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Abstract

The advent of data science has led to statistics education researchers re-thinking and

expanding their ideas about what computational tools to use for teaching statistical modelling.

Consequently, the use of computer programming languages such as R have been promoted

in textbooks, tasks, and other learning activities to support data science at the high school

level. The shift in pedagogical knowledge required for teachers, however, is not restricted

to the introduction of code-driven tools and computational thinking to the curriculum. The

statistical methods taught need modernising to include digital sources of data, such as APIs,

and algorithmic approaches, for example, predictive and classification modelling. Therefore,

teaching data science at the high school level using code-driven tools requires consideration

of how learning activities can be designed to support the co-development of statistical and

computational thinking.

Minimal research exists about the design of tasks that support the introduction of high school

students and teachers to the use of code-driven tools for statistical modelling. Hence, the dual

objectives of the study were to: (1) explore the observable thinking practices that emerge when

learners completed statistical modelling tasks that introduced code-driven tools; and (2) develop

a task design framework to introduce code-driven tools and support the integration of statistical

and computational thinking. Using a design-based research approach, four structured tasks were

developed for teaching statistical modelling at the same time as introducing the programming

language R. These four tasks were implemented with high school statistics teachers across four

full-day face-to-face professional development workshops.

The study resulted in the development of the Introducing Code-driven Tools (ICT) task design

framework, which was produced by identifying key design elements for one task, and refining and

re-evaluating design principles and processes through consecutive retrospective analyses of the

other three tasks. The findings from this exploratory study indicate that the tasks constructed

supported teachers’ introduction to code-driven tools and encouraged an integration of statistical

and computational thinking. The ICT task design framework contributes to statistics and data

science education research by building on previous work in effective pedagogy, and by providing

practical guidelines for the introduction of code-driven tools to facilitate the integration of

statistical and computational thinking to learn from modern data. Another contribution is the

production of two hypothesised frameworks, which provide guidelines for assessing and clarify

the integration of statistical and computational thinking.
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Chapter 1: Introduction

1.1 Motivation

Towards the end of 2015 I attended a talk at a national teachers conference and keynote speaker

Rob Gould challenged the audience with the statement:

Why do we teach statistics? Because of data! Don’t select data because of its

mathematical properties, teach what is needed to analyse and understand the data

students interact with every day of their lives.

At that time, I was writing new teaching materials for a very large introductory level statistics

course and constructing tasks that explored modern data contexts (see Fergusson & Bolton,

2018). Rob’s words resonated strongly with me, as following the data was a key focus for my

development of these tasks. A few years later, I began my PhD study at the same time as

I began designing a new introductory level data science course. As I continued to construct,

implement, and refine learning tasks for teaching data exploration and statistical modelling, it

became apparent that in order to use “the data students interact with every day of their lives”

(Gould, 2015), I needed to re-think my task design approach. My knowledge of data technologies

such as web scraping, databases, APIs, and computer programming languages was a crucial

and important factor that enabled me to imagine, design, and craft new learning activities. I

realised that the tasks I developed would not be the same as the ones I had crafted previously

over my 14-year statistics teaching career. To teach students how to understand the data they

interact with through a range of digital technologies would require integrating statistical and

computational thinking.

It did not seem to me that using a computer programming language was as easy as just switching

from using “point and click” software tools to script-based code approaches. Instead, I had to

think carefully about when to use code to teach statistical ideas, how much code to use to
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teach statistical ideas, how much “raw” code to reveal to students versus using functions that

hid many of the computations, and how much understanding about the code itself needed to

be taught versus focusing in the output of the code. I looked for examples being shared of

innovative modern approaches to teaching statistics using computer programming. I became

frustrated, however, that the focus was on what to teach and what tools to use, or the provision

of what activities to use and what technology to use to create them. The focus was not on how

to create effective tasks and why these tasks would support the development of statistical and

computational thinking. That is, teachers were not being supported to create their own tasks, as

an explication of how to create their own tasks was not given. Furthermore, no research evidence

was provided that the tasks were supporting learners to integrate statistical and computational

thinking.

Cobb once stated that none of the key innovations in the undergraduate statistics curriculum

were due to statistics education research (Cobb, 2015b). Instead, he agreed with Utts (2015) that

textbooks were one of the main drivers of substantial change in statistics education and that

the role of statistics education research was to document “whether and in what ways existing

approaches do or do not help students learn” (Cobb, 2015b, p. 5). Although I agree with Cobb

that statistics education research plays a crucial role in exploring how pedagogical approaches

support students to learn, I do not agree with Cobb’s distinction between innovation and research

in statistics education. Drawing on my experience as Head of Department for Mathematics and

Statistics at a very large co-educational high school, I know that textbooks can provide examples

of good teaching tasks, but they very often do not provide the guidance needed to equip teachers

to create their own tasks, particularly when technology is involved.

When I create tasks, I use my many years of designing and implementing learning tasks, my

reading about effective pedagogy and my beliefs about how to introduce new knowledge to

learners. This is not unusual approach for task designers and researchers. As Arnold et al. (2017)

remarked, implicit design principles are often incorporated into learning activities and more

consideration is needed in this area. Explicating the implicit was the driver for research by Wild

and Pfannkuch (1999), as they claimed that they knew good statistical thinking when they saw

it but were unable to explicate and characterise it for other people. In a similar vein, I believed

my tasks for introducing teachers to code-driven tools through statistical modelling would be

effective in promoting learning, which led to the realisation that my PhD research should focus

on extracting the design principles behind my tasks and at the same time provide evidence that

the approach helped students to learn. Such a focus would provide teachers practical guidance
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on how to introduce high school students to code-driven tools and create their own tasks.

Therefore, within the context of teaching statistical modelling at the senior high school level,

my research will explore design principles for tasks that introduce code-driven tools and provide

evidence that the tasks help learners to integrate statistical and computational thinking. The

rest of this chapter will provide a brief background to this research topic, outline the rationale for

the research, identify the key research questions, define the scope of the research, and summarise

how the thesis has been structured.

1.2 Background

The advent of data science has led to statistics education researchers re-thinking and

expanding their ideas about tasks and tools for teaching and learning. A common thread to

discussions about data science education is that students need to integrate both statistical and

computational thinking to learn from data (e.g., De Veaux et al., 2017), which necessitates

students developing at least some coding (computer programming) skills (e.g., Gould, 2010).

Using code-driven tools facilitates the use of digital data sources and algorithmic modelling,

which may support the integration of statistical and computational thinking. Although most

of the current recommendations for data science education are framed within the context of

tertiary education (e.g., Cetinkaya-Rundel & Rundel, 2018), introducing code-driven tools

within high school statistics classrooms is also consistent with the digital technology goals of

schools.

The implementation of the 2007 New Zealand statistics curriculum (Ministry of Education,

2007) has already had a significant impact on the nature of the statistics taught and assessed

in secondary schools (Forbes et al., 2014). The curriculum changes not only placed a greater

emphasis on statistical modelling and thinking within a statistical enquiry cycle, but also defined

statistics as a connected but separate subject from mathematics at the senior high school level.

New approaches to statistical modelling, such as simulation-based methods, were introduced

into the curriculum, and new computational tools were developed to support the teaching and

learning of these simulation-based methods. One of the enablers of freeing statistics from the

chains of mathematics (Cobb, 2015a) was the increased affordability, availability and usability

of computers and other digital technologies. Within statistics education research and practice,

computational tools such as TinkerPlots (Konold & Miller, 2015), the Common Online Data

Analysis Platform (CODAP, Finzer, 2016), iNZight (Wild, 2018), and Visual Inference Tools
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Online (VIT Online, Wild & Halstead, n.d.) have gained popularity, due to their careful design

and use of animation, graphics and interactivity to support development of statistical concepts,

thinking, and reasoning.

When introducing coding as part of data science at the high school level, careful considerations

are needed to ensure that the development of statistical concepts, thinking, and reasoning are

still well supported when learners engage with code-driven tools. One consideration must be

task design, as tools by themselves do not teach (Wild, 2018). The use of tools is paired with

tasks, and the task used will influence the nature of the learning that takes place (Doerr & Pratt,

2008). However, task design research in mathematics education has only recently gained attention

(Watson & Ohtani, 2015). Within statistics education, research focused on task design has not

specifically explored computer programming as the main computational tool (e.g., Ben-Zvi et

al., 2017), although design principles have been developed for dynamic interactive mathematics

technologies (e.g., Burrill, 2016; Dick & Burrill, 2016). Any task design principles for teaching

mathematics and statistics using GUI-driven tools, however, cannot be assumed to automatically

apply to construction of tasks for data science. Consideration of task design research from

within computer science is also required, as well as research that connects data technologies and

pedagogy.

1.3 Rationale for research

It is my belief that data science education at the senior high school level should involve the

use of code-driven tools. As computer programming is not required as part of the New Zealand

school curriculum for statistics, it cannot be assumed that high school statistics teachers have a

good knowledge of coding, nor knowledge of how to design statistical modelling tasks that use

code-driven tools. For high school teachers to be confident data science teachers, they need to

co-develop skills in doing statistical modelling using code-driven tools, and constructing tasks for

teaching statistical modelling using code-driven tools. For these reasons, and because my research

is exploratory, I decided to focus my research on high school statistics teachers. The purpose

of this research is to explicate design principles for the construction of statistical modelling

tasks that introduce code-driven tools. The dual objectives of the study are to: (1) describe

the observable thinking practices that emerge when learners completed tasks that introduced

code-driven tools within the teaching and learning context of statistical modelling and; (2)
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develop a task design framework, comprising a cohesive set of design principles and processes,

to guide construction of such tasks.

1.4 Research questions

The main and supporting research questions are:

1. What observable thinking practices emerge as teachers, positioned as learners, engage with

statistical modelling tasks that introduce code-driven tools?

• Can these observable thinking practices be characterised as integrating statistical and

computational thinking? and if so,

• What features of the tasks appear to stimulate or support the integration of statistical

and computational thinking?

2. What design principles could guide the construction of statistical modelling tasks that

introduce code-driven tools?

• How could tasks be constructed to support the introduction of new sources of data

and modelling approaches, simultaneously with new code-driven tools?

• Does using familiar computational tools or modelling approaches within the same

task support the introduction of new code-driven tools?

1.5 Scope of the research

An exploratory study on task design principles for statistical modelling from a data science

perspective was conducted over five years using a design-based research approach (e.g., Bakker &

van Eerde, 2014). My analysis of practical teaching issues and construction of new learning tasks

was informed by both existing design principles and technological innovations (e.g., Edelson,

2002; Reeves, 2007). As there was limited research literature for task design specifically in

the area of statistical modelling with code-driven tools, relevant task design literature from

mathematics and computer science was also considered.

The participants in the research were twelve teachers (nine female and three male) with

experience teaching the national statistics curriculum for the last two years of high school.

The high school statistics teachers were positioned as learners for the research. I constructed

5



four new tasks that were aligned to the national curriculum for statistics at the year 12 or 13

level (the last two years of high school). The curriculum focus was statistical modelling from

a data science perspective. The tasks extended the following curriculum topics: numeric data

distributions, probability simulations, simple linear regression, randomisation (permutation)

tests. All the tasks introduced the programming language R (R Core Team, 2020).

1.6 Thesis structure

Chapter 1 provides the motivation for researching the design tasks that introduce code-driven

tools through statistical modelling, at the senior high school level. Chapter 2 reviews education

research about what statistical modelling tasks and computational tools should be used, from

the perspective of data science. After establishing the need to create tasks that support the

integration of statistical and computational thinking, the chapter presents potential guidelines

for statistical modelling task design that introduces code-driven tools. Chapter 3 describes the

research methods used, and explains how a pragmatic design-based research approach was used

to guide the task construction, data collection, and analysis methods. The results for the research,

including the development of the ICT (Introducing Code-driven Tools) task design framework,

are developed over Chapters 4, 5, 6 and 7. Chapter 8 presents the final version of the ICT

task design framework and reviews relevant existing theories and principles for task design

from mathematics, statistics, and computer science education. Chapter 9 discusses the ICT task

design framework, contributions to the research knowledge base, implications of the framework

for teaching and research, and limitations of the research and task design framework.
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Chapter 2: Background

2.1 Introduction

The review of literature started when I began to look for research and ideas to inform the

implementation of data science at the senior high school level. In the recommendations for

what to teach, I saw there was little exploration in the literature of the potential for blending

different types of computational tools within the same learning programme or task, for example,

using both GUI-driven and code-driven tools for teaching data science. I initially formed a

working hypothesis that when introducing code-driven tools, teachers should include and build

on experiences with familiar tools, rather than replacing GUI-driven tools with code-driven

tools for teaching statistical modelling. To explore this possibility, I developed and implemented

tasks that introduced code-driven tools, drawing on characteristics of simulation-based modelling

activities developed for tools such as VIT Online (Wild & Halstead, n.d.) and TinkerPlots

(Konold & Miller, 2015).

The scope of Chapter 2 is a review of the literature that was available during 2017 to 2019.

During this period, I concurrently developed and implemented tasks for my own teaching at

the tertiary introductory level and developed tasks for my research at the senior high school

level. The focus of the chapter is intentionally practical and reflects the duality of my roles as

teacher and researcher. Recommendations and relevant research for teaching data science at the

senior high school are reviewed in Section 2.2, with particular attention given to the situated

teaching context of Aotearoa New Zealand, the expanding sources of data, and the teaching

of statistical modelling. A summary is then provided in Section 2.3 of teaching implications

related to thinking frameworks and computational tools, and Section 2.4 summarises how both

of these are connected with task design. The chapter ends with potential guidelines for statistical

modelling task design involving code-driven tools in Section 2.5, identification of gaps in the

literature, and a re-statement of the research questions.
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2.2 Teaching data science at the senior high school

The rapid development of modern data and associated digital technologies requires an urgent

review of what is taught at the senior high school level. What it means to learn from data is

different because of advances in computing (Baumer et al., 2017) and consequently students

need to learn new computational skills to support them to understand and interpret modern

data (Gould, 2015; Nolan & Temple Lang, 2010). Although there are an increasing number of

commentaries about the need for data science education at the high school level (e.g., Engel, 2017;

Finzer, 2013; Ridgway, 2015), there has been very little research into teaching and learning of

data science at this level. Furthermore, there is no consensus view on how data science should be

implemented at the senior high school level. While at the tertiary and industry level, there may be

acceptance that data science involves some mix of statistics and large-scale computing (Biehler,

2018; Hoerl et al., 2014), there is no agreement on the nature and scale of the computational

techniques or tools required to implement data science at the senior high school level. The

specification of these computationally-bound techniques and tools is crucial for any professional

development work with upskilling high school teachers on how to teach students to learn from

modern data.

2.2.1 Defining data science as a curriculum subject

Definitions of data science are deeply connected to the author’s motivations for providing such

definitions. I have adopted a broad view that data science involves extracting meaning from data

that has been sourced from our modern digital world, and that computational knowledge, like

contextual knowledge, shapes how we use and how we think about data and models. As I will

elaborate further in this chapter, I contend that teaching data science requires a substantial shift

in how learning activities are designed. It is my view that any data science curriculum needs

to be developed with the use of computational tools as a central component throughout (Hicks

& Irizarry, 2018), rather than viewing data science as adding to, modernising, or enhancing an

existing statistics curriculum and its teaching and assessment practices. Although I agree that

the statistical ideas and concepts taught at the senior high school level should be enduring in

the face of ongoing changes in technology (Pfannkuch, 2018), students’ learning of statistical

concepts and methods will be limited if they are not taught specific computational skills to

enable them to learn from modern data (c.f. Cleveland, 2001). To support these learning goals,

I think it is important that students at the senior high school level develop sufficient computer
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programming skills to allow them to be active participants in the science of learning from data,

which includes being able to create computational products. Consequently, I have taken the

position that data science is not the same as statistics, and that the amount of change that is

necessary is so substantial that it would be advisable and strategic to use data science as a new

name to describe the desired curriculum subject at the senior high school level (c.f. Cleveland,

2001).

Not all agree that data science at the senior high school level should be conceived of as one subject

taught by teachers situated within one department (e.g., Finzer, 2013). While data is indeed not

the exclusive domain of statistics, a similar argument could be made about mathematics. For

example, when arguing for computational thinking to be specifically taught as part of the digital

technologies (computer science) curriculum in Aotearoa New Zealand, Bell (2016) reasoned:

So, the relationship of computational thinking to the curriculum is a bit like that

of maths or English; you could argue that these needn’t be taught in their own

right because they would be used by other subjects anyway, but at some point, you

need to acknowledge that there are some valuable concepts that students might not

encounter by chance, and ensure that they are covered.

According to De Veaux et al. (2017), students need to co-develop statistical and computational

thinking, and I argue that data science being implemented as one subject at the senior high

school level could provide learning experiences that support this co-development. Data science

could be a subject taken alongside statistics, mathematics or computer science. Because some

universities present data science as a combination of statistics and computer science courses at

the undergraduate level, it could be imagined that implementation at high school could involve

combining different existing statistics and computer science topics and be co-taught by high

school statistics and computer science teachers. However, Sun (2018) argues that dedicated data

science courses are needed to provide the “glue that fills the gaps” and that statisticians should be

the ones teaching them. The relationship between statistics and data science education is evident,

but the amount of commonality depends on the country or state. To understand the Aotearoa

New Zealand school system within which my research is situated some background knowledge

of the New Zealand statistics curriculum, associated teaching and assessment practices, and

country-specific influences on curriculum change is now discussed.

In Aotearoa New Zealand, statistics is taught across all year levels and can be taken as a subject

in its own right in the last two years of high school (called Year 12 and Year 13). In 2007,
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the national curriculum was re-written, and re-named from Mathematics to Mathematics and

Statistics (Ministry of Education, 1992; Ministry of Education, 2007). Year 13 students can

gain entry to tertiary-level study using Mathematics or Statistics as one (or two) of their three

required approved subjects. Like many other countries, senior level statistics courses typically

use data collected within formal studies such as surveys and experiments to teach students

about study design, statistical inference and models. However, unlike other countries who seek

greater space and time for the teaching of statistics within mathematics, statistics is already a

significant component of the senior high school curriculum, due in large part to the long history

of statistics education research undertaken within Aotearoa New Zealand (Forbes, 2014; Hipkins,

2014). For example, calls to adopt a modelling perspective for the teaching of statistics (e.g.,

Garfield et al., 2012) and probability (e.g., Pfannkuch & Ziedins, 2014) have been listened to

through making stronger connections between data and chance (e.g., Konold & Kazak, 2008)

and taking advantage of computing (e.g., Cobb 2007; Nolan & Temple Lang, 2010).

New approaches to statistical modelling, such as simulation-based methods, were introduced

into the curriculum, and new computational tools were developed to support the teaching and

learning of these simulation-based methods. One of the enablers of freeing statistics from the

constraints of mathematics has been the increased affordability, availability and usability of

computers and other digital technologies (Cobb, 2015). With respect to the assessment of the

national curriculum, the highest level of statistical thinking is characterised as “an integration

of statistical and contextual knowledge throughout the statistical enquiry cycle”, supported by

other practices including: informed contextual knowledge; reflecting about the process; discussing

how possible sources of variation were dealt with during the design phase; considering other

relevant variables; considering other relevant explanations; evaluating the adequacy of any

models; and showing a deeper understanding of models (Starnes & Martin, 2015). Some of

the existing teaching and assessment practices supported by the current statistics curriculum

include: students doing real investigations with real data; the use of multivariate data sets;

students posing investigative questions from a data set; wide-spread adoption of technology to

facilitate learning from data; the specific teaching and assessment of statistical literacy; and

development of student understanding of inference using visual inference tools; and probability

and probability modelling.

The statistics curriculum in Aotearoa is very extensive and there is no room to introduce data

science from the perspective I have described, one which places modern data and practical

skills with digital technologies at the core. Additionally, positioning data science as a subject
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implemented at the senior high school level is consistent with how statistics was itself introduced

as a subject into the New Zealand curriculum. As Begg (2004, p. 1) explained:

Being introduced at senior level enabled one or two teachers in most high schools to

become familiar with statistics. Later statistics became part of mathematics at all

levels of high school, and in the next round of curriculum change it became part of

mathematics for all students from age five. The success of these initiatives was partly

due to the time frame and to starting with a small group of able teachers.

To further define what data science as a subject at the high school could look like, I now review

literature to identify content and pedagogical approaches that are new or different from the

current statistics curriculum in Aotearoa New Zealand.

2.2.2 Identification of curriculum content

For students to be able to work with modern data, broader knowledge of and practical skills with

digital technologies are needed. Advances in computing power require new approaches to teach

students how to learn from data (Baumer et al., 2017). The amount, availability, diversity and

complexity of modern data requires educators to broaden their definitions of what data is and

what it means to teach students how to learn from data (Finzer, 2013; Gould, 2010). Teaching

activities should use data sourced from the data revolution (Ridgway, 2016) and include learning

experiences that reveal more of the world of data faster (Wild, 2015).

Looking across the literature for data science curriculum content (e.g., American Statistical

Association, 2014; Biehler & Schulte, 2017; Baumer et al, 2017; Cobb, 2015a; De Veaux et al.,

2017; Engel, 2017; Fergusson & Bolton, 2018; Finzer, 2013; Gould, 2010; Gould, 2017; Hardin,

2018; Hicks & Irizarry, 2018; Horton et al., 2014; Kaplan, 2018; Kim et al., 2018; NASEM, 2018;

Ridgway, 2016; Sun, 2018), key content were identified. This content was then compared with

four examples of data science high school curricula, to refine the selection of curriculum content:

Bootstrap Data Science (BDS, bootstrapworld.org/materials/data-science), International Data

Science in Schools Project (IDSSP, idssp.org/pages/framework.html), Introduction to Data

Science (IDS, idsucla.org), and ProDaBi (prodabi.de). Content that did not feature strongly

in the current statistics curriculum for Aotearoa New Zealand was selected. The curriculum

content identified can be grouped into two broad categories: (1) accessing and creating data

using computational tools; (2) developing statistical products, such as models and visualisations,

using computational tools. The curriculum content for data science should include:
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Accessing and creating data using computational tools

• Sourcing static and dynamic data using modern data-related methods: web scraping,

querying databases, and interacting with Application Programming Interfaces (APIs)

• Creating data from a wide range of sources: text, images, sounds, movements, sensors,

social media, interactions with digital devices, and participatory activities

• Reading and storing unstructured and structured data, including rectangular (tidy),

hierarchical, spatial, and file types such as CSV, XML, JSON

• Wrangling and processing “messy” data for a purpose, for example, creating new

categorical variables, creating aggregate views for particular group, or automating the

identification of “suspicious” values

• Accessing and using data from open sources: government statistics, open data websites,

data repositories

• Data-related quality issues: sources of bias, sparsity, considerations of generalisability

• Considering the relationship between people and data: ownership, sovereignty, ethics,

privacy, civic responsibilities, social implications of data use

Developing statistical products, such as models and visualisations, using

computational tools

• Exploring and communicating with data for purposes other than sample-to-population

inference: creating infographics and other visually-based reports, finding structure for

machine learning, sentiment analysis

• Creating a wide range of types of data visualisations from large complex data sets:

visualising three or more variables, producing spatio-temporal graphics such as geo

mapping

• Modelling relationships between observations not just relationships between variables:

algorithmic approaches such as clustering and natural language processing (NLP)

• Machine learning approaches: prediction and classification models such as decision trees,

training and testing data sets, model validation

• Simulation-based modelling: learner-defined probability simulations for inference, utilising

1000s of trials with computational tools, creative projects such as generative art

• Reproducible data analysis: computational essays, automated reporting systems

• Using programming languages and associated functions to develop, use, and express models

12



All the curriculum content identified involves at least some knowledge of statistical,

computational, and mathematical approaches. The challenge then becomes: How much

and at what level do these different approaches get combined? Recommendations for what data

science to teach do not include age-appropriate progressions or consider how statistical concepts

may be developed across different curriculum levels. Students in Aotearoa New Zealand are

likely to have been exposed to key statistical concepts and approaches before reaching the

senior high school level and this familiarity has implications for teaching data science. On the

one hand, extending familiar statistical approaches into unfamiliar data science approaches has

been recommended as a strategy for teaching (Biehler & Schulte, 2017). On the other hand,

there is a potential for confusion when complementary but different approaches to learning

from data are combined within the same learning programme.

One implication of the curriculum content identified is that algorithmic modelling approaches

may be taught alongside traditional modelling approaches. Brieman (2001) refers to these two

approaches as “two cultures” for how statistical modelling is used to reach conclusions from

data. One culture assumes that the data generating process can be modelled by a probability

model, whereas the other culture makes no assumptions about the data generating process

and consequently uses algorithmic models. Educators have proposed that learning from, and

blending aspects, from both “cultures” is a good basis for teaching data science (Grant, 2017;

Sun, 2018). Both probabilistic and algorithmic approaches for statistical modelling use data,

and so students will need to consider “traditional” statistical issues such as assumptions, biases,

and the different sources of uncertainty (Grant, 2017). With respect to modelling approaches,

students will need to extend their understanding beyond the traditional use of linear regression,

to focus on new perspectives such as the use of training and testing data, residual analysis,

predictive accuracy, overfitting models, and cross validation (Biehler & Schulte, 2017; Grant,

2017). Additionally, algorithmic models could offer a more accessible and conceptually simpler

mechanism to introduce students to data science than inferential methods (Baumer et al., 2017;

Gould, 2017; Grant, 2017; Ridgway, 2016), and support an expansion or redefinition of what it

means to teach Exploratory Data Analysis (EDA).

Broadening the nature of the data used for teaching data science means that the data used

for statistical modelling may not be randomly sampled and so the use of probability models

for observation or opportunistic data is not necessarily relevant (Baumer et al., 2017; Gould,

2010). Furthermore, the traditional approach of refining ill-defined research questions for the

purpose of making sample-to-population or experiment-to-causation inferences may no longer
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apply. Instead, students will need to extend their repertoire to consider, for example, criteria

for questions based on the kinds of answers they provide: descriptive, exploratory, inferential,

predictive, causal, and mechanistic (Peng & Matsui, 2017). For a data science course that

combines traditional elements with newer approaches such as machine learning, classifying

questions based on what they allow you to do with data, and what type of modelling you

will undertake, appears to be a helpful approach at the senior level (cf. Arnold, 2013). Data

considerations also need to expand beyond the use of statistical knowledge. In Aotearoa New

Zealand, for example, data science education needs to include and promote Matauranga Māori

and Te Ao Māori approaches to data.

