we estimate log(m2(r· ))

instead. We fit a generalized additive model with mean

E
Ë
log(‘̂2

· h≠1
· )

È
= ‹ + f(x· , y· ) (2.37)

where f is a non-linear smooth function of location and ‹ is the intercept term. We fit this
generalized additive model using the mgcv R package (Wood, 2017). While alternative
methods including maximum likelihood estimation of the residuals could be implemented,
the generalized additive model is fast and results in accurate estimation when the data
size is large. We exponentiate the fitted values to obtain estimates of m2(r· ) for all
observations.

We now have the components to easily obtain an estimate m̂ =
Ë
m̂1 . . . m̂J

ÈÕ
of
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the vector m of motility grid cell values. For j = 1, . . . , J ,

m̂j © ‹̂ + f̂(cj)

where ‹̂ and f̂ are estimates of ‹ and f from the generalized additive model fit and cj

contains the coordinates for the center of grid cell j.
In step 3, we use the original model equation (2.32), but now we replace m(r· ) with

m̂(r· ), the estimated motility surface evaluated at r· . Then we divide by m̂(r· )h1/2
· to

produce a model with independent and identically distributed errors. The resulting
model equation is

g̃x· = ṽx· — + ãÕ
x· “ + ‘̃x· (2.38)

where

g̃x· © gx·

m̂(r· )h1/2
·

(2.39)

ṽx· © vx·

m̂(r· )h1/2
·

(2.40)

ãÕ
x· © h≠1/2

· aÕ
x· (2.41)

“ ©
Ë
≠—p1 ≠—p2 . . . ≠—pJ

ÈÕ
(2.42)

‘̃x· ≥ N(0, 1). (2.43)

As in the original model equation, we construct (2.38)–(2.43) similarly in the y direction.
Let Ẽ ©

Ë
ṽ Ã

È
where ṽ is a column vector of all ṽx· and ṽy· and Ã is a matrix with

rows of all ãÕ
x· and ãÕ

y· . Let g̃ be the column vector containing all g̃x· and g̃y· . This time,
we obtain final estimates of — and “

S

U—̂ú

“̂ú

T

V © (ẼÕẼ + ⁄Q)≠1ẼÕg̃.

Finally, we estimate p, the vector of potential grid cell values, with

‚p © ≠ “̂ú

—̂ú
.

As explained in step 1, the penalty matrix Q ensures the estimated potential surface
is smooth. Since the potential surface only enters the model through its gradient, the
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potential surface is only identifiable up to an unknown additive constant.
We repeated this 3-step procedure for log(⁄) = ≠8, ≠7, . . . , 7, 8. We chose the log(⁄)

that resulted in the lowest mean squared prediction error

[gholdout ≠ ĝholdout]Õ [gholdout ≠ ĝholdout] ,

where

ĝholdout ©
Ë
vholdout diag[m̂(rholdout)]Aholdout

È
S

U—̂ú

“̂ú

T

V

and gholdout, vholdout, and Aholdout are identical to g, v, and A in step 1 except now they
consist of only the holdout data. m̂(rholdout) is a vector of estimated motility values at
the positions in the holdout data.

S2.5 Simulation study of the estimation procedure

As outlined in Supplementary Materials S2.4, step 2 of the estimation procedure entails
estimation of the squared motility surface evaluated at each observation, i.e., m2(r· ) =
E(‘2

· h≠1
· ). We achieve this by estimating E[log(m2(r· ))] and exponentiating the fitted

values. We recognize that this procedure may introduce bias, and thus we have conducted
a simulation study to quantify this bias. We chose to simulate movement from simpler
potential and motility surfaces than those fit with the ant data to avoid dealing with nest
boundaries. Instead, we constructed a large surface of which only the center is utilized
and analyzed our results in the areas where simulated data is present.

The data were simulated from an SDE model (3)-(4) with a linear motility and
quadratic potential surface

m(x· , y· ) © 0.02y· + 2

p(r· ) © 0.02(r· ≠ 50)Õ(r· ≠ 50).

The numerical approximation (9) becomes

r·+2 ≠ r·+1
h·+1

≠ r·+1 ≠ r·

h·
= —h·

3
[0.02y· + 2][≠0.04(r· ≠ 50)] ≠ r·+1 ≠ r·

h·

4

+ h
1/2
· (0.02y· + 2)‘·
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which, after setting h· = 1, we rearrange to produce the simulation generation equation

r·+2 = 2r·+1 ≠ r· + — [(0.02y· + 2)(≠0.04(r· ≠ 50)) ≠ (r·+1 ≠ r· )] + (0.02y· + 2)‘· .

We performed 100 simulation runs, each of which generated 5 individual paths for
2000 time steps. For illustrative purposes, we plotted the simulated path of one individual
on the potential and motility surfaces which generated the simulations in Figure 2.20.
We fit each of these simulations using the estimation procedure in Section 4.3 to produce
100 pairs of estimated motility and potential surfaces. Each surface is a 50 ◊ 50 grid of
values, where each grid cell is 2 ◊ 2. When comparing surfaces, we subset the surfaces
to where the majority of the data were located: within a radius of 23 from the center
(50, 50). On average, 77.95% of the simulated observations fell within the radius of 23
(standard deviation = 1.21%).

We assessed motility and potential surface estimation using three metrics: mean
potential gradient vector angle, the average angle between the gradient vectors for the
estimated and true potential surfaces; mean potential gradient vector length error, the
average of the magnitudes of the estimated potential surface gradient vector minus those
of the true potential surface gradient vector, and mean motility surface error, the average
of the grid cell values of the estimated motility surface minus those of the true motility
surface. The empirical density of the metrics for the 100 simulations are displayed in
Figure 2.21. As shown in Figure 2.21(A), the average angle of the potential surface
gradient vectors is unbiased, as we would expect. As in 2.21(B), the average error in
the magnitude of the potential surface gradient vectors is always negative, which is also
unsurprising since the estimation procedure involves smoothing. In 2.21(C), we see that
the motility surface is estimated well in simulations. Although the motility surface is
underestimated on average in 84 of the 100 simulations, the interpretation of the results
is not impacted by this slight underestimation. In Figure 2.22, we randomly chose one
simulation to display next to the true potential and motility surfaces. The potential
surfaces are centered at zero since they are unidentifiable up to an additive constant.
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Figure 2.20. True potential and motility surfaces with one example simulation shown in white.
Black gradient vectors on the potential surface depict the negative gradient scaled by 5.
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Figure 2.21. Density estimates for errors in the model fit on simulated data. The black
vertical line is positioned at 0.
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Figure 2.22. For one randomly selected simulation, the estimated potential (A) and motility
(B) surfaces are compared to the true potential (B) and motility (D) surfaces.
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Chapter 3 |

A Flexible Movement Model for

Partially Migrating Species

This chapter was published in Spatial Statistics on February 24, 2022 (Eisenhauer et al.,
2022).

3.1 Introduction

Movement behavior within species is often highly variable across individuals and years.
While some animal populations follow similar migratory trajectories or travel in groups,
many display partial migration, meaning seasonal migration is observed only in a fraction
of individuals in the population (Chapman et al., 2011). Non-migratory strategies include
residential (i.e., sedentary), nomadic, and dispersal behaviors (Mueller and Fagan, 2008).
Current inference frameworks for partially migrating species require researchers to first
define explicit movement strategies exhibited by the species (e.g., Fullman et al., 2021;
Poessel et al., 2016). Researchers then classify individual paths as one of the defined
strategies using methods based on spatially explicit measures or model selection (Cagnacci
et al., 2016). Classification is often followed by descriptive statistics for each movement
strategy or interpretation of statistical models formulated for each movement strategy
(Fullman et al., 2021).

Golden eagles (Aquila chrysaetos) display partial migration (Poessel et al., 2016).
Understanding the yearly movement strategies of golden eagles is important for con-
servation and management of the species. Golden eagles’ high mobility, for example,
carries individuals across political boundaries, forcing management e�orts for the same
individuals to be shared by multiple governing bodies (Brown et al., 2017).

Morales et al. (2010) argue for the importance of understanding the links between
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Figure 3.1. Year-long movement paths for 3 golden eagles in the western United States, where
path color di�erentiates between individuals.

movement and population dynamics. Population-level inference using a hierarchical
structure depends on individual-level models (e.g., Hooten et al., 2016), so it is essential
to develop individual-level models that describe behavior well. The task of developing
realistic individual-level models becomes more di�cult the more heterogeneous the
population.

In Figure 3.1, we display year-long paths for three individuals that used three
movement strategies, which could be described as residence, migration, and dispersal.
We define residence as attraction to a single location throughout the year. We define
migration as a path where the individual spends a portion or all of the summer season in
a single location and a portion or all of winter in a more southern location. We define
dispersal as a path where the individual is attracted to one location for a period starting
in the beginning of the year and switches to a new location for the remainder of the year.

Partitioning groups of golden eagles based on movement strategy can be a challenging
task due to the presence of ‘less-stereotyped’ or ‘mixed’ cases (Cagnacci et al., 2016).
Some authors have suggested movement strategies in partially migrating populations
would be better described as existing on a continuum, which would better accomodate
those less-stereotyped cases (Ball et al., 2001; Cagnacci et al., 2016). Thus there is a
need for flexible models that are capable of fitting multiple movement strategies, without
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predefining those strategies.
Varying coe�cient models that allow behavior to transition smoothly in time have

recently received attention in the animal movement literature for being a more flexible
and realistic alternative to the latent-state model (Michelot et al., 2020; Russell et al.,
2018, 2017). In this work, we describe a single varying coe�cient model which utilizes a
stochastic di�erential equation (SDE) framework similar to that of Eisenhauer and Hanks
(2020). We fit the varying coe�cient model for a variety of movement paths including
those displaying residential, migratory, and dispersal behavior. The advantage of this
varying coe�cient framework is that the same model can easily be used to provide insight
into movement behavior that fits one of these three categories, as well as behavior that
does not clearly fit into only one of these categories. Our proposed model can produce
realistic simulated paths for a range of movement strategies.

We compare our approach to a latent-state model within the same SDE framework,
and we show that our varying coe�cient model better describes movement behavior.
Latent-state models are commonly used in animal movement modeling (Pirotta et al.,
2018; Patterson et al., 2017), and there exist popular R packages that can be used
to easily fit these types of models for animal telemetry data (Michelot et al., 2016;
McClintock and Michelot, 2018). The latent-state models are not as flexible as our
varying coe�cient model and need to be specified di�erently depending on the movement
strategy. We defined di�erent sets of states for residential, dispersal, and migratory
movement strategies.