The issue of how to deal with mathematics when teaching statistics has already been identified

by educators such as Cobb (2015a) as one of the biggest issues in statistics education, with

tensions “between mathematics and data, between abstraction and context, between theory and

story” (p. 2). Although aspects of statistical modelling, including algorithmic modelling, require

abstraction (Pfannkuch, 2011), there should be minimal reliance on mathematical notation

(Hicks & Irizarry, 2018). Researchers caution against using “black box” approaches to teaching

modelling (e.g., Biehler & Schulte, 2017; Grant, 2017; Magana et al., 2011) and therefore

attention is needed on how the task design highlights and promotes key statistical concepts

(Bargagliotti & Groth, 2016) and on the development of sequences of tasks. I now consider

pertinent literature pertaining to the development of statistical modelling-based activities.

2.2.3 Developing statistical modelling-based activities

Because the implementation of a data science curriculum will involve combining concepts and

methods from statistical and computational spheres, a focus on statistical modelling could

provide an entry point into the world of data science, particularly if prediction models such as

classification are used. Given earlier discussion, it will be important to develop learning activities

that help students to understand the “two worlds” of statistical modelling: probability-based and

algorithm-based. Design principles for tasks developed from research concerning probabilistic

reasoning by Pfannkuch and Budgett (2016) suggest that making conjectures, testing conjectures,

linking representations and relatable contexts are important features of statistical modelling

activities. Further guidance for designing and structuring modelling activities can be found in

the literature associated with Model Eliciting Activities.

Model Eliciting Activities (MEAs) are activities that encourage students to invent, test, and
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communicate about models as part of investigating an open-ended problem (Lesh et al., 2000).

MEAs support students to reveal, refine and extend their thinking as they work in small groups

to provide a model-based solution to a provided problem. MEAs also provide a way for teachers

to learn more about students’ thinking and so inform teaching practice (Lesh et al., 2003).

Six design principles guide the construction of MEAs: (1) reality, (2) model construction, (3)

self-assessment, (4) construct documentation, (5) construct share ability and reusability, and

(6) effective prototype (Lesh, et al., 2000). Because a key learning goal for MEAs is that

students develop a conceptual model that is general enough to be used across a range of contexts

and situations (Lesh et al., 2000; Patel & Pfannkuch, 2018), sequences of model development

activities are needed rather than just the use of single MEAs in isolation (Ärlebäck et al., 2013).

Model development sequences are structurally related tasks that begin with a MEA and are

followed by other modelling activities (Lesh et al., 2003). MEAs and model development

sequences are intended to develop conceptual models that students recognise as being important

as well as practical (Lesh et al., 2000), particularly if students complete the learning sequence

by solving a problem that would have been too difficult to solve before (Lesh et al., 2003). Some

researchers refer to the activities that are used after MEAs as model exploration activities,

model adaptation activities, model extension activities and model application activities (e.g.,

Ärlebäck et al., 2013; Lee et al., 2016; Lesh et al., 2003), and others refer to these as follow-up

tasks or follow-up activities (e.g., Patel & Pfannkuch, 2018; Radonich, 2014; Yoon et al., 2011).

Lee et al. (2016) describe MEAs as revealing students’ initial understanding of how to model

a situation, model exploration activities as focusing students on the underlying structure of

the model, and model application activities as requiring students to apply the model to new

contexts. Lesh et al. (2003) further distinguish between MEAs and model exploration activities

by explaining that model exploration activities can involve the use of computers and should

aim to develop strong language and representation systems related to the model.

MEAs and model development sequences were originally developed within the context of

mathematics education but are used in other areas of education such as statistics and

engineering (e.g., Garfield et al., 2010; Hjalmarson et al., 2008; Lee et al., 2016; Patel &

Pfannkuch, 2018). When MEAs are used within statistics education literature, the activities

are typically designed to elicit students’ understanding of specific statistical ideas or methods

rather than mathematical models. Garfield et al. (2010) explained that when they developed

materials for the CATALST (Change Agents for Teaching and Learning Statistics) project,

they created a new type of MEA to elicit statistical thinking with models, with the following
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three requirements (p. 2):

1. Reflects a real type of statistical problem (e.g., making predictions using multiple variables

or figuring out a way to classify objects to make predictions, based on known data)

2. Has a current and engaging context that will motivate students to work on a solution and

also illustrates the relevance of statistics to their everyday lives

3. Uses real data either gathered in a research study or gathered for the purpose of the MEA

Similar adaptations when using MEAs for teaching statistics can be seen in model development

sequences used by other researchers (e.g., Lee et al., 2016; Patel & Pfannkuch, 2018).

Although MEAs use open-ended problems they are not unstructured tasks. Explicitly, MEAs

typically involve four components: a hook, for example, a newspaper article or short video;

warm-up questions to assess readiness; data or other relevant mathematical information that

needs to be used for the activity; and a problem statement involving a client, which provides

the motivation for a model-based solution (Chamberlin & Moon, 2005; Patel & Pfannkuch,

2018). Implicitly, the activity should be designed so that the structure reveals itself naturally as

students complete the task rather than the structure being “forced” by the teacher (Lesh et al.,

2000).

To understand the task design Garfield et al. (2010) used implicitly for two of their MEA tasks as

part of the CATALST project, I analysed them from a design perspective. My analysis revealed

that their tasks had teacher-led phases that appeared to be important in developing statistical

modelling ideas for both probability models and algorithmic models. For instance, both tasks

guide the students through building then testing their models. Both tasks also provoke students

to develop methods to evaluate their models or use their models to produce results. Figure 2.1

presents my naming and characterisation of the different structural phases used in the iPod

shuffle and spam email MEAs described by Garfield et al. (2010). Similar structural features can

be seen in the MEAs and model development sequences created for probability modelling (e.g.,

Lee et al., 2016; Patel & Pfannkuch, 2018).
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Figure 2.1: Structural phases used in iPod shuffle and SPAM email MEAs

My analysis of the two MEA tasks shows that the same structural phases appear to be present

when eliciting modelling ideas related to hypothesis testing using a probability-based model

(iPod shuffle) and classification (spam email) using an algorithm-based model. For this reason,

I conjecture that using statistical model development sequences may be a promising approach

for creating learning tasks for teaching data science at the high school level, that support the

“two cultures” of statistical modelling (cf. Breiman, 2001). However, the literature reviewed

thus far does not specifically account for how teachers can develop their students’ thinking when

using digital technologies or tools, for example, computational thinking. Therefore, the literature

review now turns to inherent thinking practices in data science and focuses on statistical thinking

and computational thinking, and their integration.

2.3 Thinking practices for data science

The data students interact with in their everyday lives is predominantly digital (Bell & Roberts,

2016; Gould, 2010) and could provide rich opportunities for students to deeply explore contexts

that matter to them (cf. Weiland, 2016). Additionally, investigations involving modern data

could support the development of critical thinking and scepticism (cf. Hicks & Irizarry, 2018) and

highlight the role of human decision making in the data analysis process (De Veaux & Velleman,

2015). Using computational tools, including reading and writing computer instructions (coding),
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requires new computational ways of thinking about data and modelling to be used alongside

statistical thinking (De Veaux et al., 2017). To teach data science, teacher guidance is needed

for how to develop learning activities that promote both statistical and computational thinking

practices, and how these activities may be different from those familiar to high school statistics

teachers. Statistical and computational thinking and related frameworks are now reviewed, to

explore possible ways of integrating statistical and computational thinking.

2.3.1 Statistical thinking and related frameworks

The term “statistical thinking” was originally used by statisticians such as Snee (1990) and

Moore (1990) to highlight the need to consider, and account for, variation throughout all aspects

of learning from data. Rather than emphasising “statistical rituals” (Gigerenzer, 1998) and

mechanical procedures, statistical thinking should instead draw on core statistical concepts to

inform decision making in the face of uncertainty (De Veaux et al., 2017). Statistical thinking

can be considered as a set of desired thinking practices that support the understanding of why

and how statistical investigations are conducted (Ben-Zvi & Garfield, 2004). From an inquiry

perspective, statistical thinking goes beyond individual components of statistical reasoning and

literacy, and requires thinking about the whole statistical process (Chance, 2002; Hardin et al.,

2015).

To support teaching, Wild and Pfannkuch (1999) developed a four-dimensional framework to

characterise statistical thinking. The first dimension of this framework, the investigative cycle,

and to a lesser degree the third dimension (the interrogative cycle), have been used extensively

by statistics education researchers to inform the design and analysis of learning activities (e.g.,

Leavy & Hourigan, 2016; Pfannkuch et al., 2011). For instance, Arnold (2013) undertook a

comprehensive inquiry into statistical investigations, leading to her theory of statistical questions

and a set of frameworks for supporting the teaching of statistical thinking. Dimensions two

and four of the Wild and Pfannkuch’s (1999) statistical thinking framework have received less

attention in the research literature. Dimension two of the framework called “types of thinking”

describes five elements that are fundamental to statistical thinking (p. 226). These are:

1. Recognition of the need for data

2. Transnumeration: changing representations to engender understanding

3. Consideration of variation

4. Reasoning with statistical models
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5. Integrating statistical and contextual knowledge

All five of these elements are entirely relevant to learning from modern data. For instance,

learning to recognise when data is needed could include becoming more aware of data generated

algorithmically (Gould, 2010). Converting unstructured text into a rectangular data set or

filtering a data set (Erickson et al., 2019) will require transnumeration. Exploring randomness,

variability, and uncertainty could involve using large scale simulation-based methods, enabling

the creation and visualisation of synthetic data sets (Hardin et al., 2015). Modern data contexts

also provide ample opportunities for students to explore variation, model variation, and evaluate

models (cf. Stigler & Son, 2018). Statistical thinking is required when using algorithmic modelling

with large data sets, in order to develop a sound strategy for understanding and reducing

variation (Hoerl et al., 2014).

With respect to integrating statistical and contextual knowledge, exploiting modern data

contexts can support development of important research questions, motivate students to learn,

and assist development of technical understanding (e.g., American Statistical Association, 2014;

Cobb, 2015a). Moreover, modern data contexts may also be more engaging for teaching high

school students (Gould, 2010; Ridgway, 2016). Issues such as algorithmic bias and data ethics

could be leveraged to highlight the subjectivity of analytical and modelling processes, including

building an awareness that an overuse of personal contextual beliefs may inhibit learners from

applying statistical methods appropriately. For example, Patitsas et al. (2019) found in a

randomised experiment involving computer science professors that professors were more likely

to describe distributions of grades as bimodal, if they were first primed to think about the

commonly-held belief that computer science grade distributions are bimodal. Although the

context of the data can help learners make meaning from what they see in the data (Wild &

Pfannkuch, 1999), relying too much on contextual explanations can get in the way of building

generalisations and statistical concepts (Pfannkuch, 2011).

In the fourth dimension of their framework, Wild and Pfannkuch (1999) propose a set

of dispositions for thinking statistically. Their dispositions for statistical thinking include:

scepticism, imagination, curiosity and awareness, being logical, and perseverance. Other

educators have also recommended more focus on encouraging students to think more personally

about their connections and actions with data, such as developing data habits of mind (Finzer,

2013). When considering the role of statistical thinking in teaching data science, criteria based

on dispositions could provide a more flexible means for assessing student learning, particularly

when considering the role of computing. For example, Wickham (2010), developed a rubric
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for grading data analysis tasks where two of the six key criteria are scepticism and curiosity.

Another important related consideration is the use of frameworks to guide teaching and learning

of data science.

The four examples of data science high school curriculum referred to earlier in this literature

review use different frameworks to support the teaching of statistical thinking. The Introduction

to Data Science (IDS), Bootstrap Data Science (BDS), and International Data Science In Schools

Project (IDSSP) curricula use frameworks that are similar in structure to the PPDAC (Problem,

Plan, Data, Analysis, Conclusion) cycle, the first dimension of Wild & Pfannkuch’s (1999)

statistical thinking framework. The IDS and BDS use the “Data Cycle” which consists of four

steps: (1) Pose questions; (2) Consider data; (3) Analyse data; (4) Interpret data. All these

four steps are based on a specific research topic. None of the frameworks used by IDS, BDS,

and IDSSP specify modelling as one of the steps or phases, nor do they appear to include the

creation of computational products that might result from an inquiry cycle.

In contrast, the ProDaBi curriculum uses the CRISP-DM (CRoss-Industry Standard Process

for Data Mining) framework. The CRISP-DM framework places data at the core of the process,

and the connected core components are: business understanding, data understanding, data

preparation, modelling, evaluation, and deployment. The CRISP-DM framework does include

modelling as a core component, and also explicitly includes the creation of computational

products through its deployment component. Similarly, drawing on data practices employed

by data scientists, RStudio developed the “Data science workflow” that comprises the following:

import data; tidy data; understand data by iteratively visualising, transforming, and modelling;

infer understanding of data to other data sets; and communicate results to others and/or

automate analysis for re-use. Notably, the “Data Science Workflow” specifies that computer

programming is used throughout and includes the creation of computational products.

A key limitation for all these frameworks for teaching data science is that they were not

developed as frameworks for constructing tasks. The frameworks instead capture and explicate

key aspects of the processes that should be used by data scientists to learn from data (cf. Hicks

& Irizarry, 2018). Although education researchers do not expect students engaging in statistical

investigations to follow the steps of inquiry frameworks in the order given (Gould et al., 2017),

teaching tasks used by teachers are often constructed using these steps. Further research is

needed to explore how learners actually move between different phases of frameworks and how

these pathways may support or hinder statistical thinking.
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Gould et al. (2017), for instance, explored how two pairs of high school teachers made decisions

as they analysed data and aligned their actions to each step of the “Data Cycle”. They found the

teachers used a variety of pathways between the different “Data Cycle” steps. Importantly, both

pairs of teachers used questioning extensively as they progressed through their investigations,

and the pair of teachers who spent more time raising questions and crafting productive

questions appeared to be more successful. However, investigating non-traditional data that has

a computational basis, such as the participatory sensing data used by Gould et al., requires

additional knowledge and thinking beyond the statistical and contextual. Asking questions of

modern data requires computational thinking.

2.3.2 Computational thinking and related frameworks

Computational thinking is a relatively new educational goal compared to statistical thinking.

Made popular in recent years by Wing (2006), definitions of computational thinking vary

and depend on the intended teaching context. For the purposes of teaching data science, it

is important to identify relevant aspects of computational thinking that may provide students

with the necessary critical thinking skills for learning from modern data, beyond what statistical

thinking can already provide. According to Wing (2006, p. 33), computational thinking involves

“solving problems, designing systems, and understanding human behaviour, by drawing on the

concepts fundamental to computer science.” Nardelli (2019, p. 34) provided a more general

definition that computational thinking “is the thought processes involved in modelling a situation

and specifying the ways an information-processing agent can effectively operate within it to reach

an externally specified (set of) goal(s).” Lee et al. (2011) proposed that computational thinking

requires abstraction, automation, and analysis.

Due to the increased popularity of integrating computational thinking across the school

curriculum, various frameworks for computational thinking have been developed. For example,

a three-dimensional framework for computational thinking was developed by Brennan and

Resnick (2012), based on their observations of how students interacted with the Scratch

programming language. The three dimensions of their framework are concepts, practices, and

perspectives. The computational thinking concepts described in their framework are specifically

tied to programming constructs and include: sequences, loops, parallelism, events, conditionals,

operators, and data (storing, retrieving and updating values). The four key computational

thinking practices are experimenting and iterating, testing and debugging, reusing and remixing,

and abstracting and modularising. Perspectives needed for computational thinking included
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realising that computation is a medium of creation, appreciating the value of creating products

with and for others, and being empowered to use computation to ask and answer questions

about the world.

Although Brennan and Resnick’s computational thinking framework was developed based on

students’ interactions with a computer programming language, it is important to note that

computational thinking is not the same as coding (computer programming). Computational

thinking not only involves learning practical skills with computers but also includes developing

conceptual understanding of how computational processes happen (Wing, 2006). Furthermore,

a range of tools can be used for computational thinking, not just programming languages

(Repenning et al., 2010). One reason why computational thinking is often seen as synonymous

with coding is that writing and executing code is used as an efficient way to test the soundness of

a student’s computational thinking (Bell & Roberts, 2016). Additionally, learning programming

allows student to use computers to create digital technologies rather than just use computational

tools.

There does not appear to be a framework specifically for teaching computational thinking

alongside statistical thinking. The closest existing framework appears to be the taxonomy

created by Weintrop et al. (2015) to define computational thinking for mathematics and

science classrooms. The researchers used computational thinking literature, interviews with

mathematicians and scientists, and existing computational thinking teaching materials to devise

a set of four key practices: data practices, modelling and simulation practices, computational

problem-solving practices, and systems thinking practices. Each of the four practices contains

up to seven individual computational thinking practices, resulting in 22 different computational

thinking practices. However, it is difficult to imagine how such a framework could help data

science teachers at the senior high school level design tasks that integrate statistical and

computational thinking, as the taxonomy is not conceived from a statistical or modern data

perspective.

These frameworks do not provide guidance for how specific computational tools, such as

computer programming languages, can be introduced within other subject domains. Research

involving the use of Model Eliciting Activities (MEAs) to teach mathematical thinking

alongside computational thinking indicated that designing effective tasks was a complex process.

For example, Shoop et al. (2016) developed a MEA that used robotics activities to teach

proportional reasoning. The researchers noted that it took four iterations to find a version

of the MEA that reliably improved mathematics skills. One version put too much focus on
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mathematics, and another version placed too much focus on the robotics context. Extending

these results to designing a data science task involving statistical modelling and coding, it

is conceivable that an activity might provide the necessary experiences to help students

understand procedural computations, such as use of specific functions, but may not provide

sufficient statistical conceptual learning opportunities. Therefore, it will be important to target

key computational thinking practices that support students to learn from modern data and

integrate these with statistical thinking practices.

2.3.3 Integrating statistical and computational thinking

Despite calls for data science curricula to provide opportunities for students to integrate both

computational and statistical thinking (e.g., De Veaux et al., 2017; NASEM, 2018), there are

few research-based examples of what such an integration could look like at the senior high

school level. Some examples are recommendations that students develop at least some computer

programming skills (e.g., Cetinkaya-Rundel & Rundel, 2018; Gould, 2010; Nolan & Temple

Lang, 2010), whereas other examples are of statistical modelling exercises that use computer

programming in curriculum materials. As discussed, computational thinking is not the same

as computer programming and while coding provides one way to develop and demonstrate

computational thinking, there are other ways that need to be explicated for prospective teachers

of data science.

According to the Cambridge dictionary, to integrate means “to combine two or more things

in order to become more effective” and synonyms include connect, combine, and blend. An

immediate challenge with turning “integrating statistical and computational thinking” into a

practical task or activity is that the options for “combining” are infinite. Integrating statistical

and computational thinking does not require that both types of thinking are stimulated or

observed for every aspect of a learning activity (cf. Finzer, 2013). Nor does an integration

require that the “blend” of statistical and computational thinking is equal. At a minimum,

a selective approach is needed about what aspects of computational thinking are the most

applicable for integrating with statistical thinking at the senior high school level. For instance,

the IDS curriculum (Gould et al., 2017, p. 11), states that for computational thinking, “students

will learn to write code to enhance analyses of data, to break large problems into smaller pieces,

and to understand and employ algorithms to solve problems.”

Interpreting “integrating” as “connecting” may provide a more feasible approach to teaching
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the integration of statistical and computational thinking. Wild and Pfannkuch (1999) propose

that statistical thinking requires shuttling between the contextual and statistical spheres. The

contextual sphere provides the questions for data, and the answers need to be investigated

within the statistical sphere. However, to interpret the features seen in the data and provide

meaningful answers to the initial questions requires shuttling back to the contextual sphere. By

this reasoning, learners are never located in both spheres at the same time, but learn from one to

inform the other, constantly moving between both spheres to create understanding when learning

from data. Therefore, integrating statistical and computational thinking could involve connecting

and shuttling between three spheres: the contextual, the statistical, and the computational.

Knowing more about the computational world of data and algorithms will support students to

ask and answer a wider range of data-related questions, such as: How do we find the data? How

do we retrieve the data? How can we assess the quality of the data? What variables do we need

to derive from the raw data? How can the data be organised into a structure for analysis? Will

the approach remain computationally feasible as the number of documents increases? (Hardin et

al., 2015, p. 344). As Gelman and Nolan explain (2017, p. 342):

When we teach statistics, we stress that the context of the problem matters, that

the context needs to be considered when analysing data to answer a question or

provide a solution to a problem. Relatedly, we think computational considerations

are part of this context because an understanding of how we might analyse the data

can impact how we process the data, and reciprocally, considerations about the size

and the organisation of the data can impact our analysis.

Case studies that demonstrate connecting contextual, statistical, and computational spheres

could be useful for identifying examples of observable thinking practices. In an interview with

Alan Rossman for the Journal of Statistics Education (Rossman & Nolan, 2015), Deb Nolan

used a case study she wrote with Danny Kaplan (see Nolan & Temple Lang, 2015) to explain

computational thinking in the context of analysing data. The case study itself is 55 pages long

and explores modelling runners’ times in the “Cherry Blossom” race, covering statistical and

computational challenges such as: How to scrape data from the web? How to check if the data

is what you expected or wanted? How to visualise tens of thousands of results meaningfully?

How to work with time conversions? How to restructure data? Although such case studies do

provide practical examples of computational thinking concepts being applied within modern

data contexts, they do not provide teaching strategies for supporting students to integrate
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statistical and computational thinking, nor do they demonstrate what integrated statistical and

computational thinking could look like without the use of a code-driven computational tool.

For an integration of statistical and computational thinking to be taught and assessed, the

practices associated with the integrated thinking process need to be described in observable

terms. Such descriptions could support teachers to design specific learning activities to promote

data scientific thinking and to use students’ responses and actions to evaluate observed thinking

practices. However, it is difficult to find examples within the statistics education research

literature that specifically explain how different features of a task support development of

specific components of statistical thinking. It is more common to find guidance for constructing

tasks that are based on different phases of the statistical enquiry (e.g., Tran & Lee, 2015)

but these often assume the use of non-code-driven tools. Assessment databases created as part

of projects such as LOCUS (Jacobbe et al., 2014) and ARTIST (Garfield & delMas, 2010)

provide valuable examples of questions and criteria for assessing aspects of statistical thinking

but do not necessarily consider a computational dimension. Conversely, examples of assessing

computational thinking at the school level assume the use of computer programming as the tool

and contexts such as game or multimedia design (e.g., Brennan & Resnick, 2012; Hoover et

al., 2016). To further explore how statistical and computational thinking, and their integration

could be taught and to look for relevant guidance for teaching statistical modelling within a

data science subject at the senior high school level, a review of the literature related to use of

computational tools from the perspective of task design is conducted.

2.4 Tools for teaching data science

In considering the implementation of data science as a subject at high school level, it is yet

to be resolved what kinds of computational tools students could use to learn from data. A

common thread to discussions about data science education is that students need to integrate

both statistical and computational thinking, and that this necessitates students developing at

least some computer programming skills (Cetinkaya-Rundel & Rundel, 2018; Horton et al.,

2014; Nolan & Temple Lang, 2010). Within the context of high school education, teaching

programming is also consistent with the digital technology goals of today’s schools. Any tool

used for teaching data science needs to be considered from a learning perspective, including

the nature of the tasks developed, how the tool and task together stimulate an integration of

statistical and computational thinking, and the design of the tools themselves. Hence, after using

25



simulation-based statistical modelling as a context for how computational tools could be used for

teaching data science at the high school level, relevant statistics and computer science education

research is reviewed for the purpose of informing the design of statistical modelling tasks that

introduce computer programming.

2.4.1 Simulation-based statistical modelling

There are a variety of computational tools available for teaching data science at the senior

high school level and a variety of ways in which these tools could be used. In general terms,

computational tools can be described as interactive digital systems designed for a two-way

flow of information between the user and the tool. Based on user actions such as text input, a

gesture, point, or click, or a voice command, the computational tool responds, and this response

influences further actions for the user. I will describe computational tools which users interact

with predominantly by entering and executing text commands or scripts as code-driven, and

computational tools which users interact with predominantly by pointing, clicking, or gesturing

within visual environments as GUI-driven (Graphical User Interface-driven). I have not explored

computational tools which users interact with predominantly through using voice commands. I

used the word “driven” carefully for this research, to emphasise how the user is “driving” the

interactions with the computational tool.

Computational tools for teaching data science include statistical software packages, graphics

calculators, spreadsheets, programming languages, “microworlds” or custom-built applications,

interactive tutorials or books, and interactive documents such as notebooks (cf. Ben-Zvi, 2000;

Biehler, 1997a). Advice for selecting tools to teach statistics has included that the selection

of tools should be in terms of learning goals and that a combination of tools may be best for

student learning (e.g., Chance et al., 2007; Hesterberg, 1998). Statistics education researchers

have carefully considered how computational tools influence students’ thinking when learning

statistics and have also considered how to define the complex relationship between software

features, task design and learners’ statistical conceptions (e.g., Ben-Zvi, 2000; Biehler, 1997b;

delMas, 1997). It is important that computational tools are used to focus on developing

statistical concepts (Chance & Rossman, 2006) and that consideration is given to how learners

simultaneously develop conceptual-based and tool-based understanding (cf. instrumental

genesis, Artigue, 2002).

An example of the crucial consideration of the relationship between tool, task and thinking
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(Biehler, 2018; Doerr & Pratt, 2008; Moore, 1997) is the statistics education research concerning

simulation-based inference and probability modelling, or simulation-based statistical modelling.

The last decade has seen growth in the use of simulation-based statistical modelling within

introductory data science courses. Simulation-based statistical modelling involves replacing

a real or assumed random situation with a model, which can be manipulated and used to

generate data that can be analysed (Engel, 2010). Technology-enabled simulations have been

used to introduce students to probability and statistical inference since the earliest days of

computers in classrooms (e.g., Simon et al., 1976; Thomas & Moore, 1980), but advances

in digital technologies have enabled the development of intuitive tools for supporting and

visualising results (e.g., Ben-Zvi, 2000). Consequently, software tools developed or used by

statistics education researchers for teaching simulation-based statistical modelling have been

predominantly GUI-driven (e.g., Applets: Chance & Rossman, 2006; Tools: Lock et al., 2013;

Wild, 2018; TinkerPlots: Garfield et al., 2012; Noll et al., 2018) and the tasks developed using

these computational tools are intertwined with the design of the tools.