In Section 3.2, we describe the golden eagle data and motivate the selection of the
subset we focus on in this paper. In Section 3.3, we describe the SDE model framework
which is common to all models we consider in this paper. In Section 3.4, we present our
varying coe�cient model. In Sections 3.5-3.7, we fit the varying coe�cient and alternative
models to three paths we selected to illustrate three stereotypic movement strategies:
residence, dispersal, and migration. We then illustrate how the varying coe�cient model
can be used to fit a wider range of movement behaviors in Section 3.8. Lastly, we
summarize the results and suggest areas for future work in Section 3.9.

3.2 Golden Eagle Telemetry Data

We obtained satellite telemetry data for 68 individuals, each of which was tracked for
at least 1 year in the western United States. Tagging of eagles and collection of data
was funded by the National Raptor Program of the U.S. Fish and Wildlife Service
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(USFWS), and we accessed the data through collaboration with the USFWS and one of
its contractors, Eagle Environmental, Inc. Movement paths for all individuals, based on
hourly GPS locations accurate to within 19 meters, are shown in Figure 3.2. Most of the
eagles in this dataset were fledgelings when tagged. The eagles utilized a wide range of
habitats in the western United States from desert, semi-arid plains, shrub-steppe, and
mountains to arctic tundra. We subdivided individual movement paths by year (Jan 1
– Dec 31) and removed paths with a span of observations shorter than 290 days. We
were left with 194 yearly paths for a total of 67 unique individuals. An exploratory
analysis of each yearly path using the migrateR R package (Spitz et al., 2017) identified
18 dispersers or nomads, 161 migrants or mixed migrants, and 15 residents using net
squared displacement. The meaning of these terms is shown graphically in Figure 3.3
(Spitz et al., 2017). Model selection using AIC favors the more complex model, and
inspection revealed that many of the paths classified as migration or mixed migration
appeared closer to the dispersal, residential, or nomadic strategies. Our varying coe�cient
modeling approach removes the need to classify each path into only one category (e.g.,
migrant, resident, disperser) and allows for a more nuanced and realistic representation
of bird behavior.

These data display a wide range of movement behaviors, most of which do not clearly
belong to a single movement strategy. This may be due the young age of many of the birds
and much of the data collection taking place in a desert ecosystem. Thus, we selected
datasets from three individuals which were visually identified as clearly displaying one of
each of the three movement strategies: migration, residence, and dispersal. We focused
this analysis on comparing models fit for these three records.

The latent-state models require regular time intervals, but the data are irregular in
time. To resolve this issue, we thinned the data to only one observation per day and
linearly interpolated missing intervals that were all shorter than 30 days. We chose to
use daily observations because we are interested in movement behaviors that happen
over the course of five days at the least. See Appendix S3.1 for details.
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Figure 3.2. Paths for all eagles in the dataset. Color indicates individual bird.

Figure 3.3. Plot replicated with permission from Spitz et al. (2017).

45



3.3 A Stochastic Di�erential Equation Model Framework

for Animal Movement

We considered a flexible SDE model framework following Russell et al. (2018) and Hanks
et al. (2017). We adopt the notation of Eisenhauer and Hanks (2020). The continuous
time model for an animal’s position rt at time t is

drt = vtdt (3.1)

dvt = ≠—(vt ≠ µ(rt))dt + ‡Idwt (3.2)

where vt is the velocity of the animal at time t, — is the coe�cient of friction (Nelson,
1967) which controls autocorrelation in movement, µ(rt) is the mean drift in the direction
of movement, ‡ is a scalar that controls the variance in the stochastic term, I is a 2 ◊ 2
identity matrix, and wt is independent Brownian motion in R2.

We adopt the additional simplification of a constant motility surface and regular
time intervals of 1 day. Thus an Euler-Maruyama scheme (Kloeden and Platen, 1992)
approximates (3.1)–(3.2) by

rt+1 = rt + vt (3.3)

vt+1 = vt ≠ —(vt ≠ µ(rt)) + ‡Idwt (3.4)

and substituting (3.3) into (3.4) results in

rt+2 ≠ 2rt+1 + rt = — (≠Op(rt) ≠ rt+1 + rt) + ‡‘t (3.5)

where we have modeled the mean drift µ(rt) as the negative gradient of a potential
function p(rt) (Brillinger et al., 2012; Preisler et al., 2013; Eisenhauer and Hanks, 2020;
Russell et al., 2018). We define this potential function p(rt) as a weighted sum of
distances to m fixed attractors with x-coordinates ax1, ax2, . . . , axm and y-coordinates
ay1, ay2, . . . , aym, i.e.,

p(rt) =
mÿ

i=1
kit

Ò
(xt ≠ axi)2 + (yt ≠ ayi)2 (3.6)

where xt and yt are the x- and y-coordinates of rt and kit is the coe�cient of attraction
to the ith attractor. The models considered in this paper all follow this framework but
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have varying number of attractors m and coe�cients of attraction kit that may or may
not change over time t.

3.4 Flexible Model for Partially Migratory Species

The varying coe�cient model we considered fixes the number of attractors m = 8 and
allows kit for i = 1, 2, . . . , m to change smoothly over time. We chose to use m = 8 as an
overestimate of the number of attractors, and we used shrinkage methods to e�ectively
select a subset of the attractors (Marra and Wood, 2011). It is clear that at least two
attractors are needed for a migrant or disperser model, and the additional attractors
might capture stopover sites or other irregular behavior. We chose the eight attractors
with k medians clustering of the daily locations with eight clusters, but they could be
chosen with any method of the researcher’s choice or considered latent variables to be
estimated jointly with other parameters. Each coe�cient of attraction kit is a weighted
sum of cyclic cubic regression spline basis functions. Thus, the potential function becomes

p(rt) =
mÿ

i=1

Jÿ

j=1
–ijBj(t)

Ò
(xt ≠ axi)2 + (yt ≠ ayi)2 (3.7)

where –ij is the coe�cient of each cyclic cubic basis function Bj(t) for attractor i, and
the number of basis functions J is bounded above by 30. We fit the model expressed by
plugging the gradient of (3.7) into (3.5) using the gam function in the mgcv R package.
We also penalized the null space of the basis functions to implement selection of the
attractor coe�cients via regularization (Marra and Wood, 2011).

3.5 Resident Example

We define a resident as an individual attracted to the same location throughout the
year. In this section, we compare our varying coe�cient model from Section 3.4 to a
single-state model formulated specifically for the residential movement strategy. For
this comparison, we chose a path consisting of a single year of data for one individual.
We visually determined that this path, shown in Figure 3.4A, displayed a residential
movement strategy.
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Figure 3.4. (A) Movement path for the resident in 2015. (B) Potential surface for the varying
coe�cient model. Attractors are numbered. (C) Potential surface for the single-state residence
model. The label “1” is located at the single attractor. Bounds are the same as in B. The
original path is plotted in blue with the simulation in red from (D) the single-state model and
(E) the varying coe�cient model. (F) Density plots of average distance from the simulations to
the true path for varying coe�cient and single-state models. Vertical lines indicate the means
for each model.

3.5.1 Single-State Residence Model for Comparison

We formulate a model in the SDE framework which is specific to residential behavior.
Since we assume only one type of attraction, e.g., a nest, occurs throughout the year for
a resident individual, m = 1 and we estimated the single attractor as the median of all
data points. The potential function becomes

p(rt) = k
Ò

(xt ≠ ax1)2 + (yt ≠ ay1)2 (3.8)
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where ax1 and ay1 are the x- and y-coordinates of the single attractor and k is the single
coe�cient of attraction. We restricted k to be positive so that the attractor is forced to
have a positive attraction as opposed to a negative attraction or repulsion. The unknown
parameters of this simple model are —, k, and ‡.

We fit this model in a Bayesian framework with the no-U-turn sampler (NUTS)
implemented in Stan for consistency with the latent-state models for the migrant and
dispersal, but it was not necessary to fit this model in a Bayesian framework. We also
fit the same model using the lm function in the stats R package and observed similar
results. Two Markov chains of length 10,000 were assessed visually to assess convergence.
The first 5000 samples were discarded as burn-in, and the last 5000 iterations from the
first chain were used for inference.

3.5.2 Resident Results

The attractors for the single-state residence model from Section 3.5.1 and our varying
coe�cient model from Section 3.4 are labeled on top of daily locations in blue in Figure
3.4D and Figure 3.4E, respectively. For the single-state residence model, the posterior
mean of the coe�cient of attraction, k, is 6773.0. We used this estimate to construct the
potential surface for the single-state model (3.8) in Figure 3.4B. More information about
the posterior samples can be found in Appendix S3.2.

For our varying coe�cient model described in Section 3.4, model diagnostics tests –
e.g., mgcv:: gam.check( ) in R – did not reveal evidence of a substantive departure
from the model assumptions. This includes verification that the imposed maximum
of 30 basis functions had been su�cient (i.e., not restrictively low). We estimated
—kit = —

qJ
j=1 –ijBj(t) for i œ {1, 2, . . . , 8} in the potential function (3.7). The smooth

estimates of —kit over time t are shown in Appendix S3.5 with standard errors. Values of
—kit above 0 indicate attractor i has a positive attraction at time t, and values of —kit

below 0 indicate attractor i has a negative attraction or a repulsion at time t. We used
these estimates to construct a potential surface which changes smoothly over time. A
series of snapshots of this potential surface throughout the year is shown in Figure 3.4C.
The degree of attraction to di�erent attractors is relatively constant throughout the year
for most attractors, with the possible exceptions of attractors 2, 4, and 5.

One way to assess how well a model fits a movement path is to simulate from the
model and measure how close the simulation is to the original path. To compare the
single-state and varying coe�cient model, we simulated from both models fit with the
same path 100 times. We simulated 365 days of data, the same length as the original
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path. One representative simulation from each model is shown in Figure 3.4D-E. For
each model, we calculated the distance between each simulated location and the original
path on the same day of the year. Mean distances for each simulation from both models
are shown in Figure 3.4F. On average, the varying coe�cient model simulations more
closely resemble the original path, indicating that our varying coe�cient model better
describes the movement behavior (Figure 3.4F).