There is some empirical evidence that simulation-based inference implemented with GUI-driven

tools has a positive influence on learning (e.g., Beckman et al., 2017; Chance et al., 2016;

Garfield et al., 2012; Tintle et al., 2012), for instance, a greater appreciation of the probabilistic

nature of inference (e.g., Tintle et al., 2018). The use of simulation also promotes a modelling

perspective to learning (Garfield et al., 2012) and gives students the opportunity to construct

their own knowledge of statistics (Gelman & Nolan, 2017). When using technology for probability

modelling, learners can quickly run multiple simulations and explore the relationship between

the model and the data it generates (e.g., Pfannkuch & Budget, 2016), tinkering with a model

and visualising changes instantaneously. Ideally, the computational tools used to carry out

simulations would place the focus on defining the model, not the physical or time-consuming

tasks of generating each trial manually. In this way, technology is used as a mechanism to

shift statistics from being focused on computations, formulae and procedures towards a learning

culture that supports informal and open exploration of data and models with minimal barriers

(e.g., Ben-Zvi, 2000; Wild, 2018).

Research, however, has also highlighted aspects of statistical modelling that remain challenging

for students (e.g., Case et al., 2018). Students and teachers can confuse real distributions with

simulated distributions (Gould et al., 2010; Matuszewski, 2018; Pfannkuch et al., 2014). This

suggests that simulated data need to be treated differently from observed data, especially when

teachers also need to consider how simulation introduces another source of variation for the

27



data (Engel, 2010; Watkins et al., 2014). Hence, there is a need to define data as “real” or

“model-generated” more clearly, in line with several proposed statistical modelling frameworks

(e.g., Case & Jacobbe, 2018; Fergusson, 2017). Although the use of simulation-based inference

can make statistical inference reasoning more accessible to students, the nature of argumentation

and hypothesis testing ideas remain difficult for students (e.g., Case et al., 2019; Pfannkuch et

al., 2013). Because there are a large number of multiple images of representations that students

are expected to grasp (Pfannkuch et al., 2013) when learning simulation-based probability

modelling, GUI-driven tools are often selected by task designers due to the visual and interactive

learning environment they provide (Forbes et al., 2014). However, Wild et al. (2017, p. 22)

cautioned that “visualisation software does not teach - learning aided by visualisation software

is a teacher-mediated process” and suggested that teachers ask students to explain and describe

the key elements of what they are doing with the tool.

Researchers recommend that both unstructured and structured learning activities are used for

teaching simulation-based statistical modelling (Chance et al., 2004; Engel, 2010; Gould et al.,

2010). An unstructured approach could involve giving students a framework to carry out an

investigation and then asking students to describe reasons for their conclusions, without a set

of procedural steps (Gould et al., 2010). A structured approach could involve starting with a

hands-on simulation, creating a link between the hands-on simulation and the computer-based

simulation, and then moving to a computational tool to carry out the same simulation (Chance

& Rossman, 2006). Similarly, delMas (1997) recommends that teachers provide clear examples

of how models are built and interpreted and provide physical activities as well as computer

simulations. Using “unplugged” tools at the start of the learning activity supports students to

use physical actions to represent steps in the modelling process (Wood, 2005), so that their

understanding can be connected to what the computer is doing (e.g., Chance et al., 2004;

Erickson, 2006; Gould et al., 2010; Pfannkuch et al., 2013). Technology that provides “virtual”

versions of physical chance devices such as coins and spinners has also been described as critical,

so that students view the computer models they build as generating the same data that they

would obtain using the actual devices (Konold & Kazak, 2008). Unplugged approaches include

using data cards to create visual representations (e.g., Arnold et al., 2011) or shuffling cards by

hand to simulate random allocation of treatments to units (e.g., Budgett et al., 2013).

Simulation-based statistical modelling can minimise mathematics being a barrier to learning

formal statistical inference (Forbes et al., 2014; Ricketts & Berry, 1994; Thomas & Moore; 1980;

Wild et al., 2017), and could provide a meaningful way to utilise computer programming within

28



a data science curriculum (e.g., Cetinkaya-Rundel & Rundel, 2018; Horton et al., 2014; Nolan &

Temple Lang, 2010). However, there is a potential tension with respect to using code-driven tools

for teaching data science at the senior high school level. Statistics has only recently emerged as

a separate subject from mathematics at the high school level and one of the enablers has been

the increased affordability, availability and usability of GUI-driven tools. GUI-driven tools are

often used as a mechanism to shift statistics from being focused on computations, formulae and

procedures towards a learning culture that supports informal and open exploration of data and

models with minimal barriers (e.g., Ben-Zvi, 2000; Wild, 2018). Therefore, I now review the

literature to determine what pedagogical considerations are needed for using code-driven tools

to teach statistical modelling.

2.4.2 Pedagogical considerations for using code-driven tools

Although statistics education research has predominantly focused on the use of GUI-driven tools

for teaching simulation-based statistical modelling, code-driven tools have been used to support

learners to understand probability and inference since the first days of computers in classrooms

(e.g., Simon et al., 1976; Thomas & Moore, 1980). When teaching simulation-based statistical

modelling, the use of a coding approach has the potential to allow for exploration of “what if?”

scenarios, explorations that are often restricted by the options provided by GUI-driven tools.

For instance, Ferreira et al. (2014) found that when high school students were introduced to

the programming language R for conducting simulations, they quickly became familiar with the

tool and experienced a sense of control in being able to manipulate the code to change their

simulation output. Kaplan (2018) proposed that the use of code-driven tools allows students

to demonstrate decision-making as part of statistical thinking. However, there are a number of

decisions that may need to be made when developing a task using a code-driven tool, including:

which computer programming language to use; the environment within which to read, write and

execute code; the syntax and layout of the code used, including what packages to use if any;

how much of the code to reveal or how much to “hide” within functions; and whether there is a

need to write new functions.

An example of a code-driven tool currently used at the high school level for teaching statistics

is the graphics calculator. In particular, the web-based graphics calculator DESMOS, which

has been adopted by assessment organisations including within Aotearoa New Zealand. It is

noteworthy that graphics calculators are not necessarily used because teachers believe they

are the best for teaching statistical concepts but because they can also be used for teaching
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mathematics (Biehler, 2018). When learners interact with a graphics calculator by inputting

text, the experience is similar to writing and executing computer code using the command

line interface. It is therefore understandable that teachers, who do not currently teach statistical

modelling using graphics calculators, may similarly view the use of code-driven tools as reverting

to the less intuitive and more mathematical tools for learning statistics. A related concern is that

teaching time will be diverted away from data analysis with GUI-driven tools to coding lessons

(Finzer & Reichsman, 2018). However, the benefit of using any code-driven tool for teaching

statistical modelling cannot be viewed in isolation from how it is used within a task, and the

design of the tools themselves also requires pedagogical focus (Pratt et al., 2006). In the case

of the graphics calculator, design principles for its use need to be considered when developing

tasks (e.g., Burrill, 2017).

Additionally, when using code-driven tools, consideration needs to be given to the language

and notation used to express computational actions or models (cf. Kaplan, 2007). Statistical

computing educators have developed packages for different programming languages to support

novices to learn statistics through the careful design of functions and consideration of syntax.

Some examples of packages developed for the programming language R include the mosaic

package (Pruim et al., 2017), the infer package (Bray et al., 2018) and the mobilizr package

(Molyneux et al., 2017). A specific goal for the development of the mosaic package was that

the functions provided would focus learner attention to the important parts of the statistical

method and hide the details not relevant for learning (Pruim et al., 2017). The approach of

writing “wrapper” functions, high-level functions that use other functions and obscure some of

the underlying processes being used, has been encouraged by educators as a way to reduce the

number of “computational templates” needed when transferring thinking to a code-driven tool

(Grolemund & Wickham, 2014). As Hesterberg (1998, p. 7) described, “An instructor may use

graphical interfaces and high-level functions to hide many details of computations from students,

but some students will learn more from programming simulations themselves.” Therefore, the

consideration of what “to hide” and what “to reveal” computationally is important and can be

referred to as computational transparency.

By computational transparency, I refer to how obvious the computations performed by the code

are to the learner (cf. JamaicaVM). My conception is similar to how the term transparency is

used within mathematics education, where Heid (1997, p. 6) defines transparency as “… the

extent to which the technology being used highlights the mathematics that is being studied

rather than obscures it.” There appears to be no research that examines, within the context
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of statistical modelling, what level of computational transparency is needed when introducing

code-driven tools. I propose that computational transparency is an entirely relevant pedagogical

consideration and is strongly related to the claim that using code to express ideas, for example,

describing models, will assist student learning. Educators have argued that code can be used as

a tool for communication (Gelman & Nolan, 2017; Wickham, 2018), and that by using code to

express modelling steps the cognitive demands of the statistical modelling task may be lowered

(Kaplan, 2007). Chaput et al. (2008) proposed that the learning benefit from using code-driven

tools for simulation-based statistical modelling is that learners need to analyse the random

situation to describe a model for the situation with code. Research has also found that using

code to express a model can help to articulate different theoretical perspectives on probability

(Abrahamson et al., 2006). However, before learners can ask, (1) What do I want the computer

to do for me? and (2) What does it need to know in order to do that? (Pruim et al., 2017),

learners need to understand the statistical problem they want the computer to help them solve.

That is, before learners can use code to express ideas, they need to have some prior experience

with the idea before using the code-driven tool.

When using code-driven tools for teaching data science, consideration is needed about how both

the tool and task support learners to access statistical concepts graphically (Ben-Zvi, 2000).

However, this can pose a challenge for novices, as the mental models needed to produce graphics

using code-driven tools are different from those used for generating data from models. Learners

may require less computational transparency and greater scaffolding and support when using

code-driven approaches to produce graphics within the same task. A challenge for teaching

statistical modelling using code-driven tools is not just how to use code to express computational

actions but also how much computer programming to teach. As Gould et al. (2018, p. 425) have

recommended:

While obtaining some level of proficiency with particular technological skills is

important for completing the task at hand, having a conceptual framework and the

confidence necessary to continue to learn new data technologies as required is even

more valuable, especially since it will never be possible to teach students all the

computational skills that would be beneficial in the context of a statistics program.

A pedagogical strategy to assist learners to engage with code-driven tools, while simultaneously

providing structure and support for new computational ideas, is to provide students with

interactive documents such as RMarkdown files (Allaire et al., 2018). RMarkdown files can

be used as “computational templates”, providing the code needed to import or generate data,
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analyse data, visualise data, and communicate about data (e.g., Hardin, 2018). Used within

an interface such as RStudio (RStudio Team, 2018), students are also able to use GUI-driven

actions to view the data, which is important as the data being used in the tool should be

transparent to learners (Cobb & McClain, 2004). However, recommendations to use interactive

documents such as RMarkdown are not likely to be widely adopted at the high school level as

they involve installing and using specialist software. An alternative approach could be to use

the R package learnr (Schloerke et al., 2018) to create interactive tutorials in which students

execute small “chunks” of R code within a web browser. Similar approaches have been used to

construct web-based textbooks for introductory level statistics.

In the past, there has been criticism of students using web applications specifically designed

to support the learning of specific statistical concepts (e.g., Biehler, 1997a; Cetinkaya-Rundel

& Rundel, 2018; Hesterberg, 1998; McNamara, 2015; Nolan & Temple Lang, 2007) and this

criticism could be extended to the learning of specific computational concepts. Additionally,

high school teachers will need to know where to find existing and relevant interactive tutorials,

and have the pedagogical and computational knowledge to adapt the task or create new tasks of

their own. An advantage of using an interactive tutorial environment for introducing computer

programming is that the desired interactions between the tool and the learner’s statistical

and computational thinking can be embedded within both the tool and task design (cf. closed

microworlds, Biehler, 1997a). Hence, a review of relevant statistics and computer science

education research is needed to inform the design of statistical modelling tasks that introduce

computer programming.

2.4.3 Introducing code-driven tools

There is minimal research from a statistics education perspective that has either explored

pedagogical strategies such as task design for introducing code-driven tools for teaching

statistical modelling. One reason is that data science education research is a relatively new

field, but another reason is that GUI-driven tools dominate statistics education research (see

Ben-Zvi et al., 2018). In considering how to introduce code-driven tools for teaching data

science, educators have been advised to look to the computer science education community

for pedagogical approaches (Gould et al., 2018; McNamara, 2015). A potential challenge with

heeding this advice is that the resources available for computer science education are substantial

and not all aspects of pedagogy and research may be applicable for crafting tasks that seek to

develop statistical thinking with data. As discussed in Section 2.3.2, computational thinking
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frameworks can cover many practices, and not all of these should be a focus for teaching data

science at the high school level. There is also the challenge of attempting to co-develop two

related but different ways of thinking: statistical and computational thinking.

Research with high school statistics students, where the computer programming language R was

used alongside other computational tools, revealed that the process of using a code-driven tool

to develop statistical and computational knowledge is complex. For example, when encountering

issues with executing code, learners often framed problems as either statistical or computational,

and struggled to make connections between their knowledge of the computational tool and

their knowledge of statistics (Thoma et al., 2018). Students may also hold different beliefs

about what is important when using a code-driven tool for a statistical learning task, such as

prioritising getting the code to work versus understanding the statistical concept (Dietrick et al.,

2017). Students may also struggle to make connections between what they do with code-driven

tools and what they do in classroom activities, with teachers playing an important role in

encouraging these connections as part of classroom discussion (personal communication, Gould,

2018). Educators should also consider whether existing pedagogical approaches within statistics

education developed with GUI-driven tools could be adapted for use with code-driven tools.

Pedagogical approaches used for teaching simulation-based statistical modelling using

GUI-driven tools, or code-driven tools such as graphics calculators, may be relevant for

introducing computer programming to data science students at the senior high school level.

Using “unplugged” or hands-on activities first before moving to computational tools is a

pedagogical approach also used within computer science education (Sentance & Csizmadia,

2017). Computer Science Unplugged (CSU) refers to activities designed to engage students with

computational thinking, that is, computer science concepts rather than programming skills.

One of the key principles of the unplugged approach is to address the barrier that programming

can present for both students and their teachers (Bell et al., 2009). Bell said in an interview

(2016, p. 5) that the benefits of using this approach extended to empowering teachers, as “they

already know how to work with cards, string and chalk, and how to teach young children, so

it provides the glue for them to do something without having to worry about digital devices

crashing or being incompatible with the school system.”

CSU activities are similar to the MEAs used for teaching statistical modelling (Garfield et

al., 2012). For example, in CSU activities, students could work together to build models

for computational solutions, and present these models to the class for analysis, discussion

and optimisation before developing code (Shoop et al., 2016). Importantly, this means that
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development of computer science concepts happens before use of a code-driven tool. Computer

science education researchers have also explored using interactive GUI-driven tools to develop

understanding of programming concepts before moving to code-driven tools (Grover et al.,

2019). Therefore, an approach where data science students learn statistical concepts using

unplugged and GUI-driven tools first before moving to code-driven tools is consistent with

computer science education research. Furthermore, developers of the ProDaBi data science

curriculum used a similar approach, where CODAP was used to introduce high school students

to exploratory data analysis before moving to the computer programming language Python via

a Jupyter notebook (Biehler, 2018).

Another computer science teaching strategy identified by Sentance and Csizmadia (2017) in

their research with high school teachers was the need to scaffold and structure programming

tasks, which is also recommended by other computer science educators (Lee et al., 2011;

Repenning et al., 2010). The PRIMM framework developed by Sentance et al. (2019) explicates

a structured approach to developing a learning task for computer programming, based on the

learning actions Predict, Run, Investigate, Modify, and Make. Similar to Gravemeijer’s (2004)

recommendation that statistics students meet the informal first before the formal, the PRIMM

framework aims to shape student thinking and conceptual understanding over a progression

of learning experiences. A key pedagogical strategy implicit in the PRIMM framework is that

students start by reading code and predicting what the code might produce, consistent with

longstanding research within computer science education that focusing on reading code before

writing is helpful for programming novices (Van Merrienboer & Krammer, 1987). More recent

research also suggests that when students are learning computer programming, they could

benefit by describing and reading code aloud (Hermans et al., 2018).

In summary, a common feature of tasks that seek to develop either statistical or computational

thinking is the use of “unplugged” activities before moving to computational tools. While

code-driven tools may be a natural alignment to the computational process of statistical

modelling, GUI-driven tools may offer greater access and support for statistical concepts. To

summarise my initial considerations of thinking and tools, I developed the framework shown in

Figure 2.2.
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Figure 2.2: Proposed framework to inform the design of tasks involving combinations of different
types of interactive learning tools (unplugged, GUI-driven, code-driven)

My framework proposes that all three tools — unplugged, GUI-driven, and code-driven — may

be needed to support the development, and integration, of statistical and computational thinking.

When selecting and combining different computational tools for teaching statistical modelling,

however, considerations are needed about how to support students’ mental images and visual

representations for each aspect of the modelling process. According to Erickson et al. (2019),

the naming of actions that alter a data set’s contents or structures as “data moves” might help

students move between GUI-driven and code-driven tools. Similarly, I propose that the closer

the match between modelling actions carried out with GUI-driven and code-driven tools, the

smoother the move for the learner.

Dual coding theory proposes that humans store information in their memory in two distinct

forms or representations, verbal and non-verbal, and that memory is enhanced by the use of both

representations in learning (e.g., Clark & Paivio, 1991). Using both GUI-driven and code-driven

tools allows learners to interact with text-based and graphics-based representations of statistical

and computational concepts (e.g., Cook & Goldin-Meadow, 2006). Because learners need to

access and integrate new programming concepts with statistical concepts, cognitive load theory

(e.g., Sweller et al., 1998) needs to be considered in the design of tasks. Cognitive load theory

proposes that humans have limited capacity to their working memory and that the load that tasks

impose on working memory should be reduced to optimise performance. To minimise cognitive
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load, a sequence of simple-to-complex whole tasks needs to be developed (e.g., Wouters et al.,

2008).

For students to access and use modern data and associated modelling practices, not only do

they need to co-develop statistical and computational thinking, but they also need confidence

to use computational tools to support their learning and doing of data science. Students need

to develop some awareness and experience with computer programming. Currently, GUI-driven

computational tools dominate statistics education research and there is minimal research that

has explored the observable thinking practices of learners who engage with statistical modelling

using code-driven tools (e.g., Deitrick et al., 2017; Ferreira et al., 2014; Thoma et al., 2018).

Given the success of using GUI-driven tools for teaching statistical modelling, and the concepts

underpinning it, discarding the use of such tools and replacing them with code-driven tools

does not seem a suitable approach for teaching data science at the high school level. Instead,

designing tasks that introduce learners to code-driven tools using familiar methods and tools for

statistical modelling may be a better route.

2.5 Developing data science tasks that introduce code-driven tools

The literature reviewed in this chapter highlights the need for a careful approach to data science

task design that supports learner engagement with statistical concepts at the same time as

introducing code-driven tools. Novice data scientists cannot be expected to produce their own

interactive learning environments with code, nor expected to use mental imagery or abstraction

in the place of visualisations. There is also a need for transparency for the computational actions

used, and so an over-reliance on high-level functions within code may not be helpful. Although

using GUI-driven tools may support learners to engage with concepts, these tools do not by

themselves connect to code-driven tools and these connections need to be part of the design.

The interaction between learning tools and tasks, and how the design of both need to change

when teaching modelling actions, has implications for teaching statistical and computational

thinking.

At the same time as reviewing this literature during 2017 to 2019, I began exploring a blend

of unplugged, GUI-driven, and code-driven tools in the statistical modelling tasks that I was

developing for my teaching. My exploration and the literature reviewed led to three initial

guidelines for developing data science tasks that introduce code-driven tools. The three task

design guidelines are:
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• Guideline 1: Data science tasks that introduce code-driven tools should be based on

structured statistical modelling activities

• Guideline 2: Data science tasks that introduce code-driven tools should explicitly support

learners to integrate statistical and computational thinking

• Guideline 3: Data science tasks that introduce code-driven tools should connect unplugged

or GUI-driven tool-based modelling actions with code-driven tool-based modelling actions

There is minimal advice for code-driven task design from within statistics education research. As

Arnold et al. (2018) noted, task designers, including teachers and researchers, draw on implicit

design principles when developing learning activities. Researchers within statistics education and

the emerging field of data science education rarely provide rich details of tasks used or discuss

the impact of task design features, which is similar to the situation for mathematics education

(Watson & Ohtani, 2015). For code-driven tools to have a positive impact on the learning of data

science, it is crucial that teachers have access to effective guidelines for task design. Therefore,

my research will explore the explication of design principles for the construction of statistical

modelling tasks that introduce code-driven tools.

The main and supporting research questions are:

1. What observable thinking practices emerge as teachers, positioned as learners, engage with

statistical modelling tasks that introduce code-driven tools?

• Can these observable thinking practices be characterised as integrating statistical and

computational thinking? and if so,

• What features of the tasks appear to stimulate or support the integration of statistical

and computational thinking?

2. What design principles could guide the construction of statistical modelling tasks that

introduce code-driven tools?

• How could tasks be constructed to support the introduction of new sources of data

and modelling approaches, simultaneously with new code-driven tools?

• Does using familiar computational tools or modelling approaches within the same

task support the introduction of new code-driven tools?
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2.6 Summary

There is a lack of guidelines for making decisions about task design for designing tasks that

introduce code-driven tools within the context of statistical modelling. In general, it is difficult

to find substantial literature that explicitly communicates strategies for designing tasks that

introduce code-driven tools within the context of statistical modelling. This is important because

teachers not only need to know how data technologies work themselves, but also how to effectively

teach about data technologies. Teaching data science is particularly challenging, because of the

number of domains of knowledge learners are expected to combine and co-ordinate. Task design

for data science education may also introduce many new knowledge elements in the same task,

such as sources of data, approaches to statistical modelling, and computer programming.

As demand for data science education increases, so will the number of teachers involved,

adding to the challenge of teacher pedagogical content knowledge (Shulman, 1986). Successful

implementation of data science at the senior high school level will be challenging and a strong

teacher preparation programme is needed, particularly as teachers at high school may not have

advanced degrees in statistics (cf. Bargagliotti & Franklin, 2015) or computer science. Tasks are

crucial for learning, and a task design framework is needed to support teachers to be confident

and effective designers of tasks for teaching data science at the senior high school level. To

produce the task design framework, tasks need to be designed and implemented with teachers,

and the features of the tasks and their relationship with observable thinking practices need to

be analysed. Chapter 3 describes the design-based research approach used for this study.
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Chapter 3: Research methods

3.1 Introduction

Chapter 3 outlines the research approaches, methods used, and the procedures. From an

interpretive framework perspective, Section 3.2 presents the paradigm or lens through which

my research is conducted. Sections 3.3 to 3.4 outlines the design-based research approach and

the problem analysis. Section 3.5 covers the design and implementation of the tasks, including

the teaching experiments and participants, data collection and ethics. Sections 3.6 to 3.7

discuss the iterative methods of data analysis, describe the design characteristics, and present

considerations about validity and reliability.

3.2 Interpretive framework

All research is interpretive. Researchers make decisions about research procedures based on their

own beliefs, philosophical assumptions, and theoretical perspectives (Punch & Oancea, 2014) or

through an interpretive framework or paradigm (Denzin & Lincoln, 2011). It is important for

researchers to clearly communicate their interpretive framework when describing the nature of

any research study, which in my case is pragmatism as it aligns with my perspectives on data

science education and educational research. Conducting research using a pragmatic interpretive

framework supports a focus on developing theories about “what works” and the practical

outcomes of the research (Creswell & Poth, 2016; Weaver, 2018). Rather than committing to

one system of philosophy or reality, researchers who hold an interpretive framework based on

pragmatism can draw on multiple influences, ideas, beliefs, methods, and concepts of knowledge

as part of their research process (Creswell & Plano Clark, 2011; Creswell & Poth, 2016).

Pragmatists believe that truth is whatever works at the time, and that all research is bound by

context, for example, social, historical, political, or cultural contexts (Creswell & Poth, 2016).

John Dewey, an influential educator, advanced pragmatism as a philosophy based on human
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experience, where reflection on beliefs leads to actions, and reflections on actions lead to beliefs

(Morgan, 2014b).

I am a teacher as well as a researcher, and so it is natural that my personal teaching experiences

have shaped my beliefs about effective teaching and learning. Nearly all my teaching has been at

the introductory levels for statistics and data science, rather than at advanced levels involving

theoretical probability or mathematics. A significant influence on my beliefs for data science

education are the two versions of the New Zealand curriculum (Ministry of Education 1992; 2007),

which I taught while at the high school level. The pedagogical practices promoted and embedded

in these documents included extensive use of group work, exploration and co-construction

of concepts, a de-emphasis on rote learning and memorisation, and teaching of competencies

such as relating to others and “learning to learn”. My beliefs are also strongly shaped by

my participation in statistics education research projects led by Associate Professor Maxine

Pfannkuch and Dr Pip Arnold, notably those concerning informal inference (Pfannkuch et al.,

2011) and simulation-based inference (Pfannkuch et al., 2013).

As a pragmatist, I believe that knowledge — what is true and real — will change over time and is

contextually bound. Within the context of education, knowledge can be viewed as shared social

norms on acceptable approaches, and as such must change as the world changes. When designing

tasks, I endeavour to create learning experiences that empower all students to be confident,

curious, creative, and critical when learning from data. I believe that the use of technology within

data science education can be transformative for student learning. Drawing on the pragmatist

paradigm, I contend that technology should be used with social learning activities, for example,

where students use technology to create products that are shared and discussed with others and

where technology is used to support interactions between students and the teacher. Pragmatism,

in my opinion, is an important perspective to adopt within the area of data science education

research specifically, due to changing nature of data and data-related technologies. What might

“work” this year might not work next year, and I believe that research needs to provide practically

grounded solutions to teaching and learning issues that make sense for the intended learning

context (e.g., high school) and are flexible, transferable, adaptable, and scalable (Hammond

& Wellington, 2013; Morgan, 2014a). Because the development of instructional design theory

with practical solutions is important for supporting change in teaching practice, a design-based

research approach was used to introduce code-driven tools through statistical modelling.
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3.3 Design-based research approach

A key feature of design-based research (DBR) is the design and testing of a significant teaching

intervention (Anderson & Shattuck, 2012), which for this study was the development of new

tasks to introduce code-driven tools through statistical modelling. A DBR approach allows for

new theories and design principles to be developed that can influence both teaching practice and

educational research (McKenney & Reeves, 2018). DBR seeks to develop solutions to practical

problems grounded in real learning environments alongside new and reusable design principles

(Reeves, 2007). Design principles developed from DBR are theories intended to support other

designers to create or observe similar outcomes (Van den Akker, 1999). Design principles are

hypothetical in nature and represent both “actionable knowledge and theories of action” (Bakker,

2018, p. 47). They can take the form of domain theories that describe how learners learn or how

learning environments influence teaching and learning, or the form of design frameworks that

provide a set of design guidelines to use to create a “product” that will support the desired goals

for a specific learning context (Edelson, 2002).