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core
i5). The computing time for the varying coe�cient model is less than 1 second while
the computing time for the single-state model is 27 seconds to run 2 chains for 10,000
iterations.

3.6 Dispersal Example

We define dispersal as an individual that switches from being attracted to one location to
being attracted to a second location at some point in the year and remains attracted to
the second location for the rest of the year. The path we analyzed as a path displaying
dispersal was collected in the year 2018. We compare our varying coe�cient model
described in Section 3.4 to a latent-state model formulated specifically for dispersal.

3.6.1 Latent-State Dispersal Model for Comparison

We formulated a model in the SDE framework which is specific to dispersal. In this
model, we estimated two attractors using k means. To capture the shift from attractor
1 to attractor 2, we used a framework similar to a Hidden Markov Model (HMM)
framework consisting of 2 states. We chose to use the term latent-state model instead of
HMM following Zucchini et al. (2008) due to the dependence between observations after
accounting for the latent states. Thus, the Markov assumption is violated. However, the
distinction is relatively unimportant since the methods are functionally almost identical to
those used for a HMM, including the forward algorithm and Viterbi algorithm (Zucchini
et al., 2017).

In state 1, the individual is attracted to attractor 1, and in state 2, the individual
is attracted to attractor 2. Thus we estimated — and ‡ as in Section 3.5.1 but now we
also estimated 2 di�erent values for k, called k1 and k2, corresponding to the strength of
attraction to attractor 1 while in state 1 and the strength of attraction to attractor 2
while in state 2, respectively. We also estimated the probability of transitioning from
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state 1 to state 2 on any particular day. We characterized this probability of transitioning
with a vector of length 2 called g where the first element is the probability of staying in
state 1 and the second is the probability of transitioning. Once in state 2, the probability
of transitioning back to state 1 was set equal to 0 to ensure only one transition.

As for the single-state resident model, we fit this model in a Bayesian framework with
NUTS implemented in Stan. Two Markov chains of length 10,000 were assessed visually
to assess convergence. The first 5000 samples were discarded as burn-in, and the last
5000 iterations from the first chain were used for inference.

3.6.2 Dispersal Results

Attractors chosen with k means for each of the latent-state and varying coe�cient model
are shown in Figure 3.5D-E along with the true path in blue. The posterior mean
estimates from the latent-state dispersal model for k1 and k2 are 9228.7 and 7067.3,
respectively. We used these values to construct the potential surfaces for the two states
in the latent-state model as shown in Figure 3.5B. More information about the posterior
samples can be found in Appendix S3.3.
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Figure 3.5. (A) Movement path for the individual showing dispersal in 2018. (B) Potential
surfaces for the two states in the latent-state model for dispersal. The attractors are identified
with the numbers 1 and 2. (C) Potential surface for the varying coe�cient model with same
bounds as B. Attractors are numbered. The original path is plotted in blue with the simulation
in red from (D) the latent-state model and (E) the varying coe�cient model. (F) Density plots
of average distance from the simulations to the true path for varying coe�cient and latent-state
models. Vertical lines indicate the means for each model.
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We estimated the posterior probability of being in each state on each day using the
Viterbi algorithm (see Zucchini et al. (2017) for a description of the algorithm). In
Appendix S3.3 the most probable state sequence is depicted using di�erent colors for
each state. The state switches when the individual begins dispersal.

For our varying coe�cient model described in Section 3.4, model assumptions were
satisfied including the maximum of 30 basis functions not being restrictively low. We
estimated —kit = —

qJ
j=1 –ijBj(t) for i œ {1, 2, . . . , 8} in the potential function (3.7).

The smooth estimates of —kit over time t are shown in Appendix S3.5 with standard
errors. The smooth estimates were used to construct a potential surface which changes
smoothly over time (see Figure 3.5C). Around the end of April, a shift can be seen which
corresponds to the time of the dispersal from one location to another.

We compared 100 365-day-long simulations from the varying coe�cient and the
latent-state dispersal model. One representative simulation from each model is shown
in Figure 3.5D-E. For both models, we calculated the distance between each simulated
location and the original path on the same day of the year. Mean distances for each
simulation from both models are shown in Figure 3.5F. As was the case for the resident
strategy, the varying coe�cient model simulations more closely resemble the original
path on average (Figure 3.5F).

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core
i5). The computing time for the varying coe�cient model is less than 1 second while the
computing time for the latent-state dispersal model is 110 seconds to run 2 chains for
10,000 iterations each. Convergence of the chains was assessed visually (see Appendix
S3.3).

3.7 Migrant Example

We defined a migrant as an individual who switches seasonally from being attracted to
a southern location to a northern location and back to the original southern location
throughout the year. The path we analyzed was collected from an eagle in the year 2012.
We compare our varying coe�cient model described in Section 3.4 to a latent-state model
formulated specifically for migration.
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3.7.1 Latent-State Migrant Model for Comparison

We formulated a model in the SDE framework which is specific to migration. To fit this
model, we began by estimating two attractors using k means. We used a latent-state
model framework, this time with five states which are analogous to northern migration,
northern residence, southern migration, and two states for southern residence. States
1 (northern migration) and 2 (northern residence) both have an attraction to attractor
2, which is the northern-most attractor, but the coe�cient of attraction k in (3.8) for
state 1, which we call k1, was restricted to be larger than the k for state 2, which we call
k2. This means the attraction is stronger in state 1 than in state 2. We defined states
3 (southern migration) and 4 (southern residence) similarly with the same southern
attractor and restricting k3 > k4. State 5 is identical to state 4 in all ways except for the
transition probabilities. Thus, the coe�cient of attraction for state 5 is k5 = k4.

Since the year starts in January, we assumed the path to begin in a state of attraction
to the southern residence, which we call state 4. We then allowed a positive transition
out of state 4 so the individual may transition into northern migration. We also assumed
the individual ends the year, in December, attracted to the southern residence again.
We restricted the probabilities to only allow one cycle through the states according to
a prescribed sequence. This restriction prevents the use of these states to characterize
brief excursions by quickly cycling through the states repeatedly. In order to specify this
rule, we created the fifth state, state 5, which is identical to state 4 but which cannot be
transitioned out of. Thus the required order of transitions is 4 to 1 to 2 to 3 to 5 (i.e.,
southern residence starting on Jan 1, migration, northern residence, migration, southern
residence ending on Dec 31).

Instead of directly estimating the transition probabilities, we allowed the transition
probabilities to change over time by letting them be functions of a covariate, daily
change in daylight length. To illustrate why we chose to use this covariate, we’ve plotted
the latitude of the daily observations and the covariate, which both change in time, in
Appendix S3.4. It appears that the covariate should be high during transitions from
states 4 to 1 and from states 1 to 2. Similarly, the covariate is low during transitions
from states 2 to 3 and from states 3 to 5. Thus, we intended to model this relationship.
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Figure 3.6. (A) Movement path for the migrant in 2012. (B) Potential surfaces for the five
states in the latent-state model for the migratory strategy. The attractors are identified with
the numbers. (C) Potential surface for the varying coe�cient model with same bounds as
B. The original path is plotted in blue with the simulation in red from (D) the latent-state
model and (E) the varying coe�cient model. (F) Density plots of average distance from the
simulations to the true path for varying coe�cient and latent-state models. Vertical lines
indicate the means for each model.
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3.7.2 Migrant Results

We compared the latent-state migrant model to our varying coe�cient model described
in Section 3.4. Attractors chosen with k means for each of models are shown in Figure
3.6D-E on top of true paths in blue. For the latent-state migrant model, the posterior
means of k1, k2, . . . , k5 are as follows: k̂1 = 33826.8, k̂2 = 10022.8, k̂3 = 39865.8, and
k̂4 = k̂5 = 12950.6. We used these values to construct the potential surfaces for the five
states in the latent-state model as shown in Figure 3.6B. More information about the
posterior samples can be found in Appendix S3.4.

We estimated the posterior probability of being in each state on each day using the
Viterbi algorithm. In Appendix S3.4 the most likely state sequence is depicted using
di�erent colors for each state. The latent-state migrant model is reasonably subdividing
the path (see Figure 3.19 in Appendix S3.4).

For our varying coe�cient model described in Section 3.4, model assumptions were
satisfied including the maximum of 30 basis functions not being restrictively low. We
estimated —kit = —

qJ
j=1 –ijBj(t) for i œ {1, 2, 3, 4} in the potential function (3.7). The

smooth estimates of —kit over time t are shown in Appendix S3.5 with standard errors.
The smooth estimates were used to construct a potential surface which changes smoothly
over time (see Figure 3.6C). The snapshots of the potential surface throughout the year
indicate that southern migration occurred around April and May, and northern Migration
occurred in August and September.

We compared 100 337-day-long simulations from the varying coe�cient and the
latent-state migrant model. One representative simulation from each model is shown
in Figure 3.6D-E. For both models, we calculated the distance between each simulated
location and the original path on the same day of the year. Mean distances for simulations
from both models are shown in Figure 3.6F. As was the case for the resident and dispersal
strategies, the varying coe�cient model simulations more closely resemble the original
path on average (Figure 3.6F).

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core
i5). The computing time for the varying coe�cient model was less than 1 second, while
the computing time for the latent-state migrant model was >10 hours to run 2 chains
for 5000 iterations each. Convergence of the chains was assessed visually (see Appendix
S3.4).
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Figure 3.7. In (A), (C), and (E), the original paths are plotted in blue with the simulations
from the varying coe�cient model plotted in red. The attractors are labeled. In (B), (D), and
(F), the varying coe�cients corresponding to the attractors in (A), (C), and (E), respectively,
are shown over time. For example, k1 in (B) is the varying coe�cient corresponding to attractor
1 in (A).
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3.8 Fitting Boundary Individuals

An important benefit of the flexible movement model described in Section 3.4 is its
ability to fit a wide range of movement behaviors, including those that do not clearly
fit the migrant, resident, or dispersal stereotypes. There are many such individuals in
the golden eagle dataset since they are a partially migrating species. Three examples of
less-stereotyped paths are shown in Figure 3.7 along with simulations from the varying
coe�cient model fit to each path and the varying coe�cients. Simulations from the
varying coe�cient model are reasonable even for more irregular movement behavior such
as these examples.

3.9 Discussion and Future Work

We have described a flexible model using varying coe�cients for fitting individual
movement paths for a partially migrating species. We compared our varying coe�cient
model described in Section 3.4 to latent-state models within the same SDE model
framework for three individual golden eagles. For these three individuals displaying
migration, residence, and dispersal, simulations from our varying coe�cient model more
closely resembled the true paths. We also illustrated the ability of our varying coe�cient
model to fit boundary individuals which do not clearly exhibit migration, residence, or
dispersal. The latent-state model is also restricted by needing discrete time steps. In our
examples, we fit the varying coe�cient model to paths with observations at discrete daily
time steps for the sake of model comparison, but our varying coe�cient model could be
fit to irregular time steps as well.

Ecologists could use our flexible modeling framework described in this paper to better
understand movement behavior in less-stereotyped individuals. Ultimately, however, it
is important to make inference at the population level to inform conservation e�orts.
We have taken the first step toward population level inference by defining a model that
is flexible enough to fit all individuals in the population including individuals that do
not easily conform to pre-specified movement strategies. The next step is a structured
population level model, which would require a model for the locations of attractors and
could incorporate covariates. One could also build a model using individual random
e�ects with population level means to make population level inferences.

Attractive points were fixed in our model, but the attractors could be modeled at
the population level by implementing clustering approaches or spatial point process
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models. Clustering approaches such as k means clustering of all attractors across all
individuals could identify popular attractive regions. Incorporating covariates in the
model is important to ecologists who want to understand why movement decisions are
made by individuals. Covariates could be included in a model for the attractors by
utilizing a spatial point process model for the attractors (Warton and Shepherd, 2010).
To model speed as a function of spatial covariates, a motility function could be included
as in Russell et al. (2018) but allowing the motility function to depend on covariates.

While latent-state models are more popular in the animal movement literature, our
work shows that our varying coe�cient model could help researchers better understand
the nuances inherent in animal telemetry data. While the latent-state models must
be tailored to each movement strategy, our varying coe�cient model does not need
such adjustments. The implementation of a general SDE framework using potential
functions with varying coe�cients controlling the degree of attraction or repulsion to
given attractors allows for a reasonable model fit for many movement strategies.
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S3 Supplement to A Flexible Movement Model for Par-

tially Migrating Species

S3.1 Justification for Daily Observations

We chose to use daily observations in our analysis since the patterns we were interested
in modeling (e.g., migration, dispersal) took place over several days at the least. We
did not use a finer resolution because of the inconsistent resolution of the original data
and since we were not interested in more fine scale behaviors. The choice of sampling
resolution is an important one and can be explored by fitting the same model to the data
at di�erent resolutions.

We fit the varying coe�cient model for the three paths described in Sections 3.5-3.7
at two di�erent resolutions: daily and every 2 days. Resulting potential surfaces are
shown in Figures 3.8-3.10. In each case, attractors chosen with k means were located in
very similar locations at both resolutions. The potential surfaces are centered at zero to
facilitate a fairer comparison. For the resident and migrant, potential surfaces are very
similar when we use daily observations or observations every 2 days (Figures 3.8-3.9).
For dispersal, the move from one attractor to the other occurs over about 5 days, so we
would lose that event by using one observation every 2 days (Figure 3.10).
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Figure 3.8. Potential surfaces for the varying coe�cient model for the resident with (A) daily
observations and (B) observations every 2 days. Black dots indicate attractors.
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Figure 3.9. Potential surfaces for the varying coe�cient model for the migratory path with
(A) daily observations and (B) observations every 2 days. Black dots indicate attractors.

62



Figure 3.10. Potential surfaces for the varying coe�cient model for the path displaying
dispersal with (A) daily observations and (B) observations every 2 days. Black dots indicate
attractors.
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S3.2 Additional Plots for Single-State Resident Model

Figure 3.11. Histograms of MCMC samples from the marginal posterior distributions.

Figure 3.12. Traceplots of MCMC samples from the marginal posterior distributions.
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S3.3 Additional Plots for Latent-State Dispersal Model

Figure 3.13. Histograms of MCMC samples from the marginal posterior distributions for the
latent-state model for dispersal.

Figure 3.14. Traceplots of MCMC samples from the marginal posterior distributions for the
latent-state model for dispersal.

65



Figure 3.15. States for the dispersal model. In the top plot, the line width is proportional to
the posterior probabilities of being in each state across time. In the bottom plot, the y axis is
the y-coordinate of location (in meters). The observations are colored by most likely state.

S3.4 Additional Plots for Latent-State Migrant Model

Figure 3.16. Histograms of MCMC samples from the marginal posterior distributions for the
latent-state model for the migratory strategy.
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Figure 3.17. Traceplots of MCMC samples from the marginal posterior distributions for the
latent-state model for the migratory strategy.

Figure 3.18. On the top, we see the latitude of the individual changing over time, and on the
bottom, we see the covariate, daily change in day length, changing over time. All data is for
NM Tredwell’s location in 2012.
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Figure 3.19. States for the migrant model. In the top plot, the line width is proportional to
the posterior probabilities of being in each state across time. In the bottom plot, the y axis is
the y-coordinate of location. The observations are colored by most likely state.

S3.5 Varying Coe�cients
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Figure 3.20. The smooth estimates of —kit where kit is the coe�cient of attraction to attractor
i at time t are plotted as solid black lines. Dotted lines are drawn two standard errors above
and below the estimate of the smooth. The x-axis is the day of the year.
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Figure 3.21. As in Figure 3.20, smooth estimates are plotted with dotted lines two standard
errors above and below.
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Figure 3.22. As in Figure 3.20, smooth estimates are plotted with dotted lines two standard
errors above and below.
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Chapter 4 |

Survey of Probability Attitudes

4.1 Introduction

“People forget what they do not use. But attitudes ‘stick”’ (Ramirez et al., 2012). The
American Statistical Association consistently cites probability as a necessary topic in
undergraduate statistics programs (Horton et al., 2014; American Statistical Association,
2000), and Pearl et al. (2012) argue for the importance of developing instruments which
measure a variety of a�ective constructs within the context of statistics curricula. Few
peer-reviewed studies have examined probability attitudes, so we appeal to existing work
on attitudes toward statistics.

The first tools for assessing students’ attitudes toward statistics were developed and
frequently used by researchers in the 1980s (Roberts and Bilderback, 1980; Wise, 1985).
In total, at least 15 surveys purporting to assess students’ attitudes toward statistics have
been developed (Ramirez et al., 2012), one of the most popular of which is the Survey
of Attitudes Toward Statistics-36 (SATS-36; Schau, 2020). The SATS-36 has been an
important tool in the e�ort to improve statistics courses (Chance et al., 2016; Gundlach
et al., 2015). While the traditional probability/inference sequence is a core component
of the statistics curriculum and the American Statistical Association and others have
suggested meaningful changes to these courses, there has been relatively little e�ort to
systematically improve these courses in recent years (Horton et al., 2014).

We have only found one tool for measuring students’ attitudes toward probability,
the Probability Attitude Inventory (PAI) (Tan et al., 2011). The PAI was adapted from
the Mathematics and Science Attitude Inventory (MSAI) under the “Project EDGE”
of Rochester Institute of Technology for the purpose of assessing the impact of the
graphing calculator on students’ attitudes toward probability (Tan et al., 2011; Paciorek,
1997). The only adaptation was changing the word “mathematics” to “probability” and
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removing all questions relating to science.
Because of the compelling record of careful development and validity evidence for

the SATS-36 and the utility of the resulting component scores, we decided to study
whether the tool could be adapted, extended, and validated for studying attitudes toward
probability. We changed words related to statistics to words related to probability, and
we added open-ended questions. We administered a preliminary version of our survey to
15 undergraduate probability course sections in the fall semester of 2020. After updating
the instrument, we administered the final version of the Survey of Probability Attitudes
(SPA) to 13 undergraduate probability course sections and 7 mathematics or biostatistics
course sections at Penn State in the spring semester of 2021.

We describe the SATS-36 in Section 4.2. In Section 4.3, we describe the development,
distribution, and scoring of the SPA along with the validity and analysis methods. In
Section 4.4, we describe the resulting dataset, evidence of the validity of the instrument,
and analyses of the gain in mean attitude component scores between pre and post SPA.
Lastly, in Section 4.5, we summarize our work thus far and describe plans for future
work.

4.2 Survey of Attitudes Toward Statistics-36

The SATS-36 is an updated version of the Survey of Attitudes Toward Statistics-28 (SATS-
28), which added eight new items measuring two additional components (Schau et al.,
1995). The resulting SATS-36 assesses six components: A�ect, Cognitive Competence,
Value, Di�culty, Interest, and E�ort. The process of developing the two surveys included
initial examination of existing tools and students’ open-ended statements, organization
of a focus group, pilot testing and revision, validation of the four-component structure
using Confirmatory Factor Analysis and based on its relationship to other measures,
and validation of the final six-component structure using Confirmatory Factor Analysis
(Ramirez et al., 2012). However, some improvements to the SATS-36 have been suggested,
including changing the number of components and removing some items that perform
poorly (Vanhoof et al., 2011).

The SATS-36 has been used by researchers to explore questions such as how students’
attitudes relate to teaching methods (Bateiha et al., 2020; Budé et al., 2012; DeVaney,
2010) and whether attitudes di�er between di�erent student populations (Gri�th et al.,
2012). The SATS surveys have also been adapted for students who speak languages other
than English (Sarikaya et al., 2018; Khavenson et al., 2012; Vanhoof et al., 2011) and,

73



importantly for our purposes, to assess attitudes toward subjects other than statistics
(Wisecup, 2017; Cole, 2010; Tempelaar and Nijhuis, 2007).

The 36 survey questions comprising the six components on the SATS-36 are Likert-type
questions with responses ranging from 1 to 7, where 1 is “strongly disagree”, 4 is “neither
disagree or agree”, and 7 is “strongly agree”. There are also some demographic questions
and questions related to mathematics experience. The pre-survey version of the SATS-36
along with the scoring guidelines can be found at www.evaluationandstatistics.com.

4.3 Methods

The SPA was developed and revised in 2020 and 2021, and the final version was distributed
to students enrolled in courses at Pennsylvania State University with the help of their
instructors in the spring of 2021. The development process and final survey data provided
evidence of the validity of the instrument. We also analyzed the pre- and post-survey
scores using mixed e�ects models and t-tests.