The process of DBR is complex and requires ongoing decisions about design that balances the

goals and constraints of the research (Edelson, 2002). DBR is flexible and adaptive and as such,

there is not one standard DBR process to use. To illustrate the DBR process used for this

research, I created Figure 3.1 by drawing on the DBR descriptions of Edelson (2002), McKenney

and Reeves (2018), and Reeves (2007), and by adapting the DBR process model developed by

Hoadley and Campos (2022).

Figure 3.1: DBR process model (adapted from Hoadley and Campos, 2022, p. 212)

As illustrated in Figure 3.1, the DBR process involves interconnected phases of grounding,
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embodying, iterating, and reflecting. In the grounding phase, the designer identifies complex

research problems by exploring and analysing practical issues in collaboration with researchers

and teachers. The situated learning context is considered to help set the vision for the research

and relevant literature is reviewed to theorise about potential solutions to the research problem.

In the embodying phase, solutions are designed that provide learning environments that use

technological innovations. Drawing on what has been learned in the grounding phase and the

designer’s knowledge, tasks are created by considering the consequences of different design

decisions and by anticipating learner needs. At the heart of DBR is iteration, where various

methods are used across iterative cycles to refine solutions. Methods include implementing

tasks using teaching experiments, analysing the data collected from teaching experiments

retrospectively, and describing the essential characteristics of the design solution. In the

reflecting phase, the designer combines all aspects of the DBR process to evaluate the solutions

and produce new design principles, design processes, and hypotheses.

Because DBR is not a linear process, I have summarised the research timeline in Figure 3.2

using key milestones.

Figure 3.2: Research timeline

Section 3.4, Section 3.5, and Section 3.6 describe the problem analysis, design and

implementation of tasks, and iterative methods used respectively.
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3.4 Problem analysis

The research was situated within the wider context of implementing data science at the high

school level. Informed by an extensive review of literature and my previous teaching experience,

I collaborated with a wider research team (my PhD supervisors) to identify problematic issues

with introducing code-driven tools for teaching statistical modelling at the high school level. The

problem analysis identified two areas to focus the research on.

The first area of focus considered the practical teaching issue of describing, observing, and

teaching an integration of statistical and computational thinking. As discussed in Chapter

2, although frameworks exist for statistical thinking and computational thinking, none

appear to explicate their integration with respect to learning from modern data. Hence

the first main research question is: What observable thinking practices emerge as teachers,

positioned as learners, engage with statistical modelling tasks that introduce code-driven tools?

Supporting research questions were developed in response to practical issues with designing

and implementing tasks: Can these observable thinking practices be characterised as integrating

statistical and computational thinking? and if so, What features of the tasks appear to stimulate

or support the integration of statistical and computational thinking?

The second area of focus considered the practical teaching issue of creating learning tasks for

teaching data science, specifically statistical modelling. As discussed in Chapter 2, although

examples of tasks are shared by data science educators, rarely do the task designers provide

explanations or justifications for their task design decisions. Hence, the second main research

question is: What design principles could guide the construction of statistical modelling tasks

that introduce code-driven tools? Supporting research questions were developed in response to

practical issues with introducing new data technologies and computational tools: How could

tasks be constructed to support the introduction of new sources of data and modelling approaches

simultaneously with new code-driven tools? Does using familiar computational tools or modelling

approaches within the same task support the introduction of new code-driven tools?

The decision was made to carry out research with high school teachers to explore solutions

to these problems as this would provide professional development for the teacher participants

(van den Akker, 1999), a necessary priority for supporting the implementation of a new

technology-based teaching approach.
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3.5 Design and implementation of tasks

3.5.1 Task design

Although the focus was the teaching of statistical modelling, the use of code-driven tools

required careful consideration of computer science education research and DBR approaches

from a technology perspective. The design of tasks for this study did not just involve the

development of a sequence of instructions or prompts (task design) but also involved the

development of new and innovative technology (tool design). Important task design decisions

involved the choice of programming language and the selection of specific code-driven tools in

order to provide the coding environments for the tasks. The programming language used for

this research was R (R Core Team, 2017) and two types of code-driven tools were developed.

The first type of code-driven tool involved interactive web pages, which I created using the

package learnr (Schloerke et al., 2018). This coding environment allowed teachers to execute

small “chunks” of R code independently within the web browser. The second type of code-driven

tool involved RStudio (RStudio Team, 2018), an Integrated Developer Environment. In this

coding environment, teachers were given a RMarkdown (Allaire et al., 2018) file that contained

both markdown text and code chunks. Both types of code-driven tools made use of the tidyverse

(Wickham, 2017) ecosystem of R packages.

Informed by the initial task design guidelines I developed, and the affordances of the selected

code-driven tools and other technologies, four tasks were designed. As there was little research

available to guide the design of the tasks, I made frequent use of thought experiments to

consider what the consequences of different design decisions might be (Bakker, 2018), drawing

on my extensive experience with teaching statistical modelling to anticipate learner needs.

In line with the DBR process, the tasks were refined iteratively during the implementation

process. The details of each of these tasks are discussed in Chapters 4, 5, 6 and 7, and the

tasks used are provided in Appendices C, D, E, and F. The tasks were implemented using

four different teaching experiments. The details of these teaching experiments are provided in

Section 3.5.2. Details about the data collection methods used are provided in Section 3.5.3.

Additionally, various versions of the tasks were implemented at non-research workshops with

high school statistics teachers and students, and with my introductory level statistics students.

These informal implementations of the tasks assisted my design process.

44



3.5.2 Teaching experiments

Four professional development workshops were developed to trial new educational materials and

learning environments for statistical modelling from a data science perspective with high school

statistics teachers. All the workshops were conducted in person at the University of Auckland

and were facilitated by me. Three workshops were conducted in 2018 and one in 2019. Each of

the four workshops contained a teaching experiment.

The first three teaching experiments were conducted in 2018 over three five-hour workshops

spaced two weeks apart (26th May, 9th June, 23rd June). The fourth teaching experiment was

conducted in 2019 over one five-hour workshop (30th November). A summary of these tasks and

teaching experiments is presented in Table 3.1.

Table 3.1: Summary of tasks and teaching experiments used for the research study

Task Task name Statistical modelling
School
level

Teaching
experiment

Workshop
date

1 More than fifty shades
of grayscale

Classification models - 1 26th May
2018

2 May the force be with
you

Prediction models Year 13 2 9th June
2018

3 Humans vs Computers Randomisation test
(simulation-based inference)

Year 13 3 23rd June
2018

4 Free the fruity freezes Probability models
(simulation)

Year 12 4 30th
November

2019

Across all teaching experiments, teachers worked in pairs with access to one laptop computer,

with the pairs decided by me in advance of each workshop. Each task was a learning activity with

several distinct phases. Each phase was designed to be completed by each pair independently

of the other pairs, and the intent was for me and other members of the research team (my

PhD supervisors) to be as “hands off” as possible, offering support and guidance only when

requested. All teachers had moderate to strong GUI-based software skills as the current

assessment requirements for Year 12 and 13 statistics in New Zealand require the use of

software such as spreadsheets, iNZight and VIT.
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3.5.2.1 Recruitment of participants

Advertisements for the study were placed on the Statistics Teachers NZ Facebook page. The

Statistics Teachers NZ Facebook page is a publicly moderated group, where teachers share

resources and information of interest to teaching statistics. The group had over 500 members

at the time the advertisements were placed. I screened potential participants to check that

they had experience teaching Year 12 or Year 13 Statistics. Limits were placed on the number of

participants for the teaching experiments, due to the need for an even number of participants and

teaching space limitations. For the teaching experiments where there were too many volunteers,

or an odd number of volunteers, participants were randomly selected. As teachers participated

in this research outside of school hours, specifically in the weekends, organisational consent from

their respective schools was not needed.

3.5.2.2 Participants for teaching experiments one to three

Participants for the first three teaching experiments were four female and two male Year 13

statistics teachers. On average, the teachers had 10.5 years high school teaching experience

(mean = 10.5, min = 7, max = 14) and all but one had at least five years’ experience teaching

Year 13 statistics (mean = 7, min = 1, max = 12). Only one of the teachers had completed

an undergraduate degree majoring in statistics and had any substantive experience with the

statistical programming language R, although this teacher had not taught R at the high school

level.

3.5.2.3 Participants for teaching experiment four

Participants for the fourth teaching experiment were eight female and two male Year 12 and 13

statistics teachers. Four of the participants from the first three teaching experiments were also

part of the second teaching experiment. On average, the teachers had 12.3 years high school

teaching experience (mean = 12.3, min = 4, max = 18) and all but one had at least three years’

experience teaching Year 12 or 13 statistics (mean = 10.6, min = 0, max = 18). Four of the

teachers had completed an undergraduate degree majoring in statistics. Only one teacher had

any substantive experience with the statistical programming language R, although this teacher

had not taught R at the high school level. One of the teachers had completed an undergraduate

degree majoring in computer science.
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3.5.3 Data collection

Data for the research study was collected from the four teaching experiments. The data collection

methods included a questionnaire and observational data captured from teachers completing and

discussing the tasks.

3.5.3.1 Questionnaire

A short questionnaire was used to gain information about each teacher (see Appendix A).

Teachers were asked how long they had been teaching at the high school level, and specifically

how long they had been teaching statistics at the Year 12 or Year 13 level. Teachers were also

asked if they had completed a statistics, mathematics, or computer science major as part of their

undergraduate degree. Due to the small-scale exploratory nature of this research study, it was

not deemed necessary to ask more questions with respect to each teacher’s background, as the

goal of the analysis was not to generalise findings from a small sample to a bigger population.

Instead, the focus for data collection was on capturing each teacher’s interactions with each task

and the discussions between teachers about the design of the task.

3.5.3.2 Observational data

Teachers worked in pairs with access to one laptop computer and were asked to think aloud

as they completed each task (cf. task-based interviews, Casey & Wasserman, 2015). The think

aloud method allows for the analysis of thought processes, not just the product of thinking

(Van Someren et al., 1994), and provided a way to gain further insight into how the teachers

may have been utilising and integrating statistical and computational thinking. Within the task

instructions, there were also written prompts asking teachers to discuss certain elements of their

approach to the task. To support capturing teachers’ thinking and actions while completing the

task, reflective practice was encouraged after each task through semi-structured whole-workshop

group discussions. During these discussions, teachers were asked to share their beliefs about the

viability of the tasks for use with high school students and their personal experiences with

completing the tasks.

Teachers also completed a reflection sheet at the end of the third teaching experiment. (See

Appendix B for examples of discussion questions and the questions used in the reflection

sheet). All the teacher actions, responses, interactions with the software tools and conversations
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were captured using screen-based video and audio recordings made with browser-based tool

Screencastify. Additionally, digital documents created during each task were saved, which

included artefacts such as RMarkdown files, Google docs, and Google sheets. For some tasks,

paper-based handouts were given to teachers to write on and these also provided data. During

the teaching experiments I and other members of the research team occasionally offered

assistance and guidance to teachers as they were completing the tasks. These interventions

were captured in the audio recordings and were included in any transcripts created related to

the specific teaching episode.

3.5.4 Ethics

Permission to conduct the study was granted by the University of Auckland Human Participants

Ethics Committee for a period of three years from 30th April 2018 (Reference Number 021024).

There were several ethical issues that were addressed for this research project. To preserve

anonymity in published work, all data were reported in such a way that the participants and

their respective schools could not be identified. All personal details of teachers, such as their

names, were removed from the transcripts and digital artefacts from the tasks. Pseudonyms

were used for each teacher that retained their gender. As the research took place within small

professional development workshops where other teachers were present, the researcher included

in the participant information sheet and consent form that participants were not to disclose the

names of any other teachers who participated in this research to any other person.

Participants were also requested to maintain the confidentiality of information shared by

teachers during the workshops. However, participants were also advised in the participant

information sheet that it could not be guaranteed that other participants would comply

with this request. Written and informed consent was sought and obtained from each teacher

before they participated in the research. All participants had the right to withdraw from the

study, without giving reason. However, none of the participants withdrew from the study after

attending a workshop. Since there may have been a power relationship between myself and

each teacher participant, I gave assurance to maintain a professional relationship with each

participant. Teachers participated in workshops in their own time during weekends to help

resolve the issue of additional work for teachers, and the workshops were spaced at least two

weeks apart.
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3.6 Iterative methods

In the DBR approach, various methods are used across iterative cycles to refine solutions.

Figure 3.3 summarises the iterative process used to design and implement the tasks,

retrospectively analyse the data, and describe the essential characteristics of the task design

framework.

Figure 3.3: Summary of the iterative methods used in the DBR research

3.6.1 Data analysis

A retrospective and task oriented qualitative analysis approach (Bakker & van Eerde, 2015)

was used to explore and find meaning in the teachers’ actions, written responses, verbalisations,

and conversations. The analysis focused on identifying observable thinking practices and noting

what features of tasks appeared to stimulate or support these thinking practices. Starting with

the third task (randomisation test), the transcripts and screen recordings were read and viewed,

and annotations made to the transcripts with conjectures about the nature of the teachers’

thinking and reasoning. Special attention was paid to episodes involving data, models, modelling,

computation, and automation, and the computational steps of the statistical modelling activity.

These annotations led to the identification of salient examples from each task that would inform

the design theory, with examples selected through a process of constant comparison (e.g., Bakker

& van Eerde, 2015; Creswell, 2012).
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The process was then repeated with the second task and first task, before returning to the

fourth task. I started with the third task because it was the most traditional of the first three

tasks designed and implemented in terms of the statistical modelling approach, and did not

involve teachers simultaneously learning about new sources of data and code-driven tools. The

results of each iteration of analysis are reported in Chapters 4 to 7. After all four tasks were

explored, I compared and contrasted the thinking practices observed across all four tasks in an

attempt to characterise integrated statistical and computational thinking. I also considered

my expectations and intentions as the task designer for the nature of thinking that could

be supported or stimulated by different task features. The results of this analysis were two

hypothesised frameworks for Integrated Statistical and Computational Thinking (ISCT), both

of which are presented and discussed in Chapter 8.

3.6.2 Description of design characteristics

The data collected from the teaching experiments were used alongside the reflections I made

throughout the design process to develop and refine new design principles and processes. These

reflections also included any refinements to later tasks that I had made, based on my experience

implementing earlier tasks with teachers in the teaching experiments. The retrospective

analysis focused on identifying essential characteristics or features of the tasks that promoted

or stimulated learning in the domain of statistical modelling. Starting with the third task

(randomisation test), I produced a narrative that described my design moves (cf. Hoadley &

Campos, 2022) and identified features that I had intentionally included in the task to support

and develop statistical and computational thinking.

Where relevant, I linked aspects of my design narrative to literature, to incorporate aspects

of research and theoretical perspectives from across statistics, mathematics, and computer

science education. Combined with my analysis of the observed thinking practices, I explicated

design principles and considerations for constructing statistical modelling tasks that introduce

code-driven tools, resulting in the first iteration of a task design framework. This procedure was

repeated for the other tasks, using the same order as the data analysis process (see Figure 3.3).

A backwards and forwards approach was used to refine and modify the design framework, with

changes made to produce reusable design principles, rather than ones that were too specific for

each task. The development of the task design framework is presented and discussed in Chapters

4 to 7, and the finalised task design framework is presented in Chapter 8.
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3.7 Validity and reliability

For the results of this research to be taken seriously, the research methods used should be valid

and reliable. Within a design-based research approach utilising qualitative methods, validity can

be evaluated in terms of whether what was measured is the same as what was intended to be

measured (Bakker & van Eerde, 2015; Zohrabi, 2013). The findings of a study should be directly

related to the problematic issue that motivated the research and the research questions that

framed the inquiry; and the methods selected need to be used appropriately and systematically

(Burton et al., 2014).

To improve the internal validity, or credibility, of the findings, the data collected should be of

high quality and the reasoning used to make conclusions should be sound (Bakker & van Eerde,

2015). For this study, internal validity was enhanced by using tasks that I had piloted previously

with students, providing genuine learning activities from the wider context of the study. The

teaching experiments took place over an extended period (McKenney & Reeves, 2018), with at

least two weeks between each intervention. During the analysis of the data collected from the

teaching experiments, conjectures or design principles that were identified from one teaching

experiment were checked against previous teaching experiments, and a real effort was made to

find counterexamples (Bakker & van Eerde, 2015).

Importantly, data triangulation was used to strengthen the conclusions made by collecting and

combining different sources of data during the teaching experiments (Bakker & van Eerde, 2015;

Burton et al., 2014; Patton, 2015). For example, the thinking that teachers verbalised using the

think aloud method was transcribed and compared to the actions observed while completing the

task which was captured using a screen recording. During tasks, teachers were also asked to

write responses, and all these sources of data were then compared to what teachers said during

the group discussions, which were captured using audio recording and then transcribed. The

researcher also provided transcripts and screenshots of captured interactions with software tools

to other members of the research team to assist with the analysis of the data and to provide

additional perspectives (Burton et al., 2014).

With respect to the external validity of the results of a design-based research study,

generalisability and transferability need to be considered (Bakker & van Eerde, 2015;

McKenney & Reeves, 2018). This was a small exploratory study involving a self-selecting

sample of teachers who completed tasks during professional development workshops, which is a

very specific context. To enhance the external validity of the design principles, the four tasks
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developed used four different statistical modelling activities, and the findings are presented to

highlight how the task design could be adjusted by others to suit their learners, supported by

using thick rich descriptions of salient data (McKenney & Reeves, 2018).

The tasks developed and the design principles were also presented to critical audiences during

the research study, including other high school statistics teachers in non-research professional

development workshops and other statistics education researchers at conferences (Burton et al.,

2014). Audio recordings, transcripts and initial analyses were presented at the International

Collaboration for Research on Statistics Reasoning, Thinking and Literacy (SRTL-11 2019, Los

Angeles; SRTL-12 2021, Virtual). Additionally, papers based on this research were published

in peer-reviewed journals (e.g., Fergusson & Pfannkuch, 2021; Fergusson & Pfannkuch, 2022).

The findings of the research study were also compared to relevant literature within the fields

of statistics, mathematics, and computer science education to provide stronger theoretical

justifications for the proposed design principles.

Reliability with respect to qualitative research methods is concerned with the independence

of the researcher (Bakker & van Eerde, 2015), and related issues of dependability, objectivity,

confirmability, and transparency (McKenney & Reeves, 2018). Within a quantitative approach,

reliability refers to attaining the same results and consistency for measures across different

observers or observations (Burton et al., 2014). However, within a qualitative approach reliability

is more about whether the data collection and analysis methods are dependable, and that the

findings are consistent with these methods and could be repeated (McKenney & Reeves, 2018;

Zohrabi, 2013).

To enhance the internal reliability of the research findings, data collection used objective devices

such as audio recordings, screen capture recordings, digital artefacts of participant work and

written notes or diagrams completed during the teaching experiments. Transcripts were made

of salient aspects of the conversations captured, supplemented by screen shots where relevant,

and these were shared with other members of the research team during analysis to enable peer

examination of the data and enhance the trustworthiness of the research. Teaching experiments

conducted in the research study were repeated within non-research settings through professional

development workshops to explore if similar responses to the tasks might be obtained.

To improve the external reliability of this study, I took steps to be objective in my analysis

by grounding the analysis on the teachers’ responses rather than my own motivations for the

research (McKenney & Reeves, 2018). However, as analysis does not happen in a vacuum and
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tends to be driven by the researcher’s theoretical interests (Braun & Clarke, 2006), as is the case

with design-based research, there was the need for me to actively look for data and responses that

contradicted or challenged my pre-conceived views on task design. Furthermore, to demonstrate

that the conclusions of the study were based on the design process and teaching experiments, and

not just my beliefs, virtual replicability was provided by clearly documenting how the research

was conducted and how conclusions were made using the data (Bakker, 2018). Specifically, care

was taken to explicate the design principles and how these evolved over the research cycles

(Sandoval, 2014).

3.8 Summary

In this chapter, I have described the research methods used, and explained how a pragmatic

design-based research approach was used to guide the problem analysis, design and

implementation of tasks, the iterative methods of data analysis and the description of

design characteristics. The next four chapters present the findings for the research and

document the development of the Introducing Code-driven Tools (ICT) task design framework.

Each chapter focuses on one task and is written in keeping with the four-phase DBR cyclical

process model (Figure 3.1) of grounding, embodying, iterating, and reflecting. Each chapter:

(1) grounds the vision setting in the problem, New Zealand curriculum context, and in the

literature that is specific to the task, (2) embodies the task through narration of its design; (3)

iterates through describing the implementation of the task and analysing the data collected; and

(4) reflects on the DBR process with respect to the Introducing Code-driven Tools (ICT) task

design framework and evidence for the integration of statistical and computational thinking.
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Chapter 4: Randomisation test task

4.1 Introduction

The implementation of the New Zealand curriculum (Ministry of Education, 2007) had a

significant impact on the nature of the statistics taught and assessed in secondary schools.

New approaches to statistical modelling, such as simulation-based methods, were introduced

into the curriculum and new computational tools were developed to support the teaching

and learning of these simulation-based methods (e.g., VIT Online, Halstead & Wild, n.d.).

Currently, GUI-driven tools - computational tools with which users interact predominantly

by pointing, clicking, or gesturing within a Graphical User Interface (GUI) - dominate the

teaching of statistical modelling at the secondary school level. For secondary school students

to be active participants in learning from modern data, however, they need to integrate both

statistical and computational thinking, and this necessitates teaching students at least some

computer programming skills (Gould, 2010). Integrating computational thinking within the

statistics classroom also aligns with the digital technology goals of New Zealand schools.

As computer programming is not currently used within the teaching of statistics in New Zealand

secondary schools, it cannot be assumed that statistics teachers have a good knowledge of

programming, nor knowledge of how to design statistical modelling tasks that use programming.

Therefore, new research is needed that positions teachers as learners, and that explores how to

introduce statistics teachers already experienced with GUI-driven tools to code-driven tools —

computational tools with which users interact predominantly by entering and executing text

commands (code). This research aims to build on and extend previous research in GUI-driven

statistical modelling (e.g., Garfield et al., 2012) by exploring the design of tasks that facilitate

the integration of statistical and computational thinking, as teachers move from GUI-driven

tools to code-driven tools within the same learning task.
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Using a DBR approach, I explore the design and implementation of a task for introducing

teachers to using code-driven tools for randomisation tests (Task 3). Note the rationale for

starting the DBR process with the third task is discussed in Chapter 3. I explicate a task

design framework to support learners to move from a familiar GUI-driven tool to an unfamiliar

code-driven tool and examine what statistical and computational thinking practices emerge

when the task is implemented with teachers.

4.2 Teaching simulation-based inference

The last decade has seen growth in the use of simulation-based inference within introductory

statistics and data science courses at both the tertiary and secondary school level (Garfield et

al., 2012). A simulation-based approach is viewed by many educators as an attractive alternative

to a mathematics approach for introducing learners to statistical inference (e.g., Cobb, 2007).

Technology has enabled the development of more intuitive tools for supporting and visualising

simulation-based inference than what was available when computers were first used in classrooms

(e.g., Ben-Zvi, 2000). There is also no need to master algebraic representations before engaging

in formal statistical inference (Forbes et al., 2014) so mathematics is not a barrier to learning.

The use of simulation also promotes a modelling perspective for learning (Garfield et al., 2012)

and gives learners the opportunity to construct their own knowledge of statistics (Gelman &

Nolan, 2017). I define statistical modelling as the process of learning from data where one

constructs or selects and then uses a model for the underlying system that produced that data

and where one is aware of, and attempts to account for, uncertainty associated with the data

and/or model. There are two broad uses of statistical models to learn from real observed data:

(1) to generate individual outcomes or predictions, (2) to summarise underlying distributions or

processes, including testing hypotheses. As modelling processes may involve both data collected

directly from a real process and data generated via simulation from a model, there is a need to

define data as “real” or “model-generated” more clearly, in line with several proposed statistical

modelling frameworks (e.g., Case & Jacobbe, 2018; Fergusson, 2017). There is also a need to

provide transparency of process, and with respect to using “unplugged” activities, simulations

allow for learners to use physical actions to represent steps in the modelling process (Wood,

2005).

The amount, availability, diversity, and complexity of data that is now available in the modern

world requires educators to broaden their definitions of what data is and what it means to
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learn from data (Finzer, 2013; Gould, 2010). Statistical modelling with modern data requires

knowledge that extends beyond statistical, to include the computational. A focus on developing

computational thinking will also help learners navigate an increasingly digital society (Bell

& Roberts, 2016). Definitions of computational thinking vary, from broad statements such as

“computational thinking is the thought processes involved in modelling a situation and specifying

the ways an information-processing agent can effectively operate within it to reach an externally

specified (set of) goal(s)” (Nardelli, 2019, p. 34), to multi-dimensional frameworks (e.g., Brennan

& Resnick, 2012) similar to the four-dimensional framework (investigative cycle, interrogative

cycle, fundamental types of thinking, dispositions) developed for statistical thinking by Wild

and Pfannkuch (1999).

At the undergraduate level, programming is presented as an essential computing skill by those

advocating for modernising the statistics curriculum (e.g., Cetinkaya-Rundel & Rundel, 2018;

Nolan & Temple Lang, 2010) and is an important enabler of developing “data acumen” (NASEM,

2018). Computer programming does provide an efficient way to test learners’ computational

thinking (Bell & Roberts, 2016), but computational thinking is not the same as programming

(Wing, 2006) and can be developed without using code-driven tools. For example, employing

computer science unplugged activities, Bell et al. (2009) had learners working in teams using a

problem-solving approach that achieved a goal without using a computer.