4.3.1 Development of the Survey of Probability Attitudes

In our first version of the SPA administered in the fall of 2020, we adapted the SATS-36
by updating the demographic questions to be more specific to our audience, replacing
words related to statistics with words related to probability, and adding six open-ended
questions to the end of the survey. One item asking whether the student planned to
attend all class sessions was removed due to its ambiguous meaning for asynchronous
courses. Prior to sending the survey to students, we assessed the validity of the survey
using think-alouds. We recruited three students who had recently taken one of the
probability courses we would be surveying. The students were incentivized by a gift card
for 10 US dollars. A graduate student who was not the students’ previous instructor nor
one of the researchers met with each of the students virtually and asked the students to
read through all of the survey questions, explaining what they thought the meaning of
each question was.

In our second version of the SPA administered in the spring of 2021, we updated
several aspects of the survey based on the results from the previous semester. We
moved one of the open-ended questions, “Describe the di�erence between probability and
statistics in your own words,” from the end of the survey to the position immediately
prior to the first Likert-type items. From the think-alouds, it had been clear that even the
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most high-achieving students sometimes confuse statistics with probability. By moving
this open-ended question to earlier in the survey, students are forced to articulate the
di�erence before answering any questions about attitudes toward probability, clarifying
their position for us and for themselves. After consulting with experts in the area of
data ethics, we also split the open-ended question, “How would you compare the ethical
aspect of probability to the ethical aspect of statistics?” into two questions: “How do
you feel about ethics in the context of probability?” and “How do you feel about ethics
in the context of statistics?”. The 36 Likert-type items on the pre- and post-SPA are
listed in Supplemental Material S4.1 and S4.2 (full surveys provided upon request).

The components of the SPA along with their definitions were adapted from the six
components of the SATS-36 (Schau and Emmio�lu, 2012). The components of the SPA
with definitions and examples of pre survey items are

• A�ect (6 items) – students’ positive and negative feelings concerning probability –
“I am scared by probability.”

• Cognitive Competence (6 items) – students’ attitudes about their intellectual
knowledge and skills when applied to probability – “I can learn probability.”

• Value (9 items) – students’ attitudes about the usefulness, relevance, and worth of
probability in personal and professional life – “I use probability in my everyday
life.”

• Di�culty (7 items) – students’ attitudes about the di�culty of probability as a
subject – “Most people have to learn a new way of thinking to do probability.”

• Interest (4 items) – students’ level of individual interest in probability – “I am
interested in using probability.”

• E�ort (4 items) – amount of work the student expends to learn probability – “I
plan to work hard in my probability course.”

In the spring of 2021 implementation of the SPA, we also developed an alternative SPA
for students who were not currently enrolled in a probability course (see Supplemental
Material S4.3; full survey provided upon request). The questions were changed slightly to
ask more generally about the field of probability as opposed to a specific course, and some
irrelevant questions were removed. This version of the survey given to non-probability
students serves as a control and to quantify the variability in these measures due to
external factors.
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4.3.2 SPA Distribution and Scoring

In this paper, we will present results from the spring semester of 2021. These survey
participants were primarily undergraduate students at Penn State University Park campus
who were enrolled in an introductory-level probability course in the Statistics Department.
The SPA was distributed to two sections of MATH/STAT 318 (Elementary Probability),
four sections of STAT 401 (Experimental Methods), five sections of MATH/STAT 414
(Introduction to Probability Theory), and two sections of STAT 418 (Introduction to
Probability and Stochastic Processes for Engineering). The alternative SPA for non-
probability students was distributed to two sections of MATH 41 at Penn State Behrend
(Trigonometry and Analytic Geometry) and one section each of MATH 38 (Elementary
Linear Algebra), MATH 141H (Honors Calculus with Analytic Geometry II), STAT 250
(Introduction to Biostatistics), MATH 22 at Penn State Behrend (College Algebra II
and Analytic Geometry), and MATH 34 at Penn State Behrend (The Mathematics of
Money).

A total of 14 instructors were recruited to distribute the survey among their students.
In all sections except MATH 141H, students received extra credit of some form in return
for submission of both the pre- and post-surveys. The amount of extra credit was left up
to the instructors but was communicated to students prior to them gaining access to
either survey. Students had the option to accept or decline consent to allow use of their
data in this study. If they declined consent, they were directed to a read and respond
activity. Students received the extra credit whether they consented or not as long as
they completed the survey or the activity. In return for their help administering the
survey, instructors received de-identified data for their students after the semester was
completed and will be acknowledged in any resulting publications if they wish.

The pre- and post-SPA scores for each student for each attitude component were
determined by switching the scale for the negatively-worded questions and taking the
mean of all items within a component. Details about scoring can be found in Supplemental
Information S4.4.

4.3.3 Validity Approach

When discussing the evidence supporting the validity of the SPA, we follow the validation
inferences validity framework (see Cook and Hatala, 2016 and Kane, 2006). The validation
inferences validity framework identifies four key inferences: scoring, generalization,
extrapolation, and implications/decisions.
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We examined the scoring structure of the SPA with confirmatory factor analysis,
comparing several hypothesized models, similarly to the comparisons of hypothesized
models for the SATS-36 in Vanhoof et al. (2011). The development process, including
the think aloud exercises and expert review, also support scoring inferences.

Evidence to support generalization of SPA results would ideally show consistency
of scores if the same individual were to take the SPA more than once, and similarity
between item scores within the same construct. We plotted inter-individual variability
and calculated standard errors for a subset of students who completed either the pre- or
post-survey twice. This occurred for students who completed the survey to get extra
credit in two course sections or students who were only enrolled in one section but
voluntarily completed the survey twice. We calculated the reliability of scores using
Cronbach’s alpha.

Evidence to support extrapolation from SPA scores to true student attitudes should
show a comparison between the SPA and other measures of student attitudes. Immediately
after taking the post-SPA at the end of the spring 2021 semester, 216 probability students
volunteered to complete an additional survey. These 216 students completed the PAI
(Tan et al., 2011) in addition to the SPA. We calculated and plotted correlations between
constructs from both instruments for these individuals. We also visually compare change
scores between the SATS-36 and the SPA.

Lastly, we examined evidence that the SPA provides a rational basis for decisions
related to probability teaching methods. This entailed examination of the impacts of the
SPA on the students and instructors. To inform teaching methods, the SPA should also
exhibit changes when major changes are made in the teaching method. While we have
not used the SPA to assess changes in teaching methods, we compare students enrolled
in a probability course to students not enrolled in a probability course in Section 4.4.2.3.
We also examined the practical considerations when implementing the SPA.

4.3.4 Analysis Approach

We used mixed e�ects models and t-tests to model the di�erence between pre- and
post-SPA scores. When comparing pre- and post- SATS-36 component scores, researchers
often perform direct 2-sample hypothesis testing using, for example, a t-test or non-
parametric Wilcoxon signed rank test (e.g., Swanson et al., 2014; Kiekkas et al., 2015).
While t-procedures and their non-parametric counterparts are easy to implement and
interpret, they have a number of negative characteristics when applied to assess student
attitudes (Millar and Schau, 2010). For example, the assumption that each observation
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is independent of the others is violated, since students share instructors and classrooms.
They also cannot account for the relationship between the pre-survey scores and the
gain. Despite these caveats, we performed t-tests for each attitude component in order
to facilitate comparisons with similar studies in the literature.

A more thorough approach to comparing pre- and post-attitude scores would be to
model the gain as a function of the pre-attitude score (e.g., Millar and Schau, 2010).
We adopted this approach, including a random intercept for course section. For each
attitude construct, we estimated the model:

gainij = —0 + —1(preij) + “j + ‘ij (4.1)

where “j ≥ N(0, ‡2
“) and ‘ij ≥ N(0, ‡2

‘ ). Response variable gainij is the di�erence
between the pre- and post-survey factor score for individual i in course section j, and
preij is the pre-survey factor score for individual i.

As Millar and Schau (2010) point out, the model defined in (4.1) confounds the true
relationship between the gain and pre-attitude and regression to the mean. Regression
to the mean occurs for Likert-type items because a low pre-score allows for a larger gain
than a high pre-score allows, and a high pre-score allows for a larger negative gain than
a low pre-score allows. Thus, we would expect —1 < 0 in (4.1) even absent of a true
relationship between gain and pre-attitudes. To address this issue, we added two terms
which are estimated using data from students who were not enrolled in a probability
course. For each attitude construct, we estimated the revised model:

gainij = –0 + —0(probij) + –1(preij) + —1(probij)(preij) + “j + ‘ij (4.2)

where probij is 1 if individual i was currently enrolled in a probability course and 0 if
individual i was not enrolled in a probability course.Under (4.2), –0 + –1(pre) reflects
the expected gain from the beginning to the end of the semester attributed to regression
to the mean. Then —0 + —1(pre) reflects the expected gain attributed to the probability
course.

4.4 Results

A total of 615 probability students (>78% of enrollment) completed the pre-survey
and 525 probability students (>67% of enrollment, some of which did not complete the
pre-survey) completed the post-survey from 13 sections in the spring of 2020. We removed
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Demographic variable from pre-survey Bonferroni-corrected p value
Taken a statistics class before 0.68
Gender 1.00
Pursuing bachelors degree 1.00
Of Hispanic, Latino, or Spanish origin 1.00
Race 1.00
Grade expected in this course 1.00
Math ability (average of 2 questions) 0.07
Months since most recent college-level
mathematics or statistics course 1.00

Table 4.1. Bonferroni-corrected p values for testing the di�erence between probability students
who did and did not complete the post-survey of those that completed the pre-survey.

surveys from individuals who repeatedly entered the same number, completed the survey
in less than 5 minutes, or completed less than 80% of the main Likert items, leaving
595 pre-surveys (>76% of enrollment) and 501 post-surveys (>64% of enrollment) from
probability students. Remaining missing Likert items were imputed using section means;
imputation was implemented for 4.1% of probability students. Probability students who
completed the pre-survey but not the post-survey were not significantly di�erent than
students who completed both surveys as measured for a range of demographic variables
(see Table 4.1).

427 probability students completed both the pre- and post-survey. These students
identified as 63% white or Asian males and 29% white or Asian females (see Table
4.2). 5% identified as being of Hispanic, Latino, or of Spanish origin. 90% identified as
seeking a Bachelor’s degree, with the remainder seeking joint Bachelor’s and graduate
degrees (6%), solely graduate degrees (3%), or something else (1%). Of those seeking
Bachelor’s degrees, the most common cohort was Sophomores (41%), followed by Juniors
(30%), Seniors (14%), Freshmen (4%), and other (<1%). The most common majors
fell under Engineering (29%), followed by Computer Science (19%) and Statistics/Data
Science (15%) (see Figure 4.1). 61% of the students reported having taken at least one
college-level probability, statistics, or data science course prior to the semester in which
the study took place.
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Male
(n=289)

Female
(n=136)

Other
(n=3)

White (n=220) 151 69 0
Asian (n=166) 115 51 0
Black or African American (n=9) 2 7 0
White and Asian (n=7) 4 2 1
White and (Black or African American) (n=4) 3 1 0
Middle Eastern (n=3) 2 1 0
Other race (n=18) 12 4 2

Table 4.2. Demographic make-up of the 427 probability students who completed both pre-
and post-surveys.

Figure 4.1. Distribution of majors for the 427 probability students who completed both pre-
and post-surveys. Students with double majors were instructed to select the major which
matched more closely with their interests.

4.4.1 Validity Evidence for the SPA

The SPA is intended to be used by educators for A-B testing of methods for teaching
probability. The survey tool is intended to measure students’ feelings about their
probability class and the subject of probability. Following the guidance of Cook and
Hatala (2016), we present the evidence supporting the validity of the SPA scores,
generalization of scores within the testing context, extrapolation to real attitudes, and
implications for decision-making.
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Model Data n RMSEA NNFI CFI
Original Pre-survey 595 0.119 0.851 0.863
Original Post-survey 501 0.115 0.860 0.872
Modified Pre-survey 595 0.110 0.885 0.895
Modified Post-survey 501 0.105 0.896 0.905

Table 4.3. Fit indices for the 6-factor SPA from probability students in the spring of 2021

4.4.1.1 Scoring

Use of this instrument for the intended purpose requires the assumption that students’
attitudes are correctly transformed into a consistent numeric score for each of the six
components. The development process as described in Section 4.3.1 evidences the
relevance and interpretability of the questions.

Confirmatory factor analyses confirm the transferability of the structure of the SATS-
36 for assessment of attitudes toward probability. As shown in Table 4.3, reasonable
fit indices were obtained for the original 6-factor structure adopted from the SATS-36.
Associations among the factors are shown in Table 4.4. While there is a high correlation
between the Cognitive Competence and A�ect factors in both the pre-survey (r = 0.955)
and post-survey (r = 0.933), the 6-factor structure was found to fit the data significantly
better than an otherwise equivalent model that combines Cognitive Competence and A�ect
(—‰2 = 108.73, p < 0.001 for pre-survey; —‰2 = 68.075, p < 0.001 for post-survey).

As in Vanhoof et al. (2011), items with factor loadings below 0.4 were considered for
deletion, since they may not relate well to the underlying construct. In the resulting
modified 6-factor model, items 6 (“Probability formulas are easy to understand”, meant
to assess Di�culty construct), 22 (“Probability is a subject quickly learned by most
people”, meant to assess Di�culty construct), and 26 (“I make a lot of math errors in
probability”, meant to assess Cognitive Competence construct) were removed. Table
4.3 displays reasonable fit indices for the modified structure, and Table 4.4 displays
associations between factors. Exploratory factor analysis results also align well with
the modified structure (Figure 4.2). We will adopt the modified structure for the SPA
throughout the remainder of this paper.

4.4.1.2 Generalization

Some students completed the pre- or post-SPA twice due to their enrollment in multiple
courses taking part in the study or of their own accord. Twenty individuals took the pre-
survey twice (n=18 completed all items), and 14 individuals completed the post-survey
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Original Pre-survey A�ect Cognitive
Competence Value Di�culty E�ort

Cognitive Competence 0.955
Value 0.472 0.606
Interest 0.634 0.582 0.752
Di�culty 0.405 0.309 -0.261 -0.211
E�ort 0.248 0.402 0.520 0.466 -0.464

Original Post-survey A�ect Cognitive
Competence Value Di�culty E�ort

Cognitive Competence 0.933
Value 0.553 0.624
Interest 0.635 0.524 0.692
Di�culty 0.512 0.502 -0.027 -0.073
E�ort 0.230 0.362 0.333 0.335 -0.260

Modified Pre-survey A�ect Cognitive
Competence Value Di�culty E�ort

Cognitive Competence 0.939
Value 0.480 0.635
Interest 0.648 0.617 0.753
Di�culty 0.274 0.167 -0.293 -0.315
E�ort 0.258 0.433 0.520 0.467 -0.482

Modified Post-survey A�ect Cognitive
Competence Value Di�culty E�ort

Cognitive Competence 0.923
Value 0.557 0.637
Interest 0.646 0.544 0.693
Di�culty 0.298 0.267 -0.127 -0.252
E�ort 0.236 0.379 0.334 0.336 -0.350

Table 4.4. Estimated latent factor correlations for the original and modified 6-factor SPA in
the spring of 2021

twice. The inter-individual variability of factor scores for these individuals is displayed
in Figure 4.3, and corresponding standard errors are shown in Table 4.5.

We calculated reliability of the SPA using Cronbach’s alpha (Table 4.6). As was
the case for the SATS-36 in Schau and Emmio�lu (2012), alpha values for each factor
in the SPA exceeded the 0.7 heuristic for a low stakes assessment . This supports the
internal consistency of the items making up each factor score. While Cronbach’s alpha
is the most popular tool to estimate internal consistency reliability, the procedure has
several well-documented limitations, including the assumptions of uncorrelated errors,
tau-equivalence, and normality (Trizano-Hermosilla and Alvarado, 2016). For this reason,
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Hypothesized constuct Hypothesized constuctEFA Results EFA Results
A B

Figure 4.2. Sankey diagrams comparing the modified 6-factor structure we hypothesize to the
6-factor structure resulting from EFA. EFA results used (A) pre-survey data from probability
students and (B) post-survey data from probability students.

Figure 4.3. Box plots of inter-individual response variability for the SPA. Sample size is 20
for all pre-survey scores except A�ect (n=18) and Interest (n=19). Sample size is 14 for all
post-survey scores.
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A�ect Cognitive
Competence Value Interest Di�culty E�ort

Pre-survey 0.173 0.276 0.119 0.170 0.248 0.136
Post-survey 0.242 0.224 0.203 0.211 0.152 0.169

Table 4.5. Standard errors for factor scores based on students who completed the pre- or
post-SPA twice.

Attitude Component SPA Pre-survey SPA Post-survey
A�ect .79 .79
Cognitive Competence .78 .80
Value .85 .87
Di�culty .73 .74
Interest .86 .91
E�ort .81 .72

Table 4.6. Cronbach’s alpha values for the SPA.

we also looked at McDonald’s omega coe�cient, but results were very similar in our case
(Trizano-Hermosilla and Alvarado, 2016).

4.4.1.3 Extrapolation

We computed correlations and plotted the relationship between factor scores for the
modified post-SPA described in Section 4.4.1.1 and the PAI (see Figure 4.4). We also
computed p-values for each pair using Pearson’s product moment correlation coe�cient.
There is a strong positive correlation between the Interest scale on the SPA and the
interest scale on the PAI (p < 0.001). The construct assessing students’ self concept in
probability in the PAI is strongly correlated with the A�ect and Cognitive Competence
factors in the SPA (p < 0.001). Students’ attitudes toward the usefulness of probability as
measured by the PAI is also strongly correlated with Value in the SPA (p < 0.001). Thus,
the A�ect, Cognitive Competence, Interest, and Value scales on the SPA are strongly
related to at least one factor in the PAI. Di�culty and E�ort, however, do not have
counterparts on the PAI that they relate well with.

Figure 4.5 shows average course section change scores from pre- to post-survey for
the SPA and the SATS-36 (Schau and Emmio�lu, 2012). Median change scores are in a
similar range of 0 for both the SATS-36 and SPA. In both SPA and SATS-36 results,
mean section change scores rarely surpass the threshold for importance of ±0.5 specified
in Schau and Emmio�lu (2012).
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Figure 4.4. Correlations (r) between factor scores on the PAI (y-axis) and post-SPA (x-axis)
are shown in blue. Black dots depict scored for the 216 students who volunteered to complete
the additional survey.

Figure 4.5. In (A), changes in mean pre- and post- SATS-36 scores for each component are
shown for 101 introductory statistics sections (used with permission from Schau and Emmio�lu,
2012). In (B), changes in mean pre- and post-SPA scores for each component are shown for 13
probability sections.
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4.4.1.4 Implications

We examined the impacts of completing the SPA on students and instructors and
determined they were minimal. The median time students required to complete the
pre-SPA was 12 minutes and 44 seconds. The median time for the post-SPA was 10
minutes and 51 seconds. Since students completed the survey online in their own time,
they could take as much time as they needed. Students could also leave the survey
partway through and return at a later time to complete the questions. Instructors needed
only to send out the link to their students and provide extra credit after the deadline to
those who participated.

If the SPA is to be used to inform teaching methodology, the SPA should exhibit
change corresponding with significant course changes. In Section 4.4.2.3, we compare
SPA scores for students enrolled in a probability course and students not enrolled in a
probability course during the same semester. This illustrates an extreme case of comparing
SPA scores for sections implementing di�erent methods of teaching probability; namely,
teaching probability is compared to not teaching probability (i.e., the control group).
The lack of significant di�erences between these two groups could indicate an area of
weakness with regard to the validity of the instrument.

4.4.2 Analysis of Attitude Changes from Pre- to Post-SPA

4.4.2.1 t-Procedures

We performed paired t-tests to test whether each mean attitude component score was
di�erent at the beginning and end of a probability course. There was a significant decrease
in mean A�ect (p = 0.0044; Cohen’s d = ≠0.14), Cognitive Competence (p = 0.0013;
Cohen’s d = ≠0.16), E�ort (p < 0.0001; Cohen’s d = ≠0.54), Interest (p < 0.0001;
Cohen’s d = ≠0.33), and Value (p < 0.0001; Cohen’s d = ≠0.30). The change in
Di�culty was not significant (p = 0.3730; Cohen’s d = ≠0.04).