Although there are existing frameworks related to statistical thinking and modelling (e.g.,

Grolemund & Wickham, 2014; Wild & Pfannkuch, 1999), there appear to be none that

specifically characterise the integration of statistical and computational thinking (c.f. Weintrop

et al., 2016). Key elements of statistical thinking include reasoning with statistical models and

integrating statistical and contextual knowledge (see Wild & Pfannkuch, 1999). With respect

to statistical learning task design, Weiland’s (2016) framework proposes that the highest level

is a task where the context is a critical component in making sense of the task and must be

considered to answer the task. A research challenge to be resolved is how to integrate statistical

and computational thinking when learning from modern data, and therefore how to design

tasks for such a teaching approach.

While Cobb’s (2007, p. 12) call to place the permutation or randomisation test as the “central

paradigm for inference” did not specify the use of particular software tools, the software tools

developed or used by statistics education researchers have been predominantly GUI-driven (e.g.,

Garfield et al., 2012). Statistics education researchers have considered carefully how GUI-driven

tools influence learners’ thinking when learning statistics and have also considered how to
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define the complex relationship between software features, task design and learners’ statistical

conceptions (e.g., Ben-Zvi, 2000; Fergusson, 2017). Statistics educators have also considered the

relationship between tool, task and thinking for modelling activities (e.g., Biehler, 2018).

The popularisation of the field of data science has led statistics education researchers to re-think

their ideas about tools for teaching statistical modelling. Kaplan (2007) presented a case for

using code from the programming language R (R Core Team, 2017) to teach the randomisation

test, arguing that a barrier to teaching computational-based methods is not computing but

the language or notation used to describe things. It has only been in recent years, however,

that statistical computing educators have developed packages (collections of R code functions)

specifically designed to support novices to learn simulation-based inference through the careful

design of functions and consideration of syntax. Some examples of R packages developed include

the mosaic package (Pruim et al., 2017), the infer package (Bray et al., 2018) and the mobilizr

package (Molyneux et al., 2017).

Recently there have been discussions among statistics educators about the design of learning

activities that may better prepare learners for using code-driven tools (e.g., Biehler, 2018;

McNamara, 2015). There is limited research at the secondary school level, however, involving

code-driven tools (e.g., Ferreira et al., 2014) and there appears to be no research in which

learners engage with statistical modelling tasks specifically designed to move them from using a

GUI-driven tool to a code-driven tool within the same learning task. Using any computational

tool for teaching statistical modelling requires pedagogical considerations. For example, how

much should the instructor and/or software hide, and how much should it reveal? As “an

instructor may use graphical interfaces and high-level functions to hide many details of

computations from students” (Hesterberg, 1998, p. 7), computational transparency is a real

pedagogical issue to consider, particularly within the context of computational simulation and

notions of glass box versus black box simulations (Magana et al., 2011). In relation to the use of

GUI-driven and code-driven tools for statistical modelling, I define computational transparency

as the degree to which the computations performed by the tool are obvious to the user (c.f.

realtime, n.d.).

Before learners can ask, (1) What do I want the computer to do for me? and (2) What does it need

to know in order to do that? (Pruim et al., 2017), learners need to understand the statistical

problem they want the computer to help them solve. While code-driven tools are a natural

alignment to the computational process of simulation-based inference, current GUI-driven tools

may offer greater access and support for statistical concepts. There are also considerations to be
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made about how to support learners’ mental images and visual representations of each aspect

of a statistical modelling process, aspects that may not be well translated to a code-driven

tool through current programming pedagogy. The motivation for introducing code-driven tools

is not to replace GUI-driven tools for statistical modelling. Instead, I see the introduction of

code-driven tools as an expansion of the learner’s toolkit for learning from modern data. I

propose that the integration of statistical and computational thinking could be supported by

building on learners’ experiences and knowledge of a GUI-driven tool for statistical modelling

and scaffolding their learning towards a code-driven tool.

4.2.1 Theoretical frameworks

In an attempt to bring together learning tools from across statistics and computer science

education I developed a framework based on the literature to inform the design of tasks

involving unplugged, GUI-driven and code-driven learning tools and the definition of these

tools (Figure 4.1).

Figure 4.1: Proposed framework to inform the design of tasks involving combinations of different
types of interactive learning tools (unplugged, GUI-driven, code-driven)

Furthermore, a research gap was identified regarding principles for task design to ensure learners

move smoothly between GUI-driven tools and code-driven tools. According to Erickson et

al. (2019) the naming of actions that alter a data set’s contents or structures as “data moves”

might help students’ move between tools such as CODAP (GUI-driven) and R (code-driven).

Similarly, I conjectured that the closer the match between modelling actions carried out with

GUI-driven and code-driven tools, the smoother the move for the learner.
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Supporting the use of the proposed framework to develop tasks is the dual coding learning

theory (e.g., Clark & Paivio, 1991), as the blending of GUI-driven and code-driven tools will

expose learners to text-based and graphics-based representations of statistical and computational

concepts through different types of interactions with the tools (e.g., Cook & Goldin-Meadow,

2006). Dual coding theory proposes that humans store information in their memory in two

distinct forms or representations, verbal and non-verbal, and that memory is enhanced by the

use of both representations in learning (e.g., Clark & Paivio, 1991). As learners need to access

and integrate new programming concepts with statistical concepts, cognitive load theory (e.g.,

Sweller et al., 1998) needs to be considered in the design of tasks.

Cognitive load theory proposes that humans have limited capacity to their working memory and

that the load that tasks impose on working memory should be reduced to optimise performance.

To minimise cognitive load, a sequence of simple-to-complex whole tasks needs to be developed

(e.g., Wouters et al., 2008). Thus, task development requires consideration of types of tools,

movement between tools in a statistical modelling activity, dual coding learning and cognitive

load theories, and existing statistical modelling tasks (e.g., Garfield et al., 2012). The following

computer science teaching strategies identified by Sentance and Csizmadia (2017) should also

be considered: unplugged type activities, contextualising activities, collaborative learning,

developing computational thinking and scaffolding programming tasks.

4.3 Task design framework

Even though the task design framework was developed after the implementation, it is now

presented to show how it relates to the features of the task that are discussed in Section 4.4.

Through a retrospective analysis of the task, I explicated the first iteration of a design framework

to construct tasks that introduce learners to code-driven tools through statistical modelling. The

analysis involved the research team conducting an intense and robust interrogation of me, as

the designer of the task, and the task itself, to identify, name, and collaboratively define the

design principles and associated considerations. The six design principles of the framework are

described below.

Principle 1: Immerse in data context. Learners participate in activities that require minimal

statistical or computational knowledge. The focus is on engaging learners with the data context,

understanding the nature of the data to be used for the task and on stimulating interest.
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Principle 2: Re-familiarise with GUI-driven tool. Learners use a GUI-driven tool with which

they already familiar to carry out a statistical modelling activity. The focus is on statistical

thinking.

Principle 3: Describe computational steps of GUI-driven tool. Learners are asked to describe and

write down the key computational steps of the GUI-driven tool in their own words. The focus

is on encouraging learners to think computationally.

Principle 4: Match computational steps with corresponding code chunks. Learners are presented

with individual code chunks that each match the computational steps of the GUI-driven tool.

The focus is on reading and attempting to make sense of the code presented.

Principle 5: Re-use code chunks with slight modifications. Learners re-use the same code chunks

to create the same statistical modelling activity with different variables or a different data set

within the same data context. The focus is on encouraging an integration of statistical and

computational thinking by making small changes to the code chunks in response to the change

in data, to produce an expected output.

Principle 6: Explore “what if?” changes to code. Learners are encouraged to be creative and to

explore “What if?” scenarios. The focus is on modifying at least one aspect of the provided code

to produce new or unexpected outputs, and so further develop the integration of statistical and

computational thinking.

Three design considerations are also proposed when creating tasks using these design

principles.

Consideration 1: The data used. Different data sets used should be within the same data

context and should have different features that can be exploited to stimulate both statistical

and computational thinking.

Consideration 2: The introduction of new knowledge. Each phase of the task should focus on

the use of one tool and should introduce at most one new knowledge. New knowledges may be

statistical, computational, context-related, data-related or tool-related.

Consideration 3: The level of computational transparency. Under the design principles, identify

the key computational steps of the GUI-driven tool for the statistical modelling task, and then

develop code chunks to match each computational step. As each computational step identified
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could be represented in many different ways using code, decide the level of computational

transparency that should be used across the learning task.

4.4 Task design characteristics

The statistical modelling focus for this task was a simulation-based approach to inference,

specifically the randomisation test. The statistical modelling process involved using a null model,

simulating data from the null model through re-randomisation, and using the re-randomisation

distribution of the test statistic to make a statistical inference (Garfield et al., 2012). It was

conjectured that the task would simulate thinking following a path of statistical (Phases 1 & 2),

computational (Phases 3 & 4), to an integration of the statistical and computational (Phases

5 & 6). Each phase of the task (see also Appendix C) is now described with respect to the

proposed design framework presented in Section 4.3.

Phase 1: Immersing the teachers in the data context for the task.

The purpose of this phase was to ground teachers in a rich data context for statistical modelling.

The data context selected was humans’ ability to estimate heights and whether the height

estimates could be influenced. An initial activity involved the teachers estimating the heights

of trucks and predicting whether a particular truck would fit under a bridge. A news clip was

then shown describing the use of sensors to detect trucks that might be over the height limit for

an upcoming bridge. I then described to the teachers how I developed an experiment involving

estimating the height of a giraffe in meters. Two different versions of the Google form were

created. Both forms featured the same picture of a giraffe, but one version of the form used two

“prompting” questions and the other version used no prompts (Figure 4.2).
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Figure 4.2: The two versions of the Google form: Low-High and None

I then explained how I shared a link on Twitter and Facebook asking for volunteers to complete

the survey, and how this link randomly allocated a person to one of the two versions of the survey

using code. The modern context of conducting experiments online through social media platforms

allowed for a data science perspective on an otherwise traditional experimental design.

Phase 2: Re-familiarising teachers with using the GUI-driven tool VIT Online for

carrying out the randomisation test.

The purpose of this phase was to familiarise teachers with the data from the giraffe experiment

discussed in Phase 1, including the names of the variables and how data from each variable was

recorded, and to stimulate statistical thinking by considering a causal claim. Teachers were asked

to explore what could be learned from the data by carrying out a randomisation test using the

GUI-driven tool VIT Online (Wild & Halstead, n.d.), a tool that they were familiar with. A key

design feature of VIT Online is that each user interaction with the tool produces visual feedback,

including graphics and animations. For the randomisation test, users import the data into VIT

Online, select the response and explanatory variables and then decide what statistical measure

will be used to compare the groups (the test statistic). The user then selects an option in the tool

to re-randomise the group labels to the response variable 1000 times. For each re-randomisation,

the test statistic is calculated and the re-randomised (or simulated) test statistics are collected

in a distribution called the re-randomisation distribution. The test statistic is compared to the

re-randomisation distribution and the tail proportion is calculated by determining how many of
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the 1000 simulated test statistics are at least as large as the observed test statistic. At the end

of this phase, each pair of teachers shared what they had learned.

Phase 3: Describing the computational steps of the GUI-driven tool VIT Online

for carrying out the randomisation test.

The purpose of this phase was to focus teachers’ attention on general aspects of the

computational sequence, in particular the flow of information between the user and the

tool. Teachers were given an A3 sheet of paper with five VIT Online screenshots for the

randomisation test using the giraffe data. Each screenshot represented one computational step

and green “highlight” boxes were used in the screenshots to focus teachers’ attention. Only the

step numbers were provided to teachers, not the description of the step (see Figure 4.3).

Figure 4.3: Key computational steps on A3 sheet for the randomisation test with the giraffe data
when using VIT Online

Teachers were given the instruction to discuss and write down for each step what the computer

had to do “behind the scenes” to interpret or use what they had done (as the user) to produce

the output or changes in the GUI. The expectation was not that teachers could describe the

63



specifics of the code used but that they could decompose and explain the computational aspect

of the modelling process in their own words.

Phase 4: Matching the computational steps with code chunks.

As the teachers already knew what each step of code produced, the purpose of this phase was

to encourage teachers to link aspects of their descriptions of each computational step to the

“words” used in the code. Teachers were progressively given chunks of code that matched each

of the five computational steps for the randomisation test presented in Phase 3. Intentionally,

the code provided did not produce graphics for Steps 2 to 5. The programming language R (R

Core Team, 2017) was used, and the code-driven tool was an interactive web page created using

the package learnr (Schloerke et al., 2018). This tool allowed teachers to execute small “chunks”

of R code within a web browser. The tidyverse (Wickham, 2017) ecosystem of R packages was

used for the code.

The infer package (Bray et al., 2018) was used for functions relating to conducting a

randomisation test, as the functions provided by the package were the closest match to the

computational steps for the randomisation test using VIT Online and gave some transparency

to the computations being performed. I developed additional functions and used these in the

code provided to teachers. Teachers were instructed that for each step on the A3 sheet, they

needed to run the code chunk supplied, discuss what they thought the code meant and add a

comment in the first line to summarise what the code did for this step. Some comments were

already provided within the code and these have been indicated for the reader in Figure 4.7 by

adding “(provided)” to the end of the comment line.

Phase 5: Re-using code chunks to carry out the randomisation test.

The purpose of this phase was to stimulate an integration of statistical and computational

knowledge, by requiring teachers to re-use the supplied code with small changes induced by

properties of the new data set. Teachers were introduced to a similar experiment involving my

stage one statistics students estimating the height of a man from a picture, and were asked what

could be learned from these data with respect to whether the use of prompts influenced height

estimates. The stimulus for this new experiment was a man not a giraffe, which provided new

contextual information that the teachers could reason with. Unlike Phase 4, where teachers had

used the same giraffe data from Phases 2 and 3, the man data was completely unfamiliar to

them and had different statistical properties. The variable names were the same but the levels

of the explanatory variable (Prompt) changed from “High-Low” and “None” to “yes” and “no”.
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Additionally, the height estimates of the man for the two groups were very similar, both in terms

of central tendency and spread.

Phase 6: Exploring “What if?” changes to the code by creating “new” test

statistics.

The purpose of this phase was to develop further an integration of statistical and computational

thinking by encouraging teachers to explore “new” test statistics beyond the difference of two

means or medians. Teachers were given a RMarkdown (Allaire et al., 2018) file and used this

within the code-driven tool RStudio (RStudio Team, 2018). The RMarkdown file contained text

instructions and all the code chunks from Phases 4 and 5, and was “knitted” (rendered) by the

teachers to produce HTML output. The code used for all steps in this phase was identical to

the code used in Phases 4 and 5 but also included the addition of new functions that produced

graphics similar to those produced by VIT Online. The code provided to teachers used the

giraffe data but teachers were able to change the data to the man data by changing the code.

Teachers were asked to create a new test statistic based on what they had noticed was different

between the two groups.

4.5 Analysis

The implementation of the randomisation test task took place during the third day of the

professional development workshops. I focus on two of the teacher participants, Naomi and

Ingrid, to provide a rich description of their actions and reasoning. During Phases 1 to 5, Naomi

and Ingrid’s actions and reasoning were similar to the other two pairs of teachers. During Phase

6, Naomi and Ingrid responded to the instruction to explore new test statistics, whereas the

other two pairs of teachers explored different “What if?” scenarios.

Both Naomi and Ingrid had taught at state-funded secondary schools for at least four years,

with most of these years at single-sex girls’ schools. Naomi had 12 years’ experience teaching

Year 13 statistics, but had not completed an undergraduate degree majoring in statistics and did

not have experience with the statistical programming language R. Ingrid was in her first year of

teaching Year 13 statistics, had completed an undergraduate degree majoring in statistics and

had experience with the statistical programming language R.

The results are presented sequentially for each phase of the task. Naomi and Ingrid spent 15

mins, 10 mins, 25 mins, 16 mins, 12 mins, and 14 mins working within each of the six phases of
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the task respectively. Reproductions have been made of the teachers’ writing and interactions

with the statistical software tools for graphics quality purposes, based on the screen recordings

made during the workshop.

4.5.1 Phase one: Immersing the teachers in the data context for the task

The conjectured thinking for this phase was statistical, with a focus on developing contextual

knowledge to inform the later phases of the task. The teachers shared their estimates of heights

and participated in discussions about how the use of context and external cues may influence

estimation processes. For example, when given a photo of a bridge, Naomi and Ingrid estimated

the height under the bridge to be five meters but said that it was difficult to tell. However,

when given a photo of a truck alongside the photo of the bridge and asked whether they thought

the truck would make it under the bridge, Naomi responded “that’s easier now because you’re

providing more scale.” After learning about the design for the experiment and the variables

used, Naomi and Ingrid expressed excitement at “finding out what happened” with the giraffe

experiment.

4.5.2 Phase two: Re-familiarising teachers with using the GUI-driven tool VIT
Online for carrying out the randomisation test (10 mins)

The conjectured thinking for this phase was statistical, with a focus on using a statistical model

and integrating statistical and contextual knowledge. As Naomi and Ingrid were already familiar

with the concept of a randomisation test and with implementing such a test using a GUI-driven

tool, the teachers successfully used VIT Online to carry out a randomisation test (Figure 4.4).
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Figure 4.4: Randomisation test for difference of two means using giraffe data

Naomi demonstrated an understanding of statistical modelling when she stated, in reference

to the re-randomisation distribution, that “you’re always going to get something symmetrical

around zero and the question is, how much, how big is this [referring to the observed difference]

compared to zero?” Although the statement about comparing the observed difference to zero

is partially correct, the statement about the general features of a re-randomisation distribution

is incorrect. While in this learning context it may seem reasonable to assume that Naomi was

only considering a randomisation test for a difference of two means, her comments in the later

phases of this task revealed that she did in fact believe that all re-randomisation distributions

were symmetric and centred around zero. Naomi then used the randomisation test output to

make a causal claim saying, “OK, so we’re fairly certain that people who get no prompts tend to

make higher estimates than people who are given a low prompt first.” Although this statement

does demonstrate statistical thinking, it should be noted that the causal claim made does not

refer to the design of the study.

The teachers’ discussion also extended beyond the test for the difference of two means into claims

of causality for variation:

Naomi: There’s also more consistency. Doing the Low-High thing brings more

consistency.

Ingrid: Yeah, the spread variation is quite important.

The integration of statistical and contextual knowledge, which is an element of statistical

thinking, was demonstrated during their discussions with the other teachers in the study, by
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linking the variability in height guesses to humans being uncertain. Naomi and Ingrid proposed

that variability was an aspect of the data distributions that was overlooked by students when

doing randomisation tests and that the variability was the more interesting aspect to the data

than the centres.

4.5.3 Phase three: Describing the computational steps of the GUI-driven tool VIT
Online for carrying out the randomisation test

The conjectured thinking for this phase was computational. As expected, the teachers’

discussions during this phase were mostly about what was being calculated, how data were

processed or generated, and what visualisations were provided, for each of the five steps of the

randomisation test using VIT Online. For all the steps in this phase, Ingrid and Naomi wrote

notes that separated the visual graphics produced by the tool from the computations performed

to carry out the randomisation test and discussed the difference between what the “computer”

needed to perform a calculation and what the “human” needed to see.

Naomi and Ingrid’s computational thinking for Step 4 (see Figure 4.3) did require some

additional statistical knowledge about simulating data from the null model. After looking at

the screenshot provided for Step 4, Ingrid began to describe her understanding of what was

being done by the computer.

Ingrid: For me, it’s putting all the data into one distribution and uses that

distribution as the null distribution, as the distribution of “what if it [the treatment]

doesn’t matter?”

Naomi: It [the computer] doesn’t need to do all of that, all it does, it detaches the

values from the groups and randomises the numeric data. I would think it was taking

a random sample, but I don’t actually know how the computer does it.

The discussion is not yet about calculating the test statistic from the re-randomised data, but

about the re-randomisation process. At this point, the teachers went back to VIT Online tool

which still had the giraffe data loaded and watched more closely as the tool visualised one

re-randomisation.

Naomi: So, see it’s detaching the groups, it deallocates it and it separates it out

again. You could think about it as randomly separating into two groups.
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Ingrid: So it randomly re-allocates the observations, the responses.

After re-examining the visualisations provided from VIT Online, the teachers settled on a

description of the re-randomisation step as “randomly allocates the response variable to the

two groups (keeping original sizes)” (Figure 4.5).

Figure 4.5: Step 4 provided VIT screenshot with teacher notes

It appeared that the instruction to describe the computational nature of this step also helped

the teachers to strengthen their statistical understanding of the re-randomisation process.

4.5.4 Phase four: Matching the computational steps with code chunks

The conjectured thinking for this phase was computational, and it was expected that teachers

would be able to link each GUI-driven tool interaction with functions used in code. Across all

the steps, the teachers demonstrated making connections between the computational aspects of

the GUI-driven and code-driven tools.

For example, for Step 1 Naomi and Ingrid immediately recognised that the code matched an

aspect of what they had discussed for Step 1 in Phase 3, with Ingrid stating, “the col_names =

TRUE is what we were talking about with that first row, saying yes do read the first row as col

names” (see Figure 4.6).
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Figure 4.6: Phase 3 Step 1 screenshot and teachers notes alongside Phase 4 instructions and
Step 1 code chunk

They added the comment, “Reads in data from csv file and saves it under obs_data, with heads

as col_names” to the code before running the code to produce a table as the output. When

presented with the code for Step 5, Ingrid read the code out loud and immediately pointed to

Step 5 on the A3 sheet (Figure 4.3) and said, “and this is where it does this!” Ingrid quickly wrote

the comment, “Compares the difference from the 1000 simulations to the observed difference and

finds the proportion of differences that are at least as big as observed”, ran the code and stated,

“there’s the P-value!” (pointing to the output of 0.025).

It was also conjectured that the use of the code-driven tool would develop new computational

knowledge during this phase. For example, when presented with the lines of code for Step 2,

Naomi and Ingrid determined that, whereas VIT Online had “guessed” which variable was the

explanatory and which was the response, with the code they needed to specify these variables

themselves. They referred to the A3 sheet annotated with their comments in Phase 3 to make

sense of the code. Neither teacher had used the verb specify when describing this same step in

Phase 3, but it is the name of the function specify() from the infer package. Similar to the

approach in Steps 1 and 2, the teachers read aloud the code for Step 3 to each other first before

attempting to make sense of each line. After several rewrites of their comments, they reached

agreement on the comments shown in Figure 4.7.
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Figure 4.7: Code provided for Phase 4 Step 3 showing comments written by teachers highlighted
and partial output

The process used to agree on these comments revealed some of the reasoning used when the

teachers were presented with unfamiliar functions and object names. For example, the teachers

quickly matched lines 2 and 4 of the code for step 3, shown in Figure 4.7, to familiar features

of the GUI-driven tool, seemingly helped by the intuitive object names used of group_stat and

compare_stat. For line 6 of the code, I intended for the naming of the object as order to provoke

the teachers to realise that unlike VIT Online, they needed to define the order they wanted the

difference to be calculated. However, Ingrid initially thought that the purpose of this line was

to tell the computer which two groups to compare. In response to Ingrid, Naomi explained that

the code was telling the computer the order to calculate the difference.

Naomi: When it [VIT] does it, it always calculates so that you end up with a positive

difference

Ingrid: So, the ordering is not by the estimate value, it’s by the code

When the teachers began to discuss the function calculate_stat(), Naomi said, “I must admit!

I’m real confused here.” It appeared the use of objects as arguments for the calculate_stat()

function was the source of the confusion. Ingrid read out the arguments aloud and realised that

the specification object was defined in an earlier step. The teachers then scrolled up the

page to the previous step to see where the object specification had been used and what it

represented. It appeared that progressive revealing of the code for each step may have hidden

the dependent nature of the steps.

It appeared that Phases 2 and 3 of the task supported the teachers’ ability to make sense of

the unfamiliar code presented to them, as did their pre-existing knowledge of the randomisation
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test. For example, when presented with the code for Step 4, Naomi immediately made links

between each line of code and what she knew about the randomisation test. This may be because

the “verbs” hypothesize and generate are familiar statistical terms, as are the words null,

independence, and permute. The teachers appeared to be supported to think computationally

during this phase as the only new knowledge to learn was computational.

4.5.5 Phase five: Re-using code chunks to carry out the randomisation test

It was conjectured that this phase of the task would encourage the integration of statistical

and computational thinking. Recall that Naomi and Ingrid were given a new data set from a

similar experiment, called the man data, and asked what they could learn from these data with

respect to the motivating question of whether the use of prompts influenced height estimates.

The general approach used by Naomi and Ingrid for this phase was to copy the code from each

step in Phase 4, change it if necessary, run it to check it worked, and then move on to the next

step. Typically when Naomi and Ingrid ran each code chunk, they did not say anything specific

about the output produced except to express happiness that it appeared as they expected.

The teachers did demonstrate some integration of statistical and computational thinking in this

phase, although the statistical thinking utilised predominantly contextual knowledge. There was

very little discussion about the features of the data, even though an important part of statistical

modelling is to visualise the data being used for a statistical test. For example, when checking

that the variable names used in the code for Step 2 matched the variable names in the data set,

the teachers opened the data as a spreadsheet to scroll through the data. The teachers focused

on looking at the data in terms of variable information for their code, not in terms of statistical

features. For example, they identified that the two groups were labelled “yes” and “no” in the

man data but they did not discuss that there were more data, nor that the heights were measured

in centimetres in the man data not metres as they were in the giraffe data.

During this phase, there were examples of development of the teachers’ computational thinking.

For example, after copying the code for Step 1 from Phase 4, Ingrid suggested changing the

name of one of the variables obs_data to man_data before realising this was not required as,

“otherwise we’ll have to change stuff later on.” Her initial idea to change the wording in the

code could reflect the differing requirements of language use within a programming context and

a statistical interpretation context. Additionally, in Step 3 as she was copying the code chunk
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from Phase 4, Ingrid said, “we’re going to have to change something here, because it’s Yes

instead of High-Low (sic)”, recognising a need to change the code provided.

Another example of some integration of statistical and computational thinking, with a focus

on linking to contextual knowledge, was in Step 3. When the code for Step 3 was executed,

the teachers saw that the output was a difference of 4 centimetres, and similar to Phase 2,

immediately reasoned in terms of its size and potential causality:

Ingrid: So, the difference was 4 cm

Naomi: Oh, that’s interesting, not a very big difference

Ingrid: I think what might have helped was the railing in the photo

Naomi: Yeah, I think it was anchored by that [railing] as well as the 180 [referring

to the photo branding estimation180]

However, there were no visual graphics produced by the code to support their discussion of the

difference of 4 cm, and the randomisation test had not yet been fully carried out. Following this,

Steps 4 and 5 were quickly copied and the code executed to produce a tail proportion of 0.239.