4.4.2.2 Linear Model for Probability Students

We fit model (4.1) via restricted maximum likelihood (REML) estimation for each attitude
component. Parameter estimates for each of the attitude component models are shown
in Table 4.7A. The normality assumption was not satisfied for the E�ort model, so
E�ort is excluded from this analysis (see Supplemental Information S4.5). For each
of the five other attitude components, there is statistical evidence of a negative linear
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A. Linear Mixed E�ects Regression for 427 Probability Students

Estimated mean gain
conditional on pre-score,
averaged across
course sections

Estimated
standard
deviation of
course section
random e�ect

A�ect Mean Gain = 1.70 – 0.42(Pre) 0.25
Cognitive Competence Mean Gain = 1.94 – 0.42(Pre) 0.16
Value Mean Gain = 1.08 – 0.24(Pre) 0.05
Interest Mean Gain = 0.88 – 0.24(Pre) 0.09
Di�culty Mean Gain = 1.63 – 0.48(Pre) 0.23

B. Linear Mixed E�ects Regression for 427 Probability Students and
159 Non-Probability Students

Estimated mean gain
conditional on pre-score and
whether or not the student is
enrolled in a probability
course, averaged across
course sections

Estimated
standard
deviation of
course section
random e�ect

A�ect Mean Gain = 0.92 – 0.21(Pre) +
0.65(Prob) – 0.17(Pre)(Prob) 0.19

Cognitive Competence Mean Gain = 2.30 – 0.44(Pre) –
0.31(Prob) 0.16

Value Mean Gain = 1.93 – 0.42(Pre) –
0.84(Prob) + 0.18(Pre)(Prob) 0.09

Interest Mean Gain = 1.76 – 0.43(Pre) –
0.87(Prob) + 0.19(Pre)(Prob) 0.09

Di�culty Mean Gain = 1.87 – 0.46(Pre) –
0.30(Prob) 0.26

Table 4.7. Linear mixed models fit with REML for each attitude component. Fit model (4.1)
for probability students in (A) and fit model (4.2) for both probability and non-probability
students in (B). A�ect and Cognitive Competence scores were calculated as the mean of 4
items each, instead of 6 and 5 respectively, because some items could not easily be adapted for
non-probability students.

relationship between pre-score and gain (all p-values were < 0.0001). Thus, the attitudes
of individuals who have smaller pre-scores are expected to improve more at the end of the
course than for those who have larger pre-scores, as measured by each of the 5 attitude
components.
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Figure 4.6. Scatter plots of pre SPA scores versus gain from pre to post are displayed in
A-E, with jittered points for ease of visibility, for 5 attitude components. Colored lines depict
the section mean lines from the mixed e�ects models in Table 4.7B. Marginal densities are
displayed in the margins. A shared legend is shown in F.
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Demographic variable from pre-survey Bonferroni-corrected p value
Taken a statistics class before 0.07
Gender 2.81◊10≠23

Pursuing bachelors degree 1.00
Of Hispanic, Latino, or Spanish origin 1.00
Race 2.66◊10≠13

Grade expected in this course 0.04
Math ability (average of 2 questions) 5.17◊10≠5

Months since most recent college-level
mathematics or statistics course 1.55◊10≠5

Table 4.8. Bonferroni-corrected p values for testing the di�erence between probability students
and non-probability students.

4.4.2.3 Linear Model for Probability and Non-probability Students

Scatter plots of the relationship between pre-survey scores and gain for probability
students are shown in red in Figure 4.6. While the negative relationship between pre-
survey scores and gain is clearly shown in each case, it is impossible to know whether it
is due to true dependence between pre-survey scores and gain or due to regression to
the mean using only data from the 427 probability students. To estimate the additional
parameters in model (4.2), we added results from an alternative SPA completed by
159 students enrolled in non-probability courses which are listed in Section 4.3.2. The
demographic make-up was significantly di�erent between probability and non-probability
students, as tested using Bonferroni-corrected p values (see Table 4.8).

We fit model (4.2) via restricted maximum likelihood (REML) estimation for each
attitude component. Parameter estimates for each of the attitude component models
are shown in Table 4.7B. E�ort was excluded from this analysis as well since the items
within the E�ort component could not be easily adapted for non-probability students, so
E�ort was not included on the alternative SPA.

These data support evidence of an interaction e�ect between pre score and whether
the student is enrolled in a probability section for each of A�ect (p = 0.02493), Interest
(p = 0.02371), and Value (p = 0.02689). Thus, the di�erence between probability and
non-probability students is di�erent depending on the score on the pre survey. However,
when we tested the di�erences in mean gain between probability and non-probability
students at the 10th and 90th percentile of pre scores, none of these di�erences were
significant at – = 0.05 (see Table 4.9).

The interaction e�ect was removed from the models for Cognitive Competence and
Di�culty (see Table 4.7B). The gain in Cognitive Competence was significantly smaller
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Pre Score Mean Di�erence in Gain
(Probability – Non-Probability) p Value

A�ect 10th Percentile: 3.12 0.115 0.5119
A�ect 90th Percentile: 6 -0.374 0.0521
Value 10th Percentile: 4 -0.134 0.3176
Value 90th Percentile: 6.56 0.318 0.0555
Interest 10th Percentile: 3.25 -0.270 0.1179
Interest 90th Percentile: 6.38 0.312 0.1353

Table 4.9. Results of ratio t tests comparing mean gains for probability and non-probability
students given specific values for pre score.

for probability students that for non-probability students (p = 0.01818), although the
mean di�erence of 0.31 would not be considered an important di�erence according to
the standard of 0.5 points described for the SATS-36 by Schau and Emmio�lu (2012).
The mean gain in Di�culty was smaller for probability students than non-probability
students, but the di�erence was not significant using – = 0.05 (p = 0.07082). Recall that
high scores for Di�culty imply less perceived di�culty, and low scores imply the student
perceives more di�culty. Thus, a smaller gain in Di�culty would imply the students saw
less improvement in viewing probability as not di�cult.

4.5 Discussion

Probability attitudes have received little attention in the statistics education community
despite the general understanding of the importance of attitudes and the subject of
probability in statistics curricula. We found only one instrument for measurement of
probability attitudes, the PAI, which has not gone through the same careful development
and validation process as the SATS-36. In this paper, we describe the process of adapting
the SATS-36 to develop the SPA, we present evidence of the validity of the instrument,
and we illustrate analyses of pre- and post-SPA results for probability and non-probability
students. Paired t-tests alone would lead the researcher to conclude that there was a
significant decrease in five of the six attitude components from the beginning to the
end of a college-level probability course at Pennsylvania State University. However,
further analyses lead to a more nuanced conclusion. We modeled mean gain in attitude
component score as a function of pre-score and with a random e�ect for course section,
which illustrated the di�erence in the trends for probability students with high and low
pre-scores. We then added survey scores from an adapted version of the SPA for non-
probability students, and we fit a mixed e�ects model to the scores from all probability
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and non-probability student participants. The results suggest few di�erences between
probability and non-probability student scores.

4.5.1 Limitations

There are some important caveats regarding the similarities and di�erences between
the probability and non-probability groups participating in this study. The data was
collected during a global pandemic, during which all classes were held online. There is
evidence that students’ attitudes were impacted by the shift to remote learning during
the COVID-19 pandemic (Wester et al., 2021), so the study should be repeated during a
less tumultuous period for students. The demographic make-up of the probability and
non-probability students also di�ers, and the non-response rate is much higher in the
non-probability sections (>37% of non-probability students enrolled completed both the
pre- and post-SPA versus >54% of probability students enrolled completed both the pre-
and post-SPA). Future studies should also include students from a variety of colleges
and universities.

In the data collection procedure, we had to balance careful research with student
privacy. If we weren’t subject to IRB & FERPA considerations, we ideally would
have recorded additional variables including students’ academic history, grades, and
assignments within the class. We also needed to balance several factors in the timing
of the pre- and post-surveys. We asked students to complete the surveys in the first
and last three weeks of the semester to allow students time to complete the assignment
in their own time, to allow time for students who add the course late to complete the
pre-survey, and to allow instructors time to allot extra credit at the end of the semester.
First impressions likely fluctuate in those first days, and students that "late drop" are
lost to follow up which almost certainly biases the data to some extent.

One assumption inherent in this study is the assumption that students know what
probability is, and that they know how it di�ers from statistics. Further studies could
examine the impact of a probability course on students attitudes toward statistics. There
is an open-ended question on the SPA which prompts students for their interpretation of
how probability and statistics di�er. Further analyses could make use of the answers
to this question, possibly giving higher weight to students with a better idea of what
probability is. It should also be noted that 66% of the non-probability students were
enrolled in introductory biostatistics, which although not primarily a probability course,
may cover basic probability concepts. However, the analyses in Sections 4.4.2.2 and
4.4.2.3 were repeated without this cohort, and the main conclusions did not di�er.
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4.5.2 Implications for Teaching

Despite the limitations of this study, we have provided evidence that students’ attitudes
toward probability did not improve on average from the beginning to the end of the
probability courses in our study. This suggests that probability teachers may want to
consider positive attitudes toward probability as a desired course outcome, and this
outcome should inform teaching methods. Instructors may choose to implement the
SPA over the PAI due to the validity evidence supporting the SPA or because of the
analogous structure of the SPA and SATS-36. Instructors who choose to implement the
SPA in their own classrooms should not expect small modifications in teaching methods
to translate to large di�erences in SPA scores between treatment and control groups.
Alternatively, instructors may decide to target specific attitude components that are
especially low in their students at the beginning of the semester, or the SPA could be
used to motivate in-class discussions with students to allow students to examine their
own attitudes toward probability.

4.5.3 Implications for Research

The lack of di�erences between probability and non-probability students’ attitudes toward
probability suggest the import of using a control group for attitude studies in general.
The e�ect of the pre score on the gain also cannot be ignored when conducting similar
analyses. While we found strong evidence of the validity of the SPA for assessing students’
attitudes toward probability, future iterations could improve the ability of the SPA to
identify small changes in students’ attitudes. The motivations behind students attitudes
should also be explored. Several open-ended questions on the SPA prompt students
to list experiences they believe most positively or negatively influenced their current
attitude toward statistics or probability. While assessment of these answers was outside
of the scope of this study, further research could use similar prompts to identify areas for
improvement.

S4 Supplement to Survey of Probability Attitudes

S4.1 Pre-Survey of Probability Attitudes for Probability Students

The statements below are designed to identify your attitudes about probability. Each
item has 7 possible responses. The responses range from 1 (strongly disagree) through 4
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(neither disagree nor agree) to 7 (strongly agree). If you have no opinion, choose response
4. Please read each statement. Mark the one response that most clearly represents your
degree of agreement or disagreement with that statement. Try not to think too deeply
about each response. Record your answer and move quickly to the next item. Please
respond to all of the statements.

1. I plan to complete all of my probability assignments.

2. I plan to work hard in my probability course.

3. I will like probability.

4. I will feel insecure when I have to do probability problems.

5. I will have trouble understanding probability because of how I think.

6. Probability formulas are easy to understand.

7. Probability is worthless.

8. Probability is a complicated subject.

9. Probability should be a required part of my professional training.

10. Probability skills will make me more employable.

11. I will have no idea of what’s going on in this probability course.

12. I am interested in being able to communicate probabilistic arguments to others.

13. Probability is not useful to the typical professional.

14. I plan to study hard for every probability test.

15. I will get frustrated going over probability tests in class.

16. Probabilistic thinking is not applicable in my life outside my job.

17. I use probability in my everyday life.

18. I will be under stress during probability class.

19. I will enjoy taking probability courses.
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20. I am interested in using probability.

21. Probability conclusions are rarely presented in everyday life.

22. Probability is a subject quickly learned by most people.

23. I am interested in understanding probabilistic arguments.

24. Learning probability requires a great deal of discipline.

25. I will have no application for probability in my profession.

26. I will make a lot of math errors in probability.

27. I plan to attend every probability class session.

28. I am scared by probability.

29. I am interested in learning probability.

30. Probability involves massive computations.

31. I can learn probability.

32. I will understand probability equations.

33. Probability is irrelevant in my life.

34. Probability is highly technical.

35. I will find it di�cult to understand probability concepts.

36. Most people have to learn a new way of thinking to do probability.

S4.2 Post-Survey of Probability Attitudes for Probability Students

The statements below are designed to identify your attitudes about probability. Each
item has 7 possible responses. The responses range from 1 (strongly disagree) through 4
(neither disagree nor agree) to 7 (strongly agree). If you have no opinion, choose response
4. Please read each statement. Mark the one response that most clearly represents your
degree of agreement or disagreement with that statement. Try not to think too deeply
about each response. Record your answer and move quickly to the next item. Please
respond to all of the statements.
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1. I tried to complete all of my probability assignments.

2. I worked hard in my probability course.

3. I like probability.

4. I feel insecure when I have to do probability problems.

5. I have trouble understanding probability because of how I think.

6. Probability formulas are easy to understand.

7. Probability is worthless.

8. Probability is a complicated subject.

9. Probability should be a required part of my professional training.

10. Probability skills will make me more employable.

11. I have no idea of what’s going on in this probability course.

12. I am interested in being able to communicate probabilistic arguments to others.

13. Probability is not useful to the typical professional.

14. I tried to study hard for every probability test.

15. I get frustrated going over probability tests in class.

16. Probabilistic thinking is not applicable in my life outside my job.

17. I use probability in my everyday life.

18. I am under stress during probability class.

19. I enjoy taking probability courses.

20. I am interested in using probability.

21. Probability conclusions are rarely presented in everyday life.

22. Probability is a subject quickly learned by most people.

23. I am interested in understanding probabilistic arguments.
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24. Learning probability requires a great deal of discipline.

25. I will have no application for probability in my profession.

26. I make a lot of math errors in probability.

27. I tried to attend every probability class session.

28. I am scared by probability.

29. I am interested in learning probability.

30. Probability involves massive computations.

31. I can learn probability.

32. I understand probability equations.

33. Probability is irrelevant in my life.

34. Probability is highly technical.

35. I find it di�cult to understand probability concepts.

36. Most people have to learn a new way of thinking to do probability.

S4.3 Alternative Pre- and Post-Survey of Probability Attitudes for

Non-Probability Students

The statements below are designed to identify your attitudes about probability. Each
item has 7 possible responses. The responses range from 1 (strongly disagree) through 4
(neither disagree nor agree) to 7 (strongly agree). If you have no opinion, choose response
4. Please read each statement. Mark the one response that most clearly represents your
degree of agreement or disagreement with that statement. Try not to think too deeply
about each response. Record your answer and move quickly to the next item. Please
respond to all of the statements.

3. I would like probability.

4. I would feel insecure if I had to do probability problems.

5. I would have trouble understanding probability because of how I think.
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6. Probability formulas are easy to understand.

7. Probability is worthless.

8. Probability is a complicated subject.

9. Probability should be a required part of my professional training.

10. Probability skills would make me more employable.

12. I am interested in being able to communicate probabilistic arguments to others.

13. Probability is not useful to the typical professional.

16. Probabilistic thinking is not applicable in my life outside my job.

17. I use probability in my everyday life.

19. I would enjoy taking probability courses.

20. I am interested in using probability.

21. Probability conclusions are rarely presented in everyday life.

22. Probability is a subject quickly learned by most people.

23. I am interested in understanding probabilistic arguments.

24. Learning probability requires a great deal of discipline.

25. I will have no application for probability in my profession.

26. I would make a lot of math errors when doing probability.

28. I am scared by probability.

29. I am interested in learning probability.

30. Probability involves massive computations.

31. I can learn probability.

32. I would understand probability equations.

33. Probability is irrelevant in my life.
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34. Probability is highly technical.

35. I would find it di�cult to understand probability concepts.

36. Most people have to learn a new way of thinking to do probability.

S4.4 Scoring Guide for SPA and alternative SPA

Component (subscale) scores on the SPA are formed by

1. Reversing the responses to the negatively worded items indicated with an asterisk*
(1 becomes 7, 2 becomes 6, etc.),

2. Summing the item responses within each component, and

3. Dividing by the number of items within each component.

The following lists the attitude components followed by the item numbers within each
component. Item numbers are the same in the pre and the post versions in Supplemental
Material S4.1, S4.2, and S4.3. Negatively worded items are indicated with an asterisk*,
and items which are not included in the alternative SPA are indicated with a dagger†.

• A�ect: 3, 4*, 15*†, 18*†, 19, 28

• Cognitive Competence: 5*, 11*†, 26*, 31, 32, 35*

• Value: 7*, 9, 10, 13*, 16*, 17, 21*, 25*, 33*

• Di�culty: 6, 8*, 22, 24*, 30*, 34*, 36*

• Interest: 12, 20, 23, 29

• E�ort: 1†, 2†, 14†, 27†

S4.5 E�ort Plot

As shown in Figure 4.7, the residuals for the E�ort model fail the normality assumption.
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Figure 4.7. QQ-plot for residuals after fitting model (4.1) for the gain in E�ort scores.
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Chapter 5 |

Conclusion and Future Work

This dissertation describes three projects where statistical models, designs, or surveys
were developed or adapted to address research questions related to animal movement or
statistics education. While animal movement modeling and statistics education research
are distinct in many ways, they both have increased in importance in recent years. Rapid
advances in data availability due to technological progress has impacted both fields:
statistical methods for analyzing animal movement data have become more relevant as it
becomes easier to collect and store location data, and statistics education is becoming
essential to address the growing need to analyze data in a range of industries.

Wildlife telemetry data is typically recorded at regular time intervals, and although
those time intervals are getting shorter, telemetry units are being developed for increas-
ingly smaller animals. Battery life is still a limitation, as is computational complexity
when fitting models to extremely high resolution movement data. Thus, sampling and
sub-sampling will always be relevant in animal movement studies. In Chapter 2, we
proposed a novel sampling design called lattice and random intermediate point (LARI)
which combines regular and irregular time intervals. We showed through two data
examples and one simulation example that LARI sampling is superior to regular sampling
in at least some cases.

While the results described in Chapter 2 imply that regular sampling may not always
be the appropriate choice for animal movement studies, we do not suggest that LARI
sampling is always the best choice. Future work in this area should examine optimal
sampling for animal movement which should also be informed by input from wildlife
experts regarding species behavior and the research questions. Tracking units are also
becoming more diverse with regard to the data they collect, and the addition of covariates
such as proper acceleration and temperature should also be considered.

Many animal populations display partial migration, meaning seasonal migration is
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only present in a subset of the population. This presents challenges for conventional
modeling methods which require categorization of movement paths into distinct groups. In
Chapter 3, we presented a more flexible approach which can account for less stereotypical
individuals. We also showed that our approach using varying coe�cients produces more
realistic simulations of stereotypical behavior than a latent-state modeling approach.

While the flexible model presented in Chapter 3 is useful at the individual level, it
is important to make inference at the population level to inform species conservation
management e�orts. Since the flexible model we describe can be fit to a wide range of
movement behaviors without significant model adjustments, it could be included in a
structured population level model which incorporates covariates to model the attractor
locations. The flexibility of this approach would be especially useful, for example, for
species whose behavior is changing within a subgroup or adapting to a changing climate.

Students’ attitudes toward the subject being taught have been identified by researchers
as an important metric to inform teaching practice. While attitudes toward statistics
have received enough attention in statistics education that many survey tools purporting
to assess attitudes toward statistics have been developed, many students learn elementary
probability before introductory statistics. In Chapter 4, we develop the Survey of
Probability Attitudes (SPA) by adapting an existing tool for assessment of attitudes
toward statistics. We distributed the SPA at the beginning and end of the semester to
students in a probability course, and we distributed a version of the SPA to students
who were not enrolled in a probability course. We used the resulting dataset to assess
the validity of the instrument and analyzed the scores from both groups of students. We
found a large e�ect of regression to the mean which was present in both groups.

In Chapter 4, we found strong evidence of the validity of the SPA, but changes in
attitudes were di�cult to identify. Despite the caveats we pointed out including the
timing of the study taking place during a global pandemic and remote learning, we
expect there were some changes to students’ attitudes toward probability as a result of
their probability course. Future iterations should be developed to improve the ability
to identify changes in students’ attitudes, and further research should also examine the
motivations and beliefs influencing students attitudes.

My work thus far has tackled applied problems from the fields of ecology and statistics
education, and I expect my future work to originate from a variety of sources as well.
The projects described in this dissertation were collaborative e�orts with statisticians,
wildlife biologists, and educators. I anticipate working collaboratively with statisticians
and non-statisticians throughout my career.
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