Naomi stated “so no difference between prompt and no prompt”, which is a common incorrect

conclusion from a large P-value.

4.5.6 Phase six: Exploring “What if?” changes to the code by creating “new” test
statistics

It was conjectured that this phase of the task would further develop the teachers’ integration of

statistical and computational thinking. Throughout this phase, as Naomi and Ingrid explored

a range of different test statistics, they appeared to develop a greater understanding of

the relationship between the test statistic and the re-randomisation distribution of the test

statistic. The use of the code-driven tool allowed them to automate the production of new

re-randomisation distributions each time they changed the definition of the test statistic.

For example, after using the code provided to carry out a randomisation test with the giraffe

data using the difference of two means as the test statistic, Naomi then made a suggestion for

their exploration:
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One of the things we noticed was that there was a difference in spread, we could look

at differences in spread. What if we compare interquartile range? Maybe, because I

know you can compare quartiles in VIT, I don’t remember if you can compare [IQR].

Ingrid found the code chunk where the test statistic was defined and Naomi suggested changing

the names of the function from median() to IQR(). Neither teacher was sure if there was a

function provided by R for calculating the interquartile range and the fact that the function is

actually named IQR() meant they did not need any code-related knowledge to modify the code.

After making this change to the code, Ingrid ran the code again. The teachers first discussed

the output for the test statistic, a difference in IQRs of 1.65 metres, in reference to the dot plot

provided on the A3 sheet used during Phase 3, not the plot provided in the output.

The teachers then turned their attention to the re-randomisation distribution produced (see

Figure 4.8a).

Figure 4.8: The re-randomisation distributions for the difference of interquartile ranges (a) and
the difference of standard deviations (b) using the giraffe data

Ingrid commented on the “weirdness” of the re-randomisation distribution and expressed a desire

to run the test again, stating, “Yeah, it looks bimodal. I wonder if that’s by chance though.” She

had recognised the dominant feature of the distribution but wondered if it was just a “one-off”

artefact of the simulated computational process. Naomi, however, initially reasoned away the

“weirdness” of the re-randomisation distribution by first reasoning that, “Yeah, but you get

that [distribution] for medians” before partially restating her incorrect understanding about

re-randomisation distributions:

That is interesting because you would expect to see something more … it shouldn’t

necessarily be normal but it should be roughly symmetric.
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Ingrid ran the code and while they waited for the output to be updated, the teachers continued

to reason about the shape of the re-randomisation distribution:

Ingrid: We’ve got 1000 observations

Naomi: But yeah, sometimes with small samples and medians and things, you don’t

get normal but…

Ingrid: Because our group sizes are so unbalanced?

Naomi: But it should still be symmetric. There are particular values that can come

up, but it should still be symmetric

Ingrid’s reflections appeared to be based on explaining why the shape of the re-randomisation

distribution of the difference in IQRs is not what was expected by offering thoughts related

to specific features of the data used for the randomisation test, whereas Naomi’s reflections

appeared to be based on general concepts related to an expected sampling distribution. The

teachers then checked the re-randomisation distribution for the second attempt, and found that

the shape was very similar to the first simulation and still clearly bimodal, with Naomi remarking,

“yeah that’s odd, that it isn’t symmetric because it should be symmetric.”

After they noted that the shape for the re-randomisation distribution was consistent across each

attempt, Ingrid suggested trying out the standard deviation to see if they still got the bimodal

features for the re-randomisation distribution of the difference in standard deviations between

the two groups. After a brief discussion with me, initiated by Naomi who wanted to know why the

re-randomisation distribution was bimodal, the teachers tested the difference of the two standard

deviations and observed the same bimodal shape feature for the re-randomisation distribution

produced (see Figure 4.8b). Naomi then considered the test result and the possible influence of

the “outlier”:

Interesting that it [the test] shows a difference in the IQRs but not the standard

deviation … IQR is going to be more suitable because there’s that outlier, so I would

tend to use an IQR … but yeah, whatever you do, which one gets this one [the outlier]

is going to have a wider standard deviation, so probably better do IQR.

While adjusting code for their next exploration, Naomi and Ingrid linked the idea that, “which

one [group] gets this one [the outlier] is going to have a wider standard deviation” to the bimodal
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feature of the re-randomisation distribution for the difference of the two standard deviations.

Naomi and Ingrid then explored the use of a ratio to compare the IQRs and the means of the

two groups. Naomi then suggested that they use the man data to explore the different test

statistics.

Similar to Phase 5, the teachers needed to make changes to the code to adapt to the different data

set. The teachers defined the order as order <- c("no", "yes"), which resulted in a negative

test statistic. When the two teachers discussed the order of the difference calculation for the test

statistic, they appeared to utilise an integration of both statistical and computational thinking,

which helped to partially resolve their earlier uncertainty about this line of code.

Ingrid: … because you can decide the order you want to call it in [the code to calculate

the test statistic], we could have gone “yes”, “no”, but if we did “yes” first it [the

observed difference between group means] would be positive

Naomi: But if the original data was “no” and “yes” we wouldn’t want to swap that ..

OK let’s swap it back to “yes”, “no” and then we’ll have a positive thing [referring

to the observed difference] … and it’s always going to use it [the order] for random

reallocation

In the excerpt above, the teachers appear to be drawing on computational knowledge (e.g.,

having to tell the computer what order to calculate the difference) and statistical knowledge

(e.g., which group had the higher mean in the experiment data).

Throughout this phase, the contextual part of statistical thinking was suppressed as the

teachers focused on distributional properties and aspects of statistical knowledge related to the

randomisation test. Unlike Phases 2 and 5, when the teachers interpreted the results of the

randomisation test by linking back to the context, during this phase the focus was on using

code to quickly create new visual representations of re-randomisation distributions. At the

end of this phase, Naomi and Ingrid were asked to share with the other teachers what they

explored.

Naomi: We did the IQR, the difference and the ratio, and that had a really interesting

distribution. Because the sample sizes are unequal it looks quite different than what

we are used to seeing. We’re used to seeing thing that are more symmetrical because

the sample sizes are more equal but with one smaller than the other you get this

unsymmetrical distribution.
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Note that Naomi now realised that it was possible for the re-randomisation distribution to be

unsymmetrical. In fact, her written reflection on concepts she felt she understood better as a

result of participating in the research workshops, she said, “re-randomisation distributions are

not necessarily symmetric.”

4.6 Reflection

One objective of my research was to learn more about how the proposed design principles and

considerations could help introduce learners to using code-driven tools for statistical modelling.

One of the challenges in designing the learning task was finding ways to reduce the cognitive

load when integrating different and often new, contextual, statistical and computational ideas.

For example, although these teachers were familiar with randomisation tests for the difference

of two means or medians, they had not previously explored other test statistics.

It appears that overall the learning task was successful and that this could be due to the specific

design principles used when creating the phases: (1) immerse, (2) re-familiarise, (3) describe, (4)

match, (5) re-use, (6) explore. The effectiveness of the design principles, which were explicated

after the development and implementation of the task, could also be explained because they

were based on teaching strategies sourced from both statistics education and computer science

education research (e.g., Garfield et al., 2012; Sentance & Csizmadia, 2017). I now discuss these

six design principles in light of the results presented, positioning the teachers as the learners.

4.6.1 The six design principles

Aligning to the immerse principle, Phase 1 was devoted entirely to familiarising the teachers with

the data context and stimulating their interest in the problem. This phase required no statistical

or computational knowledge, so allowed all the teachers to participate regardless of confidence

with the randomisation test. The data context was then used for all the remaining phases and

the data context appeared to support teachers’ reasoning (c.f. Weiland, 2016). Aligning to the

re-familiarise principle, Phase 2 allowed teachers to learn about a new data set, the giraffe data,

using a familiar tool (VIT Online) and a familiar statistical method (the randomisation test).

The findings presented for Phase 2 indicated that this approach allowed the teachers to focus

on interpreting the randomisation test contextually and on the features of the experiment data,

in particular the noticeable differences in spread between the two groups.
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After building specific knowledge about the experiment data and the randomisation test result

using the difference of two means, the describe principle demonstrated in Phase 3 prompted

teachers to think computationally about the randomisation test process. In particular, the

teachers were confident describing each step of the randomisation test in computational terms,

with Steps 3 and 4 providing some challenge. The describe principle appeared to offer similar

benefits to the unplugged or hands-on activities used within existing learning progressions for

simulation-based inference (e.g., Chance et al., 2004). The teachers began Phase 4 knowing what

computation was needed for each step and could focus on learning how code tells the computer

how to carry out each step (c.f. Pruim et al., 2017). The match principle demonstrated in

Phase 4 appeared to help build the teachers’ confidence with using the code-driven tool and

introduced some new knowledge about the functions used within the code. As the code itself

did not need changing, their unfamiliarity with the functions used did not prevent the teachers

from carrying out the randomisation test. Additionally, the teachers frequently accessed and

used their pre-existing knowledge of the randomisation test, their specific knowledge of the test

result for the difference of two means for the giraffe data, and their annotated A3 sheet about

the computational process during Phase 3.

During Phase 5, the re-use principle appeared to lead the teachers to successfully adapt the

code to carry out the test with the man data, however, decisions made were not informed by

a visual representation of the experiment data. Although the focus on “getting the code to

work” prompted computational thinking, care will be needed to ensure tasks designed using a

code-driven tool do not only reward text outputs. In Phase 6, the explore principle appeared

to encourage the teachers to try out new test statistics for both sets of data and to test

their conjecture that the spread of the two groups was different. Their exploration during this

phase also led to a partial resolution of an unexpected misconception about the randomisation

test revealed early in the task, which was that the re-randomisation distribution will always

be symmetric and centred around zero for any test statistic. When the teachers moved to a

code-driven tool that allowed them to test other statistics, Naomi and Ingrid began to realise

why the re-randomisation distribution may not have a symmetrical distribution by linking the

test statistic, the features of the experimental data and the features of the re-randomisation

distribution.

4.6.2 Design considerations

The introduction of new knowledge
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A design consideration was how to balance the learning of new statistical, computational,

data-related and tool-related knowledge within the same learning task. Phases 2 to 4 demonstrate

this consideration by only introducing one new idea at each phase. Phase 2 introduced a new data

set, Phase 3 the new idea of describing the steps computationally, and Phase 4 new code that

matched the steps described in Phase 3. Although the amount of new R programming knowledge

teachers developed was minimal, since they were provided with code to use, one of the reasons

the teachers felt the “code was not so scary” was because of the “chunking” of the randomisation

test by computational steps, the unplugged nature of Phase 3, and the revealing of the code for

each step progressively in Phase 4. The teachers were not introduced to computational thinking

at the same time as learning a new tool. While it is conceivable to design tasks where new

statistical, computational, and tool-specific knowledge are built simultaneously, these results

appear to highlight a potential risk that the different knowledges may not be gained equally

and that gains in one area of knowledge may be at the expense of another area (c.f. Cobb,

1997). For example, through Phases 3 to 6, the teachers’ discussion of the data context and the

study design were minimal as they were focused on the code-driven tool. The differing nature

of learner interactions with GUI-driven and code-driven tools was summarised by teachers in

terms of “what the computer needs” versus “what humans need.”

Level of computational transparency

It was a challenge in the design process to balance the need for a learner to: (1) access high quality

graphical representations of the data and statistical modelling methods used, (2) read and write

code that was computationally transparent, and (3) develop self-belief and self-confidence in using

a code-driven tool. At various times during the code-driven phases of the tasks, the teachers

struggled with some of the new computational knowledge presented via the code. However, similar

to how Erickson et al. (2019) propose the naming of “data moves” to help support learners move

between different tools, some of the specific names of functions offered by the infer package

helped the teachers to make connections with their pre-existing statistical knowledge for the

randomisation test. Notably, the teachers often made use of GUI-driven tools during the phases

that were designed to use code-driven tools, suggesting that it may be helpful to allow or even

encourage learners to “fold back” to familiar GUI-driven tools during the move from GUI-driven

tools to code-driven tools.
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4.6.3 Conjectured thinking for each phase

In designing a learning task to introduce teachers to code-driven tools, it was conjectured that

the thinking would follow a path of statistical (Phases 1 & 2), computational (Phases 3 & 4), to

an integration of the statistical and computational (Phases 5 & 6). Although the thinking was

observed in all phases, in Phase 5 the teachers’ statistical thinking was focused on the contextual

aspects and in Phase 6 the teachers’ consideration of contextual knowledge was suppressed while

they engaged with the underlying structure and properties of the re-randomisation distribution

in the statistical domain. This may not be surprising when considering Cobb’s (1997) contention

that when a person enters deeply into a thinking element, the other elements of thinking

become irrelevant or suppressed as the mind has no room for them (cf. Sweller at al., 1998).

According to Lee et al. (2011), computational thinking involves abstraction, automation, and

analysis. In this study these teachers appeared to show these characteristics while engaging

with a statistical modelling task. In particular, abstraction was demonstrated by the teachers’

generalisations about re-randomisation distributions for different test statistics, automation was

demonstrated by the teachers’ engagement with the code representation of the randomisation

test algorithm and analysis was demonstrated by the teachers’ interpretation of the features of

the re-randomisation distribution. Hence, I conjecture that the teachers indeed were developing

an integration of statistical and computational thinking.

4.6.4 Summary

There is an increased focus at the New Zealand secondary school level to integrate computational

thinking across all subjects. As GUI-driven tools dominate the teaching of statistics, new research

is needed to better understand how to introduce teachers to using code-driven tools and how

an integration of statistical and computational thinking could be supported in a learning task.

In line with Biehler (2018), I concur that greater consideration is needed about the relationship

that exists between tools, task design and learners’ statistical and computational conceptions.

Using the randomisation test as an example of statistical modelling (Task 3), my findings

indicate that the six design principles and three considerations could provide an explanation as

to why the learning task supported teachers’ introduction to code-driven tools and encouraged an

integration of statistical and computational thinking. These design principles and considerations

represent the first iteration of the Introducing Code-driven Tools (ICT) task design framework.

In Chapter 5, I explore the introduction of code-driven tools through a predictive modelling task
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(Task 2) and use the task and its implementation with teachers to evaluate and refine the task

design framework and examine integrated statistical and computational thinking.
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Chapter 5: Predictive modelling task

5.1 Introduction

Teaching recommendations for implementing data science at the high school and introductory

tertiary level include: placing greater emphasis on predictive modelling (Biehler & Schulte, 2017;

Gould, 2017; Ridgway, 2016); immersing students in data-rich contexts by sourcing dynamic

(“live”) data from the internet (Engel, 2017; Hardin, 2018); and providing opportunities for

students to integrate both computational and statistical thinking (e.g., De Veaux et al., 2017;

Gould, 2021). An obstacle to implementing these recommendations at the high school level is

teacher content knowledge and computing skills, particularly in the areas of machine learning

and the use of computer programming (coding) to access, manipulate and visualise data from

sources such as APIs (Application Programming Interfaces).

While materials for teaching data science at the high school level provide examples of curriculum

designs and how computational tools can be used (e.g., mobilizingcs.org/introduction-to-data-science,

key2stats.com, prodabi.de, idssp.org), there is a need for the explication of the design principles

used to develop the learning tasks. Clear guidance is also needed for how to design learning tasks

that will successfully engage a wide range of high school students with data science, particularly

for those who lack confidence with mathematics and computing (Burr et al., 2021).

Using a DBR approach, I created the first iteration of a design framework to inform the

development of new tasks to introduce code-driven tools through statistical modelling (see

Chapter 4). In this chapter, I explore the design and implementation of a task for introducing

teachers to predictive modelling using dynamic data sourced from an API (Task 2). I consider if

the task design framework can be applied to a task that uses a different source of data (dynamic

via APIs), a different statistical modelling situation (predictive modelling), and predominantly

one type of tool (code-driven). I also explore what statistical and computational thinking

practices emerge when the task is implemented with teachers.
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5.2 Teaching predictive modelling and APIs

High school statistics courses have traditionally used data collected within formal studies to teach

students about study design and statistical inference. Education researchers are re-thinking and

expanding their ideas about data and approaches to statistical modelling and have suggested

the inclusion of machine learning approaches and associated algorithmic models in high school

curricula (e.g., Biehler & Schulte, 2017). From a learning perspective, algorithmic models could

offer a more accessible and conceptually simpler mechanism to introduce students to data science

than inferential methods (Gould, 2017; Ridgway, 2016), and research by Zieffler et al. (2021)

suggested there might be similar benefits for high school statistics teachers. Predictive modelling,

with its focus on developing models by learning from features of data to make predictions and

forecasts for likely future outcomes, could also provide opportunities for students to integrate

both computational and statistical thinking (e.g., De Veaux et al., 2017). Although machine

learning approaches to predictive modelling could be used, previous research cautions against

using “black box” approaches to teaching modelling (e.g., Biehler & Schulte, 2017; Magana et

al., 2011).

Regression models can be used for predictive modelling and simple linear regression is commonly

taught at the high school level (e.g., Bargagliotti et al., 2020). However, a different perspective

is needed to teach machine learning and algorithmic modelling than the traditional use of

linear regression (Biehler & Schulte, 2017). Teachers’ existing understanding about linear

regression also needs to be considered. The purpose of the linear model can be unclear to

teachers, for example, whether the line fitted represents a model for a general relationship

or a summary of the data-specific relationship (Casey & Wasserman, 2015). Additionally,

little is known about how teachers will reconcile algorithmic modelling approaches alongside

traditional modelling approaches within the same teaching programme. Biehler and Schulte

(2017) suggested that teaching predictive modelling from a data science perspective could build

from familiar understandings of linear regression but include more emphasis on validation

through residual analysis and predictive accuracy.

Simple linear regression models are too “simple” to produce high rates of predictive accuracy

using point predictions, but more advanced approaches to regression would be beyond the scope

of the high school statistics classroom. An informal approach to introducing predictive modelling

could draw on the success of informal inference research (e.g., Makar & Rubin, 2018). A key

characteristic of using an informal approach is employing visual representations to build concepts

83



and inform decisions, utilising specially designed software such as TinkerPlots (Konold & Miller,

2015) and VIT (Visual Inference Tools, Wild et al., 2017). An informal approach could be used

for introducing predictive modelling, for example, by generating prediction intervals based on a

visual estimate for the prediction error and evaluating the model in terms of what percentage

of the outcomes appear to be “covered” by the prediction intervals.

Students’ experiences with training and testing models, such as cross validation, do not need to

be formal. Using data from sources such as APIs provides an opportunity for students to train

and test models with different data sets, therefore supporting learning about concepts such as

overfitting, underfitting, and generalisability. The use of dynamic data more closely aligns with

predictive modelling in modern applications, such as monitoring social media usage or customer

interactions on web pages and using past customer transactions to predict future purchasing

behaviours. Modern data contexts may also be more engaging for teaching high school students

(Gould, 2010; Ridgway, 2016).

There are many computational barriers for high school teachers to use APIs for teaching.

Providing “data portals” that allow students to access data from APIs without coding (see

Erickson, 2020) are one possibility for opening the world of dynamic data for teaching. However,

accessing data from APIs is not the only computational barrier. Using data that is obtained

can also raise difficulties. Data formats and hierarchical structures such as JSON (JavaScript

Object Notation) and XML (Extensible Markup Language) are not common for teachers, nor are

manipulations with the raw data obtained from the API, for example, working with timestamps

or text. Recommendations to use interactive documents such as RMarkdown (Allaire et al.,

2021) to access dynamic data (e.g., Hardin, 2018) are not likely to be widely adopted at the high

school level as they involve installing and using specialist software. Teachers may prefer tools

that are web-based, free, require minimal time to learn how to use, and offer collaboration and

easy sharing of tasks (Biehler, 2018). Therefore, care is needed to design predictive modelling

tasks that balance new statistical and computational ideas, with the learning demands of using

new data technologies.

A common thread to discussions about data science education is that students need to integrate

both statistical and computational thinking (e.g., De Veaux et al., 2017; NASEM, 2018), and that

students need to develop at least some computer programming skills (e.g., Cetinkaya-Rundel &

Rundel, 2018; Nolan & Temple Lang, 2010). Arguments exist for and against teaching statistics

at the high school level using code-driven tools, computational tools which users interact with

predominantly by entering and executing text commands (code). Statistics education research
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at the high school level, however, has largely involved GUI -driven tools, computational tools

which users interact with predominantly by pointing, clicking, or gesturing.

With respect to introducing predictive modelling and data sourced from APIs, using a

code-driven tool could support the teaching of statistical and computational thinking. Central

to statistical thinking is the use of statistical models (Wild & Pfannkuch, 1999). Using a

code-driven tool could lower the cognitive demands of the statistical modelling task (Son et

al., 2021), as code can be used to articulate modelling steps (Kaplan, 2007). I contend that

computational transparency, that is, how obvious the computations performed by the code

are to the learner, is an important consideration when using code-driven tools for teaching

statistical modelling. By using a code-driven tool, students can modify requests when accessing

and using data from APIs, allowing the data context to be central to their learning and

decisions (Weiland, 2016; Wild & Pfannkuch, 1999). Furthermore, the use of a coding approach

has the potential to allow for exploration of “what if?” scenarios, explorations that are often

restricted by the options provided by GUI-driven tools.

The design of the task should take cognisance of the presentation and interface for the

computational tool and allow students to tinker with a model articulated with code and to

visualise changes instantaneously (cf. Tinkerplots). The R (R Core Team, 2020) package learnr

(Schloerke et al., 2018), for example, provides a way to produce an interactive web-based task

where students can execute small “chunks” of R code within a web browser. Since the release

of learnr in 2017, the package has had over 250,000 downloads but there are very few research

articles that describe the use of the tool to design learning tasks (e.g., Wiedemann et al., 2020).

In general, it is difficult to find substantial literature that explicitly communicates strategies

for designing tasks that introduce code-driven tools for statistical modelling at the high school

level.

5.2.1 The New Zealand teaching context

New Zealand has one national curriculum which is taught at nearly all high schools. Grade

12 statistics students are assessed against the curriculum using school-based assessment tasks

and national examinations. Curriculum and assessment materials provided by government

educational agencies (e.g., NZQA, 2019) were used to review current approaches to the teaching

and assessment of predictive modelling. I identified that Grade 12 statistics students are

expected to use linear regression models to make predictions but are not required to engage
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with sample-to-population inference ideas when using linear regression models, for example,

interpreting confidence intervals for the model parameters. Students are also not expected to:

use a prediction model developed with one set of data to generate predictions for cases within

a different set of data; generate prediction intervals from a model; evaluate a model in terms of

predictive accuracy; discuss precision versus accuracy; access APIs as a source of data; or use

computer programming as part of the predictive modelling process. Consequently, high school

statistics teachers are unlikely to have experience with designing and implementing tasks that

employ these approaches.

5.3 Task design framework

Through the retrospective analysis of the randomisation test task, I explicated a design

framework to construct tasks that introduce learners to code-driven tools through statistical

modelling (Chapter 4). Because of the iterative nature of design-based research, I evaluated the

first iteration of the design framework (Section 4.3) against the criterion of producing a more

general design framework rather than one that was too specific to the nature of the tools and

tasks used previously.

The learning task from the first iteration was constructed to move learners from a familiar

GUI-driven tool to an unfamiliar code-driven tool for carrying out the randomisation test, a

familiar statistical modelling approach. Consequently, some of the design principles specifically

mentioned GUI-driven tools and assumed existing knowledge of the statistical modelling

approach.

For the second iteration of the task design framework, the following changes were made: the

references to GUI-driven tools were replaced with references to statistical modelling ideas or

processes; a new design consideration concerning the tools used was added; and the descriptions

of the design principles and considerations were modified. An overview of the second iteration

of the design framework discussed in this chapter is shown in Figure 5.1.
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Figure 5.1: Design framework for constructing statistical modelling tasks that introduce
code-driven tools

To use the design framework to construct a task that introduces a code-driven tool for statistical

modelling, the task designer needs to decide what statistical modelling approach will be used.

There will be an initial idea about the learning goal(s), which are shaped during the design of

the task and finalised at the end of the construction process. The design principles are used to

inform decisions about features of the learning task in terms of specific actions or experiences

for learners and the chronological order of these actions or experiences. The design principles

immerse, re-familiarise, describe, match, adapt and explore are presented in Table 5.1.
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Table 5.1: The six design principles of the design framework

Design principle
Learning action or
experience Anticipated learning

Immerse in data context (P1) Participate in activities that
promote engagement with the
data context

Understanding the nature of the
data that is used across the task

Re-familiarise with statistical
modelling ideas (P2)

Carry out familiar statistical
modelling activities without
using code

Application of statistical
thinking

Describe computational steps of
statistical modelling process
(P3)

Use words to describe key
computational steps of
statistical modelling process

Decomposition of modelling
steps and recognising required
computation

Match statistical modelling steps
to code chunks (P4)

Read and match lines of code
with statistical modelling steps

Recognising aspects of code
syntax and structure

Adapt code chunks with slight
modifications (P5)

Identify features of code to
change to complete a statistical
modelling action

Integration of statistical and
computational knowledge

Explore “what if?” changes to
code (P6)

Modify at least one aspect of
provided code to produce new or
unexpected outputs

New knowledge gained by
integrating statistical and
computational thinking

Alongside the design principles, the construction of the task is simultaneously guided by four

design considerations that inform broader decisions across the learning task: the introduction of

new knowledge, the data used, the tools used and the level of computational transparency.

• The introduction of new knowledge (C1) refers to identifying content and using a sequence

of phases and steps within a task to introduce learners to new ideas.

• The data used (C2) refers to selecting and using different variables or different sets of data

within the same data context for the task.

• The tools used (C3) refers to combining different tools for statistical modelling (unplugged,

code-driven, GUI-driven) and connecting actions or representations between tools within

the task.

• The level of computational transparency (C4) refers to how obvious the computations

performed by the tool are to the learner.
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5.4 Task design characteristics

I now discuss how the second iteration of my task design framework aligns to the task used in

this chapter (see Appendix D). The statistical modelling approach was an informal method that

relied on teachers’ reasoning with features of visualisations to construct a model that generated

prediction intervals. The form of the prediction model was predicted y = a + bx ± error

, where a and b are the y-intercept and slope of a linear model respectively, and error is a

numeric value visually estimated by the teachers to model prediction error. The learning goal

for the task was for the teachers to create a model that generated prediction intervals, using

data sourced from an API.

5.4.1 Data-related design decisions

The decision to use dynamic data from an API for the task was informed by the design

consideration of the data used (C2), as well as the larger research study goal to provide a data

science perspective for statistical modelling. The use of dynamic data provided an opportunity

to learn about a new modern data source and related computational ideas, at the same time

as supporting development of predictive modelling ideas by providing different data sets.

Conventionally, the process of training and testing a prediction model would involve the same

set of data, for example, randomly allocating 80% for training and 20% for testing. However,

as the data for this investigation was sourced from an API, it was decided to ask teachers to

develop a model based on data from one search query and apply it to data from a different

search query. The approach also allowed for similar reasoning one might face when using an

inference made from a sample from one population and applying this generalisation to another

population or inferring to a wider population.

The OMDb API (omdbapi.com) was chosen because it provided data about movies, including

information about movie ratings from three different sources. Additionally, OMDb provided an

“API explorer”, a graphical-user interface (GUI) to send requests to the API, without using a

programming language, a feature that aligned with the design consideration of the tools used

(C3). Specifically, it was decided to design questions that supported teachers to connect actions

and representations between the GUI-driven “API explorer” and the code-driven tool. To support

an informal approach to predictive modelling, facilitate access to dynamic data from an API

and a code-driven tool, it was decided to design a web-based task.
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5.4.2 Web-based task design decisions

The task was implemented using an interactive web page created using RMarkdown (Allaire

et al., 2021), the R package learnr (Schloerke et al., 2018) and the tidyverse (Wickham, 2017)

ecosystem of R packages. The learnr package provided many features that aligned with my design

framework, including being able to: create individual steps for the task containing instructions,

multimedia, and links to other webpages; run small “chunks” of R code within the task; embed

interactive quiz questions within the task; and reveal each step of the task individually as the

task progressed.

When developing the code provided to teachers, the statistical modelling approach for the task

and the level of computational transparency (C4) were considered. The computations related

to accessing data from the API were hidden from the teachers by using a function I developed.

To support teachers’ understanding of the prediction model, the computations related to linear

regression and representing the prediction model graphically were revealed to the teachers. Code

was developed using the R package ggplot2 (Wickham, 2016) and provided to the teachers using

code chunks. The code chunks facilitated fitting simple linear regression models, quantifying

the average size of the prediction errors, tinkering with the model parameters, visualising the

prediction intervals, and training and testing a prediction model on different sets of data.

The quiz question functionality of learnr was used to construct what I call “tinker questions.” A

tinker question presents a set of related TRUE/FALSE statements that are deliberately written

to require action by the learners within a computational learning environment in order to evaluate

each statement. As opposed to quiz questions that assess existing or recently acquired knowledge,

these tinker questions were used to stimulate the development of new computational knowledge

by encouraging learners to make connections between actions and representations of the tools

used (C3). Figure 5.2 presents a tinker question, which was used for step 1 of the task, along

with a screenshot of the expected output from using the OMDb API explorer.
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Figure 5.2: Example of tinker question used for step 1

The stem of the tinker question required the teachers to use the OMDb API explorer to send

a request to the OMDb API. By searching for a movie with the title “star wars”, both the

URL request needed to make the request programmatically and the response to the request as

JSON were generated. Each of the TRUE/FALSE statements presented for the tinker question

was designed to help teachers to notice specific features of the output generated. Specific types

of statements included those that were FALSE to create conflicting representations and those

that encouraged a focus on recognising patterns or structure within code or other computational

representations. The teachers then submitted their answer, based on ticking which statements

they believed were TRUE. If any of their answers were incorrect, the teachers then needed to

repeat the process to identify which statements were TRUE or FALSE. The process of evaluating

each TRUE/FALSE statement requires noticing and reflecting on the product(s) of each action,

which I conjecture facilitates micro interrogative cycles (Wild & Pfannkuch, 1999).

The design consideration of the introduction of new knowledge (C1) led to the decision to use

the progressive reveal setting for the learnr-constructed task. The steps of the task were revealed
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to the teachers progressively; when they completed each step, the next step appeared below the

previous step(s) on the same web page. The progressive reveal setting also prevented the teachers

from moving to the next step until the tinker question was successfully answered. Similarly,

this setting prevented the teachers from moving to the next step until the code provided was

executed at least once. These settings were used to carefully sequence the order and amount of

new computational and statistical ideas introduced across the steps of the task.

5.4.3 Summary of task phases and steps

A summary of the two phases of the task and how they relate to the six design principles and

the steps of the task is provided in Table 5.2.

Table 5.2: A summary of the phases, design principle and steps used for the task
Phase Summary of phase Principle Steps

1 Introduce dynamic
data from an API

Immerse (P1) 1 to 5

2 Introduce predictive
modelling ideas

Re-familiarise (P2), Describe (P3),
Match (P4), Adapt (P5), Explore (P6)

6 to 14

Appendix D provides a static version of the full web-based task used, and links to the R code

used to create the task and a demo version of the task. Each phase and step of the task is now

described and includes further explanations about how the design framework is aligned to design

decisions.

The first phase focused on immersing (P1) teachers in dynamic data from an API, specifically

movie ratings from the OMDb API. Tinker questions were used for four of the five steps of this

phase (Appendix D: Q1, Q3, Q4, Q5). After being introduced to the structure of API requests

and JSON in Step 1, Step 2 built further knowledge of the API by asking teachers to familiarise

themselves with selected aspects of the API documentation. The knowledge introduced in Steps

1 and 2 was then used in combination with the code provided in Step 3 to modify requests to the

API. Steps 4 and 5 encouraged teachers to adapt the code provided to change the API requests.

These steps also allowed the teachers to further familiarise themselves with the nature of the

data available about movies from the OMDb API, including the structure of the data and how

the data could be manipulated to create new variables.

The second phase focused on introducing teachers to predictive modelling ideas, by drawing on

familiar ideas of simple linear regression, notably the intercept, slope, and ideas of sampling
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variability. Discussion prompts were used across the questions in this phase to facilitate

discussion between teachers and to stimulate thinking. Step 6 used a prompt asking teachers

to discuss whether they expected there would be relationship between the Metascore and

IMDb ratings for movies. Step 7 provided the complete code to create a scatter plot, but the

x and y variables were incorrect, requiring a small change to produce the expected visual

representation.

Steps 8 and 9 introduced teachers to fitting simple linear regression models using R code and

interpreting relevant features of scatter plots. As it could not be assumed that teachers had

constructed prediction intervals before, either informally or formally, these steps were used to

re-familiarise (P2) teachers with the key computational steps required for an informal approach.

In particular, Step 9 was used to shift the focus to prediction and to informal approaches for

creating prediction intervals using visual features of the data and fitted line. The step specifically

asked teachers to discuss whether “You can use an interval to give the predicted metascore rating

based on the variation (vertical scatter) observed in the data/plot” and what two numbers they

could use for a prediction interval of the metascoreRating of a movie that had an imdbRating

of 7.

Step 10 presented the model to generate prediction intervals, and teachers were asked to estimate

the error term for the model. The teachers needed to read the comments within the code that

described (P3) the lines of the code and then adapt (P5) the code, by adjusting the values

assigned to the y-intercept, slope, and error. The guidance provided to teachers about how to

decide on the numeric value for the error was to base it on their visual estimate of how far away

the points sat vertically from the line. Teachers were expected to use the visual representation

of the prediction intervals generated — the line fitted and the yellow shaded band around this

line — and to match (P4) these visual representations to the code used for their model. The

discussion prompts in Step 10 were used to encourage teachers to think about model accuracy,

by contrasting the percentage of correct predictions using point estimates (the fitted line only)

with using prediction intervals (the model developed).

Step 11 asked teachers to discuss how well they thought their prediction model would work with

movies that have the word “war” in their title. This step signaled a shift in the task to consider

using the prediction model with a new set of data and introduced ideas of training and testing.

Step 12 asked teachers to adapt (P5) code to match (P4) the model they developed in Step 10

and then to discuss how well their prediction model worked for movies with the word “war” in

their title. To further explore the idea of generalisability and to provide another visual example
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of applying their prediction model to a new set of data, Step 13 provided teachers with code to

generate and use their model with movies with the word “love” in their title.

Similar to Step 7, the code provided produced a visualisation but there were a few more aspects

of the code that needed adapting (P5) before the model could be evaluated using the new set of

data. Step 14 provided teachers an opportunity to go back to any previous step and look more

closely at the code used. This step also provided encouragement for teachers to explore (P6)

changes to the code by following their own curiosity.

5.5 Analysis

The implementation of the predictive modelling task took place during the second day of the

professional development workshops. This was the first task where the teachers were working

through a statistical modelling task entirely using a code-driven tool and took place in the

afternoon. The theme for the workshop was Star Wars and in the morning session teachers

explored a Star Wars API (swapi.dev) by modifying URLs and finding information from the

JSON returned (see Fergusson & Wild, 2021). The teacher pairings for this task were: Amelia

and Ingrid, Alice and Naomi, and Harry and Nathan (pseudonyms have been used).

All the teachers discussed the specific data context of movie ratings at various times throughout

the task and developed new computational ideas related to APIs, including identifying features

of JSON, modifying API queries, and using R code to access and visualise data from an

API. Drawing on familiar ideas related to simple linear regression, the teachers were able to

develop a model to generate prediction intervals by adapting code. They also demonstrated

some understanding of training and testing a prediction model on different sets of data. I now

present in more detail the results of the teachers’ interactions with the task and the consequent

emergent thinking that was observed.

5.5.1 Phase one: Introduction to dynamic data from an API

The focus for the task initially was immersing teachers in the data context of movie ratings, by

integrating new computational knowledge related to APIs with familiar statistical knowledge

including rectangular data sets and features of scatterplots (see Appendix D, Steps 1 to 5).

I observed that the teachers were able to read information about movies presented as JSON,

even when it appeared they were unfamiliar with the associated vocabulary. For instance, when
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reading the statements for the Step 1 tinker question, Harry repeated the word “JSON” several

times and Alice asked, “What’s a JSON, is that the green thing?”, indicating both teachers

were unfamiliar with the word. The teachers then looked for “JSON” within the OMDb API

documentation and successfully negotiated a new understanding that a “JSON” was a type

of data structure or new computational representation. The teachers were able to identify the

information required within the JSON to answer questions. To illustrate, when considering the

statement that referred to the JSON being nested, Amelia responded, “Yes, it’s got the little

square brackets”, demonstrating a connection between the word “nested” to this structural

aspect of the computational representation.

The teachers demonstrated new ideas related to the structure of API queries, including the use

of parameters and URL encoding. The sequencing of the questions, in particular introducing and

progressively revealing new ideas at each step and re-using these new ideas in later questions,

appeared to help to build these computational ideas. For example, when Harry and Nathan

reached Step 3, the first statement they evaluated as TRUE or FALSE was, “There are around

728 (TV) series with wars in their title.” Both teachers remembered from the previous step that

there was a way to change the request and pointed to the type=movie part of the query request,

before reviewing the OMDb API documentation to confirm the request needed to be changed

to type=series. Although Step 3 reminded the teachers to use a “+” to represent a space for a

search request, all the teachers referred back to knowledge gained from Step 1, when they used

the API explorer to generate JSON for a search for “star wars”. Thus, they connected actions

and representations between the GUI-driven API explorer and the code-driven tool.

In Steps 4 and 5, where the teachers were provided with code that produced data about the

movies in the form of an interactive table, they successfully modified the code and identified

information about the number and nature of the variables available. For example, the teachers

discovered the function getResults() will only return a maximum of 100 results and that

data represented using JSON can also be represented as a data table. The task did not ask

teachers to manipulate any of the variables provided in the datasets returned from the OMDb

API. However, when answering the tinker question used for Step 5, the teachers developed new

knowledge about the required computational actions for using other variables from the API data

source. For instance, when considering whether the variable Runtime was numeric, Amelia said,

“at the moment it’s not, you would have to remove ‘min’.” Similarly, when discussing the variable

Genre, Alice commented that each movie has “got multiple genres” and that the variable could

not be used to focus on movies from just one genre.
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5.5.2 Phase two: Introduction to predictive modelling ideas

The focus of the task then moved to predictive modelling, in particular, the development of

an informal model to generate prediction intervals by extending familiar ideas of simple linear

regression models (see Appendix D, Steps 6 to 14). The teachers demonstrated they could

quantify the size of the prediction errors using an informal visual approach that applied statistical

thinking. To illustrate, in Step 9 the teachers were instructed to run the code provided, which

produced a scatter plot with the least squares regression line fitted and were asked if the following

statement was true: You can use an interval to give the predicted metascore rating based on the

variation (vertical scatter) observed in the data/plot. The statement was specifically included to

support teachers to think about predictive precision. Step 9 also included a discussion prompt

asking teachers to create their own prediction interval for the metascoreRating of another movie

that had an imdbRating of 7. To determine their prediction interval, Nathan and Harry placed

their pens on top of the computer screen and moved these up and down in parallel positions

to the fitted line. Figure 5.3 shows Nathan’s red pen in its final position and Harry’s blue pen,

which was still being positioned.

Figure 5.3: Nathan’s red pen and Harry’s blue pen being used to help determine their prediction
interval

To help Harry position his pen, Nathan told him to, “Take out that bottom one! We’re not using

all the dots, are we?” Harry and Nathan then discussed how much “margin of error” they needed

by estimating the vertical distance “above” and “below” the fitted line to their respective pens,

settling on half a “square” or “12.5, around 12”. Alice and Naomi used similar reasoning, but

without pens, which was influenced by the scale breaks used for the metascoreRating, leading

to the same prediction error value of 12.5.

Step 10 of the task required teachers to develop a prediction model using search data for movies

with the word “star” in the title. Although the form of the prediction model was unfamiliar to

the teachers, they were all able to adapt the code provided by changing the values for a, b, and
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error, thus demonstrating some understanding of how the code syntax and structure related

to the prediction model. Each pair of teachers took a different approach to developing their

prediction model, with their final attempts shown in Figure 5.4.

Figure 5.4: The prediction models developed by each pair of teachers for step 10 of the task

Harry and Nathan (HN, Figure 5.4) copied the coefficients for the fitted line, noticing that these

were generated from the code provided for Step 10. When reading the line of code error <- 3,

Harry said, “Error is 3, don’t know what that means”, and Nathan reminded him of Step 9 and

the “margin of error”, leading them to use the Step 9 error value of 12 for their model. Alice

and Naomi (AN, Figure 5.4) decided on a and b values for their model entirely “by eye” rather

than using the coefficients for the fitted line, which they didn’t notice in the output. Alice was

unsure about the value for the error, asking Naomi, “Can we play around with that as well?”

The teachers appeared to be guided by model accuracy when developing their informal prediction

model. For example, Alice and Naomi initially started with the error used for Step 9 but increased

the error value incrementally, with Naomi commenting “If we want 95%, we probably want it

a little wider.” While Alice and Naomi specifically discussed how many movies/points their

prediction model “caught”, the other two pairs of teachers only considered the accuracy of their

prediction model after reading the discussion prompt for Step 10. For example, Amelia stated

in response to the prompt, “If you just use the line, you’re basically all wrong, if you use the

model we’re about 90%.”

The learning benefit of attempting to quantify the prediction error for the model first, before

using code to visualise the error, can be illustrated in Amelia’s and Ingrid’s initial response

to Step 10. Because they did not read the discussion prompt in Step 9, they did not create a

prediction interval before reaching Step 10. Consequently, Amelia and Ingrid needed help from

me to begin the development of their prediction model in Step 10, as they were not able at this

point in the task to integrate statistical and computational knowledge. There appeared to be
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too much new information for them to process in one step, as they had to grapple with new

code, a new visualisation, and a new type of model at the same time.

The focus on prediction intervals also appeared to support the teachers to consider the purpose

of a prediction model. For instance, when the teachers were asked at the end of the task, “In

general, what do you want out of a prediction interval?”, Naomi and Harry had the following

exchange:

Naomi: Well, you want it [the prediction interval] to be narrow but you also want it

to be realistically narrow. It’s no good saying you want it to be narrow if it doesn’t

actually predict very well.

Harry: The thing is, I came back to the question, who is actually going to be using

this. If you get a prediction interval of 24 overall it is almost a little bit meaningless,

it’s one quarter of 100.

Naomi: Depends if you want to have a precise prediction, then yeah, you need a

narrow interval for predicting a number but if you want to capture the variation

then a wide interval is useful for communicating the variation.

In this exchange, Harry wanted a prediction interval that is precise or narrow and that can be

used by someone to make a meaningful prediction, whereas Naomi considered the difference in

modelling motivation between explanation and prediction.

The teachers were asked in Step 11 to discuss how well their model would work for movies with

the word “war” in their title. They were given the opportunity to make changes to the code for

their model, but none changed the y-intercept or slope for their model. Harry and Nathan kept

the error value at 12, whereas Alice and Naomi decided to increase their error to 20, reasoning

there would be more variation for the imdbRating scores for war movies. Amelia and Ingrid kept

their error at 15 but only after a very long discussion on how males dominated the IMDb rating

data. Later in the workshop, Amelia and Ingrid stated that they were unsure about whether

they should have changed their model based on their contextual discussions or just used the

features of the training data. Amelia reflected, “When building your model, and you know your

training data is going to be quite different, do you leave it, or do you just make the error really

big and be like ‘it works’?” Hence, for four of the teachers, contextual considerations were an

important part of the modelling process.
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The teachers demonstrated awareness of an iterative approach to modelling, including the

benefits of training and testing when developing a prediction model. Having easy access to

new data sets via the API supported teachers to refine their informal prediction model and to

appreciate the need to consider how well the model might work for new unseen data, as well as

the need to consider uncertainty in the data and model. For example, Amelia made the following

reflection:

I think it [the approach] makes the model more meaningful and the understanding

about the uncertainty in it [the model], that makes that really realistic. Because the

idea is, if you have all the data that you need right there, putting the model to it,

you know how well it works for the data that’s there. But if you are actually going

to use that model to then make a prediction for something that you don’t know as

much about then ‘oh my gosh!’ you have to worry about uncertainty.

When given the opportunity to test their model using two different sets of data in Steps 12

and 13 (movies with the word “war” in their title, then “love”), all pairs of teachers successfully

adapted the code provided so that the data was appropriate. Additionally, all pairs of teachers

modified the error value in response to the accuracy of the predictions. The modifications to the

error value were based on considering how many movies/points were captured by the yellow band

that represented the prediction intervals produced by the model. It was not intended that the

teachers changed their models when using a different set of data, as the task aimed to introduce

teachers to the predictive modelling approach of training a model on one set of data and testing

the same model on a new set of data. However, it appeared that by accessing different data

sets and making changes to their prediction models, the task seemed to support ideas about

generalisability, as can be seen in Naomi’s reflection:

Actually one of the things that impressed me was that we didn’t change the gradient

or the intercept and yet that line fitted everything we tried pretty well. It pretty

much went through the points no matter which thing we tried it on which was really

good.

Step 14 of the task was designed to encourage teachers to explore changes to the code with

respect to the data and models, but all teachers did this as part of Step 13, when they were

asked to test their model for movies with the word “love” in their title. For example, Naomi

tried out searches for movie titles using other words without prompting from the researcher.
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Overall, the teachers appeared to develop new statistical and computational ideas related to APIs

and predictive modelling, which seemed to be influenced by the provided code-driven learning

environment. The design of the web-based task meant that they could simultaneously: become

familiar with the specific data-context of movie ratings; use R code to access and visualise data,

as well as generate and visualise prediction intervals; and train and test a prediction model on

different sets of data.

5.6 Reflection

One objective of my research was to identify the statistical and computational thinking practices

related to APIs and predictive modelling that could be observed as teachers interacted with a

task that was aligned to my task design framework. I observed that all the teachers were able to

use a code-driven tool to interact with APIs and to develop a model that generated prediction

intervals. I contend the task provided a stimulating “first exposure” to predictive modelling for

the teachers, which could be due to the specific design decisions made when constructing the

task.

I now discuss specific design decisions, namely, the informal approach to development of a

prediction model and the use of: dynamic data from an API; progressive reveal; code chunks;

and tinker questions. I make tentative links between these decisions and the results presented

about teachers’ emergent thinking practices and reflect on my task design framework.

Design decisions

It appears that the informal approach to developing a prediction model, primarily the

visualisation of error, provided an opportunity for teachers to develop their own reasoning for

what made a good prediction model. Consistent with statistics education research concerning

informal inference, the teachers developed their own rules for “making calls” when they decided

the value of the error for their prediction model (e.g., Makar & Rubin, 2018; Fergusson &

Pfannkuch, 2020). Additionally, the visualisation of prediction intervals appeared to support

teachers to assess their models in terms of both predictive precision and accuracy. Although

specific concepts of underfitting, overfitting and generalisability were not explicitly discussed

by the teachers during the task, Naomi’s reflection about keeping the slope and intercept of the

prediction model fixed indicated that the task provided a foundation for further development

of these predictive modelling ideas.
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The use of movie ratings data obtained directly from an API appeared to support the teachers’

development of predictive modelling ideas across the task (cf. Weiland, 2016). Using their

prediction model with a new set of data to generate prediction intervals appeared to help

teachers become familiar with the ideas of data for training and data for testing, a necessary

focus according to Biehler and Schulte (2017). The use of an API to access and use more than

one data set as part of the modelling process, rather than just one static data set, also appeared

to help teachers appreciate the predictive goal of the modelling task which, as Amelia said, was

“to use that model to then make a prediction for something that you don’t know” (cf. Casey &

Wasserman, 2015).

The number and scope of new ideas related to predictive modelling and APIs introduced to

teachers within the task was not trivial. The decision to use a web-based task, created using the

R package learnr, provided the important feature of progressively revealing each step visually.

To minimise cognitive load, the web-based tasks comprised a sequence of steps that carefully

ordered the introduction of new statistical and computational ideas (cf. Wouters et al., 2008).

The use of small chunks of code that only required small modifications allowed teachers to engage

with new computational ideas such as creating scatterplots, similar to the findings of Wiedemann

et al. (2020) from research involving high school students using learnr to explore mathematical

modelling. In alignment with Son et al. (2021), I argue that the use of R code in the task was

germane load (Sweller et al., 1998), potentially because the computations represented by the

code were familiar to the teachers. By considering the relationship between the tool, task and

thinking (e.g., Biehler, 2018), I used code in the task to enable teachers to explore changes

to their model and to visualise these changes instantaneously, thus potentially enhancing their

statistical thinking (e.g., Ben-Zvi, 2000).

The design and use of tinker questions appeared to support the introduction of new

computational ideas. As teachers only needed to focus on one TRUE/FALSE statement at a

time, I observed that learning about new computational representations or actions was reduced

into “bite sized” interactions. By connecting actions or representations between GUI-driven

and code-driven tools, the teachers appeared to develop new understandings of using APIs,

for example, features of data structures such as JSON. The interactive approach employed by

the tinker questions to learning new computational knowledge could also support students to

become active participants in learning from modern data (e.g., Gould, 2010). Furthermore, the

tinker questions could help develop data habits of mind (see Finzer, 2013) as they provided

guidance for noticing and considering selected features of computational representations or
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actions.

Task design framework

The specific design decisions to use dynamic data from an API, progressive reveal code chunks

and tinker questions for the web-based task can be explained by the design considerations of

my framework: the introduction of new knowledge (C1), the data used (C2), the tools used (C3),

and the level of computational transparency (C4). The design principles of my framework (see

Table 5.1) also explicate the construction of task phases and steps. Using the immerse (P1)

principle, the first phase of the task engaged teachers with the movie ratings data context. All

teachers discussed specific contextual considerations of movie ratings, for example, the differences

between the rating systems used by IMDb and Rotten Tomatoes and attempted to use contextual

information to guide model decisions later in the task (cf. Pfannkuch, 2011). In the second phase

of the task, using the re-familiarise (P2) principle, the teachers were first encouraged to extend

familiar ideas of linear regression models to create prediction intervals without using code. The

teachers demonstrated statistical thinking when they quantified the size of the prediction errors

using an informal visual approach, using methods such as placing their pens on top of the

computer screen.

Step 10 of the task aligns to the describe (P3), match (P4) and adapt (P5) principles and the

teacher interactions with this step varied, perhaps because there was too much new information

presented in one step. The code provided descriptions of the computational steps and output

in terms of the prediction model, however, teachers struggled with matching or adapting at

least one aspect of the code. In the first iteration of the design framework (Chapter 4), the task

constructed used three separate steps that aligned to these design principles, which meant the

teachers knew what computation was needed for each modelling step before reading the code

and could focus on how the code syntax and structure tells the computer how to carry out each

step (cf. Pruim et al., 2017).

The adapt (P5) principle appeared to be more successfully demonstrated in Steps 12 and 13.

All pairs of teachers successfully integrated statistical and computational thinking when they

adapted the code to source appropriate data from the API and modified the error value of

their prediction model in response to the accuracy of the predictions. Using the explore (P6)

principle, Step 14 encouraged teachers to explore changes to the code with respect to the data

and models, with the expectation that new or unexpected outputs from these adaptions would

stimulate an integration of statistical and computational thinking and new knowledge. Although
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I have presented results that indicate statistical and computational thinking was observed for

the teachers in earlier steps of the task, on reflection Step 14 could have asked the teachers to

explore prediction models using a different combination of the variables and data available from

the OMDb API.

5.6.1 Summary

I have provided some practical design solutions that balance the learning of new statistical

and computational ideas. In particular, the use of tinker questions within a web-based task has

the potential to develop learners’ confidence with code experimentation. The web-based task,

created using the R package learnr, provided easy access to new data to test prediction models

and appeared to support the development of new statistical and computational ideas related to

predictive modelling and APIs. Furthermore, for high school implementation, my web-based task

has the advantage of only needing a browser to engage with the code-driven tool, rather than

additional knowledge of computer systems and software installation. More research, however, is

recommended on task design that supports teacher and student learning in data science at the

high school level, which could include how teachers construct new tasks in line with the proposed

design principles and considerations (cf. Sentance et al., 2019).

In Chapter 4, the randomisation test task (Task 3) was constructed to move learners from a

GUI-driven tool to a code-driven tool for carrying out the randomisation test. In this chapter, I

explored the introduction of code-driven tools through a predictive modelling task (Task 2) and

demonstrated how the second iteration of my task design framework was modified and aligned

to this task. In Chapter 6, I explore the introduction of code-driven tools through a classification

modelling task (Task 1) and use the task and its implementation with teachers to evaluate the

task design framework and examine integrated statistical and computational thinking.
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Chapter 6: Classification modelling task

6.1 Introduction

The high school statistics curriculum needs modernising and expanding to include more of the

data that students encounter in their everyday lives (e.g., Finzer, 2013; Gould, 2010; Ridgway,

2016). As students upload and share images through social media platforms and other digital

communications, the use of digital images provides a relevant and important data context for

teaching statistics. The analysis of digital image data can support understanding that data are

numbers with context (Cobb & Moore, 1997) and can encourage students to integrate statistical

and contextual knowledge, an essential aspect of statistical thinking (Wild & Pfannkuch, 1999).

Furthermore, the digital technology context provides an opportunity to co-develop students’

statistical and computational thinking, which aligns with the digital technology goals of New

Zealand schools and recommendations for teaching data science (e.g., De Veaux et al., 2017;

Gould, 2021).

The opportunities for students to integrate statistical and computational thinking with

digital image data can be broadened when introduced alongside new approaches to statistical

modelling, such as the use of algorithmic models. Algorithmic models have been proposed as

conceptually easier for students (e.g., Gould, 2017) and research with high school teachers

suggests teachers with minimal knowledge of algorithmic models are able to quickly develop

and interpret classification trees (Zieffler et al., 2021). Statistical modelling approaches using

digital image data and classification trees, however, are not currently assessed by the national

assessment system in New Zealand. To teach classification modelling with digital images at the

high school level, statistics teachers will need access to tools and learning tasks for analysing

digital image data.

Using a DBR approach, I created and refined a design framework to inform the development

of new tasks to introduce code-driven tools through statistical modelling (Chapters 4 & 5). In
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this chapter, I explore the design and implementation of a task for introducing teachers to

classification modelling with digital images (Task 1). I investigate if the task design framework

could be applied to a task that uses a different source of data and a different statistical

modelling situation, specifically digital image data and classification modelling. I also examine

what statistical and computational ideas and thinking emerge when the task is implemented

with teachers.

6.2 Teaching classification modelling with digital images

Images such as photographs provide an engaging and accessible modern data-context for

teaching statistics, especially those shared on social media platforms such as Twitter or

Instagram (e.g., Boehm & Hanlon, 2021; Fergusson & Bolton, 2018). Students can develop

variables based on visual features of the photographs, by counting objects visible within the

photograph or by sorting the photographs based on a specific quality (e.g., Bargagliotti et al.,

2021, pp. 31—35; Fergusson & Wild, 2021). These kinds of activities begin to expand students’

notions of data and provide encouragement to see opportunities for data creation everywhere.

However, the analysis of digital image data involves more than just an awareness of data and

the curiosity to learn from data. To learn from digital image data requires thinking that extends

beyond integrating contextual and statistical knowledge (Wild & Pfannkuch, 1999) to include

the computational (Gould, 2021).

Teaching computational image analysis can involve understanding digital representations of

images; data structures that are different from the multivariate rectangular datasets most

commonly used in statistics classrooms. High school statistics students are familiar with

datasets where each row represents a different case or entity, and each column represents a

different variable or attribute about that entity. Digital image data from a grayscale photo

can be represented in this structure (Figure 6.1g), where each row represents a pixel from the

image. However, this is not the initial data structure for a digital image, and when images are

processed, they can also be reduced in dimensions. Figure 6.1 shows six different representations

of the same photograph that capture the process of converting a colour photo to grayscale as

well as reducing the dimensions of the image. The different representations illustrate some of

the computational steps involved to create a data structure that can be used with classroom

statistical software, as well as computational knowledge such as the RGB (red, green, blue)
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colour system and hexadecimal codes (six-digit combinations of numbers and letters defined by

their mix of RGB).

Figure 6.1: Six different representations of a photograph: (a) colour photo; (b) dimensions
reduced; (c) converted to grayscale; (d) HEX code and RGB values; (e) matrix;
(f) vector; (g) data frame/table

The data structures associated with image data could provide genuine learning opportunities

for mathematics, for example, the use of matrix representations (Figure 6.1e). However, using

formal mathematics representations, notation, and formulae to introduce image analysis (see

Li, 2018) could be a potential barrier for engaging a wide range of students. Therefore, when

introducing the mathematics of digital image data structures, care needs to be taken to design

learning tasks that highlight and promote key statistical concepts (Bargagliotti & Groth, 2016).

For example, in the Nanoroughness Task discussed by Hjalmarson et al. (2011), students did not

directly engage with the mathematical structure of the digital image data for grayscale photos.

Instead, students were given physical grayscale photos where the levels of darkness (grayscale

numeric values) were represented using a scale legend.

Opportunities to promote statistical reasoning without mathematical representations also exist

when manipulating images, such as changing the contrast of a grayscale photograph using

histogram equalisation. Exploring the distribution of grayscale values lends itself to reasoning

with data distributions, where the data are the pixels of the digital image. Existing research about

how learners reason with distributions (e.g., Bakker & Gravemeijer, 2004) can then inform task
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design, in particular reasoning about shape (e.g., Arnold & Pfannkuch, 2016), the role of context

in interpreting distributional features, and learners’ difficulties with interpreting histograms

(e.g., Boels et al., 2019; Kaplan et al., 2014a).

It is also important to use digital image data within learning contexts that are genuine, and

where the context is crucial to the design of the learning task (e.g., Weiland, 2016). Digital

photographs are very commonly used to develop models that predict categorical or numeric

outcomes, for example, predicting age from a photograph (see how-old.net), or classifying a

photo as having either high or low aesthetic value (e.g., Datta et al., 2006). Decision trees are

common algorithmic models used for classification, and have been included in high school data

science or modernised statistics curriculum documents such as the International Data Science in

Schools Project (IDSSP, idssp.org/pages/framework.html), Introduction to Data Science (IDS,

idsucla.org), ProCivicStat (iase-web.org/islp/pcs) and ProDaBi (prodabi.de). Not only does the

use of classification models with digital images provide a genuine learning context, but also

classification problems are considered to be easier for learners to understand than regression

problems (Gould, 2017).

Algorithmic models such as classification models (e.g., decision trees), however, are not developed

in the same way as probabilistic models. Research involving high school statistics teachers

indicates the need to consider the role of context and understanding of the use of training and

validation phases (Zieffler et al., 2021). Teachers also need to be aware of the different sources

of uncertainty in the modelling process, such as objective versus subjective uncertainty (Yang

et al., 2019), and how these uncertainties might be articulated by students when completing

learning tasks (Gafny & Ben-Zvi, 2021). Another consideration is for students to understand

that algorithmic models are fallible just like human decision-making is, and therefore teaching

and learning needs to account for the human dimension of data work (Lee et al., 2021).

There is also the question of what tools to use to teach classification models. I have proposed

classifying tools for statistical modelling based on whether they are unplugged, GUI-driven

or code-driven (Chapter 4). I describe code-driven tools as computational tools, which users

interact with predominantly by entering and executing text commands (code), and GUI -driven

tools as computational tools, which users interact with predominantly by pointing, clicking, or

gesturing. It is a common approach within statistics education to use unplugged tools before

moving to GUI-driven tools. Pedagogical approaches include using data cards to create visual

representations (e.g., Arnold et al., 2011) or shuffling cards by hand to simulate random

allocation of treatments to units (e.g., Budgett et al., 2013). Teaching materials from IDS
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and ProCivicStat include unplugged modelling with data cards before moving to the computer

to develop classification models. Specifically, ProCivicStat uses the GUI-driven tool CODAP

(Engel et al., 2019), whereas IDS uses a code-driven tool employing the programming language

R (R Core Team, 2020).

Although code-driven tools can assist the analysis of digital image data, little is known about

how teachers will balance learning new statistical and computational knowledge within the

same task. Emerging research indicates that learners may frame problems as either statistical

or computational when encountering issues with executing code (Thoma et al., 2018) and that

building on familiar statistical ideas and matching to modelling actions may support teachers’

introduction to code-driven tools (Chapter 4, Fergusson & Pfannkuch, 2021). There may also

be benefits to using code with respect to lowering the cognitive demands of the statistical

modelling task (e.g., Son et al., 2021), perhaps as code can be used to articulate modelling steps

(e.g., Kaplan, 2007; Wickham, 2018). There is a lack of research involving high school statistics

teachers’ reasoning with digital image data, and none that I am aware of that involves them

using digital image data to develop classification models.

6.3 Task design framework

Through retrospective analysis of two other tasks (Chapters 4 & 5), I explicated a design

framework to introduce learners to code-driven tools through statistical modelling (Chapters 4

and 5). Because of the iterative nature of design-based research, I evaluated the second iteration

of the design framework (Chapter 5) against the criterion of producing a more general design

framework rather than one that was too specific to the nature of the tools and tasks used

previously. My evaluation confirmed that the second iteration of the task design framework was

also applicable to the classification modelling task.

6.4 Task design characteristics

I now discuss how the second iteration of my task design framework aligns to the task used in

this chapter. The statistical modelling approach involved developing classification models using

an informal method. The teachers were not introduced to any formal procedures for developing

classification models in the task and instead were expected to reason visually with numeric

distributions. Only the idea of a decision rule was introduced, and the task required teachers

108



to use an aggregate measure of a numeric variable to classify cases as one of two levels of a

categorical variable. The learning goal for the task was for the teachers to create a decision rule

to classify grayscale photos as high contrast or no high contrast, based on the distributional

features of the digital image data.

The design consideration of the introduction of new knowledge (C1) refers to the use, content

and sequence of phases and steps within a task to introduce learners to new ideas. A summary

of the three phases of the task and how they relate to the six design principles is provided in

Table 6.1.

Table 6.1: Summary of task phases and design principles used
Phase Summary of phase Principle

1 Introduce digital image data Immerse in data context (P1)
2 Introduce classification modelling ideas Re-familiarise with statistical modelling

ideas (P2)
Describe computational steps of
statistical modelling process (P3)
Match statistical modelling steps to
code chunks (P4)
Adapt code chunks with slight
modifications (P5)

3 Develop models to classify
“high-contrast” grayscale photos

Explore “what if?” changes to code (P6)

The design consideration of the data used (C2) refers to selecting and using different sets of data

within the same data context for the task. The decision to use digital image data from grayscale

photos provided data with different features that can be exploited to stimulate both statistical

and computational thinking and was also aligned to the larger research study goal to provide

a data science perspective for statistical modelling. The digital image data for the task were

thirty popular photos of dogs sourced from the website unsplash.com. Each of these photos was

reduced in size and converted to grayscale.

The design consideration of the tools used (C3) refers to combining different tools for statistical

modelling (unplugged, code-driven, GUI-driven) and connecting actions or representations

between tools within the task. Given that teachers had no experience using digital image data

or classification models for statistical modelling, there were no familiar GUI-driven tools to use

for this task. Consequently, there was a decision to use an unplugged approach to introduce

classification modelling ideas. As the teachers were familiar with the combined dot and box

plots produced by the software tool iNZight (Wild et al., 2021), a decision was made to use
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them. The design consideration of the level of computational transparency (C4) refers to how

obvious the computations performed by the tool are to the learner. Hence, there was a decision

to represent the data only using the combined dot and box plots to avoid introducing new ideas

of data structures within the task.

I guided teachers through the task using presentation slides, live demonstrations, verbal

instructions, and instructions embedded within interactive documents. The task was designed

to take around 90 minutes to complete. Each phase of the task (see Appendix E) is now

described and includes further explanations about how the design framework captures design

decisions.

6.4.1 Phase one: Introduction to digital image data

The first phase of the task immersed (P1) teachers within a digital image data context so that

they could meaningfully engage with the classification of grayscale photos later on. At the start of

the phase, teachers were shown a colourful photo of jellybeans, given a brief explanation about

digital images and pixels, and shown a colour wheel that demonstrated the RGB system for

defining the colour of each pixel (Figure 6.2a). Teachers were then shown six different colours

with their associated RGB values and worked in pairs to discuss answers to four questions

that were designed to help teachers learn about the RGB system through noticing patterns

(Figure 6.2b).

Figure 6.2: Slides used to introduce the RGB colour system

I explained several methods for converting a colour photo to grayscale, one of which is to take

the average of the RGB values for each pixel and replace the RGB values for that pixel with

this one average value (Figure 6.3a).
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Figure 6.3: Slides used to explain one process for converting a colour photo to grayscale

I then demonstrated using the programming language R to convert a digital image from colour

to grayscale (Figure 6.3b), where the code was specifically written to connect to the visual

explanation shown in Figure 6.3a. The teachers then watched me use the grayscale function to

convert a colour photo of a cat to grayscale (Figure 6.4a and Figure 6.4b) and another function

to create a plot based on a random sample of 50 pixels from the grayscale photo (Figure 6.4c).

Figure 6.4: The colour and grayscale photos used for the demonstration and examples of the
four grayscale distributions generated using increasing sample sizes

I explained that the plot contained a dot plot and a box plot, and that the shade of gray

used for each dot was connected to the grayscale value of that pixel back in the photo. I then

demonstrated the different plots created using a random sample of 500 pixels (Figure 6.4d), 5000

pixels (Figure 6.4e) and using all 91204 pixels (Figure 6.4f). The teachers were asked to discuss
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how the shape of the distribution changed and how long it took the computer to produce each

plot as the sample size increased.

Phase one ended with each pair of teachers being given ten different grayscale photos and ten

different plots constructed using a random sample of 500 pixels (Figure 6.5). Each pair of teachers

received a unique set of ten photos. The ten photos that made up each set were balanced so

that each group had a range of light, middle and dark photos, and contained both high and low

contrast photos.

Figure 6.5: Ten different grayscale photos and ten different plots constructed using a random
sample of 500 pixels

The teachers were asked to connect each photo with its dot plot, with the expectation that they

would not be able to accurately connect each photo to its dot plot, a difficult task for photos

with similar distributions of grayscale values. The purpose of the connecting activity was to

stimulate discussion about the differing features of the sample distributions to lay foundations

for reasoning with these distributional features later in the task.

6.4.2 Phase two: Introduction to classification modelling ideas

The second phase of the task introduced teachers to classification models and the idea of using

an aggregate measure, such as the median grayscale value, to measure the overall “lightness”

of a grayscale photo. The task design process for this phase considered how to introduce new

knowledge (C1) such as decision rules and “training” and “testing” models, alongside more

familiar ideas such as measures of central tendency and sample-to-population inference. With

respect to the tools used (C3), a decision was made for teachers to use the code-driven tool at the

end of the phase, because unplugged approaches were considered be more suitable for beginners

to build familiarity with the computational steps for classification modelling.
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As the teachers were unfamiliar with classification modelling, the re-familiarise (P2) design

principle guided the decision to use familiar statistical ideas related to medians to introduce

decision rules. Each pair of teachers initially worked with their own set of 10 photos and plots,

where each photo was attached to a plot using a sticky dot. I asked the teachers to arrange the

photos in order from darkest on the left to lightest on the right, and, after they had ordered

the photos, I suggested that perhaps a computational method could be used to sort the photos

from darkest to lightest. I asked the teachers to look at the median grayscale value displayed

on the box plot and discuss whether the medians increased in size as the photos changed from

dark to light. The direction to teachers to compare their visual judgements of lightness to a

statistical measure based on the grayscale distribution was also designed to expose teachers

to the difficulties of humans classifying high contrast photos as light or dark. An example of

a conjectured “line up” is shown in Figure 6.6. Note that the median for each distribution of

grayscale values (as indicated by the box plot) generally increases as the overall lightness of the

photo increases. However, the photos and plots labelled 1 and 2 break the pattern of increasing

medians.

Figure 6.6: Example of a conjectured “line up” of photo-plot pairs

Continuing with the unplugged approach, the teachers were then asked to develop a model to

sort the photos into light or dark based on the median grayscale value from a random sample

of 500 pixels from the photo. I demonstrated that the computational steps involved reading in

an image, taking a random sample of 500 grayscale values, and then deciding if the image was

dark or light based on the median of the sample grayscale values being above or below a certain

value. The teachers were asked to develop their own decision rule by first sorting the photos

into “light” or “dark” visually, and then examining the median grayscale value for each sample

distribution. The subjective labelling of the photos as “light” or “dark” by the teachers is not a

typical part of learning about classification model, where it is more standard to provide students

with data that has already been “correctly” labelled. However, similar to the reasoning provided
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by Podworny et al. (2021), in real applications of classification models, labels are assigned using

subjective measures, and the teachers labelling the data themselves could help them understand

the role of human decision making in the modelling process.

After the teachers decided on a “cut off” value, they had to count how many of their photos

would be correctly classified according to their rule. I explained they had just “trained” their

model and now they had to test it using new data. The decision to use a different set of dog

images for “testing” their model was not just informed by the design consideration of the data

used (C2) but because it was an important new idea for developing classification models that

teachers had not used before. The teachers were instructed to swap their set of 10 photos and

plots with another pair of teachers, to apply their classification model to this set of photos,

and to count how many of the photos would be correctly classified according to their rule. The

teachers were then given back their original set of 10 photos and plots and asked to describe (P3)

their classification model to the other teachers and how well it worked on the “testing” data.

Following this, the teachers were asked to discuss if they thought using the mean grayscale value

might be a better way than the median to sort and classify grayscale photos in terms of their

lightness.

I then demonstrated how to use R code to articulate their model based on their decision rule for

the median to classify a particular photo as light or dark. Figure 6.7a shows the code provided

and the two lines of code that were the focus of the demonstration, which are labelled 1 and 2.

The line of code labelled 1 needed to be modified by the teachers to match (P4) their model, for

example, using a different “cut off” number than 200 for the median grayscale. The line of code

labelled 2 needed to be adapted (P5) by teachers to use the model with different dogs based on

the photo number, for example, changing 18 to photo number 21. Figure 6.7b shows the physical

photo-plot pairing recreated digitally for dog number 18, with the label “dark” added to the top

left-hand corner of the photo, which is labelled 3.
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Figure 6.7: Example of a classification model articulated with code with the output generated
from the model

The teachers were then given access to a RMarkdown (Allaire et al., 2021) document that

contained the R code shown in Figure 6.7a and were asked to adapt (P5) the code to match

(P4) the classification model they had developed. At this stage of the task the teachers did not

know if they had correctly connected their photos to the plots, so when they changed the code

based on their photo numbers, they were able to check. The teachers were asked to adapt (P5)

the provided code but change the classification model to be based on the mean grayscale value.

The purpose of the light/dark classification task was to stimulate discussion about the grayscale

distributions of high contrast photos and so motivate a need to develop a model to classify such

photos.

6.4.3 Phase three: Exploration of “high-contrast” grayscale photos

The third phase of the task required teachers to develop their own rule for determining high

contrast photos, using features of the sample grayscale distributions. Considering computational

transparency (C4) and the tools used (C3), a decision was made to allow time for teachers to

develop their classification model using an unplugged approach first, before providing them with

a code-driven tool to explore (P6) changes to their model.

Teachers were shown a video featuring a photographer discussing high contrast photos (see

youtube.com/watch?v=31qVHQbd0JU), for the dual purpose of explaining what high contrast

was and also to reinforce that high contrast grayscale photos are a desirable aesthetic. The

teachers were then asked to use their 10 photo-plot pairs from the earlier two phases to develop

a model to sort the photos into high or low contrast. I encouraged them to look again at their

photo-plot pairs, to split them into photos they thought were high contrast versus those they
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did not and to consider any features of the distributions of grayscale values that could be used

to identify photos with high contrast.

After around five minutes of the teachers using only the physical photo-plot pairs to explore (P6)

their ideas for classifying photos as high contrast, teachers were provided with a RMarkdown

document that contained instructions for the rest of the phase and “starter code”, similar to the

code shown in Figure 6.7a. At the start of the document, teachers were asked to write a couple

of sentences describing how they developed their model in response to the following questions:

What did you notice about the photo/plot pairs? What feature of the grayscale pixels are you

using? What is your criterion for when a photo is high contrast and when it is not?

The teachers were then asked to adapt the code provided to articulate the classification model

they had developed. The document also asked teachers to test their model using another random

sample of 10 dog photos, with code provided that could be adapted and copied to support them

to do this. Teachers were asked at the end of the document to write about what they learned

from testing their model in response to the following questions: How well did the model work

with another sample? Can you identify any reasons why the model worked better/worse? Do you

have any ideas of how to modify your model or approach?

6.5 Analysis

The implementation of the classification modelling task took place during the first day of the

professional development workshops. This was the first task that required teachers to use a

code-driven tool and took place in the afternoon. In the morning session, teachers explored the

popularity of cat and dog photos from the website unsplash.com (see Fergusson & Wild, 2021).

The teacher pairings for this task were: Amelia and Ingrid, Alice and Naomi, and Harry and

Nathan (pseudonyms have been used).

Drawing on existing statistical knowledge, all the teachers were able describe distributional

features of digital image data. The teachers used these distributional features to create rules to

classify grayscale photos, for example, as high contrast or not high contrast. In this case, the

teachers attempted to connect different features of distributions, such as skewness or bimodality,

to visual features of high contrast photos, using statistical measures such as means, medians and

standard deviations. All the teachers successfully modified existing code to engage with digital

image data and to articulate their classification model. I now present in more detail the results
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of the teachers’ interactions with the phases of the task and the consequent thinking practices

that arose.

6.5.1 Phase one: Introduction to digital image data

The focus for phase one was integrating new knowledge related to digital data with familiar

statistical knowledge related to distributions. After the teachers were introduced to new ideas

related to digital images, including converting colour photos to grayscale and visualising random

samples of pixels from grayscale photos, they began to develop their thinking about digital

data during the connecting activity used for this phase. Figure 6.8a shows Amelia and Ingrid’s

connected photos and plots.

Figure 6.8: Amelia and Ingrid’s connected photos and plots

When asked to connect the grayscale photos to the plots of the samples of grayscale values, a

visual proportional strategy was used by all pairs of teachers. Using this strategy, the teachers

attempted to estimate the proportions of different shades of gray for each photo and then tried to

connect these proportions to the dot plot representation of the sample of grayscale values. This

was evident through the teachers’ use of descriptions such as “more white” and “a lot of black.”

The teachers did not use numeric values for the shades of gray, which could have been read from

the axis of the plots. Instead, they used descriptions of shades of gray such as “pure black” and

focused on distinctive areas of darker shades of gray and lighter shades of gray (Figure 6.8b).
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When describing distributions during this connecting activity, examples of words used included

“extreme ends” or “edges” when referring to tails and “high pitched” or “spikes” when referring

to modal grayscale values. These words, and the visual proportional strategy, indicated that the

teachers were focused on distributional shape. More formal descriptions of distributional features,

such as “skewness”, “bi-modality” or “outliers”, were used near the end of the activity when

teachers compared their photo-plot connections with each other and within a researcher-led

group discussion. For instance, the following discussion between three of the teachers was

initiated by me asking if they had used the summary statistics printed on the plots to help

them connect plots with photos.

Naomi: No, it was the distribution, it was totally about the distribution.

Amelia: We looked at things like bimodal, lots of contrast, or if it was particularly

at one end if it was dark or particularly at the other one end if it was light.

Naomi: Also, how far up the scale it was, wasn’t just the shape. Was it pure white,

or the grayer shades?

Nathan: We were focusing on dots, focusing on the grayscale of the dots.

Naomi: But, actually, variation was very important, because it wasn’t just the mean

it was also, “Is it bimodal?”, as opposed to a normal [shape].

Note in this discussion that from the teachers’ own perspective, distributional shape was the

main factor used to make matches. Naomi also referred to “how far up the scale it was …. was it

pure white, or the grayer shades?” and Nathan referred to “… focusing on the grayscale of the

dots”, both confirming the use of a visual proportional strategy.

The teachers did struggle, as anticipated, to match some photos using a visual proportional

strategy. One contributing factor to their difficulties was that the grayscale plots were based on

a random sample of 500 pixels. Towards the end of the activity, after the teachers had walked

around the room and looked at the other pairs’ matches, Naomi and Amelia discussed why

connecting photos to plots using the visual proportional strategy may have been an issue. The

discussion began when Naomi noticed how Amelia and Ingrid had matched photo number 18 to

a dot plot (Figure 6.8c).

Naomi: I would not have picked that one … I’m just thinking there isn’t enough white

to be down there … it’s a little bit of white but it’s not the biggest.
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Amelia: Because it’s just a sample of the pixels, you could have got a sample … so

you might not have got as many from here [pointing to an area on the photo] as you

would expect.

Naomi: But a sample of 500 should be representative.

Amelia: You’re right, but if you’ve got just an area, like this one where that’s the

area where all the white is, if that area wasn’t sampled quite as much as that area

[pointing to an area of black], you wouldn’t get the same kind of picture [referring

to the dot plot] … but you’re right, 500 is a pretty big sample.

I interpreted that Amelia believed a random sample of 500 pixels may provide insight into the

underlying shape of the distribution of grayscale values for all pixels, but that she also was aware

that the proportion for each of the possible 256 individual shades of gray could vary considerably

between samples. However, Naomi appeared to believe that for any distribution, a sample of 500

should be representative, perhaps reflecting a lack of understanding that distributional shape is

dependent on both the sample size and space (the number of possible outcomes).

Another strategy used to connect photos with plots was demonstrated by Nathan and Harry,

who attempted to order their photos from darkest to lightest using a visual proportional strategy,

before connecting the plots to the photos. Amelia and Ingrid stated in the group discussion at

the end of this phase that they had seen this strategy being used and tried to use it but, “the

ones we had left were all the gray ones, it was really hard to put them darkest to lightest, using

the mean wouldn’t have even been helpful even if we had used it.” Indeed, the visual proportional

strategy appeared to be the most successful for teachers when the visual features of the photos

were “strong”, with Amelia commenting that, “where it [the photo] had contrast, you’re looking

for bimodal. Where it was really dark or really light, you were looking for skewness.”

The results from phase one indicated that teachers had begun to develop new ways of thinking

about distributions. They were able to conceive of shades of gray from a photo as numeric data

points and to use visual proportional and distributional reasoning to make connections between

features of plots and photos. Connecting grayscale photos with features such as high contrast

using human visual judgements was easier for the teachers than connecting photos with less

distinctive features, and these judgements were also influenced by understandings related to

sampling variation. Overall, the thinking demonstrated in this phase was mainly statistical and

was focused on making sense of and describing features of the distributions of grayscale values.
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6.5.2 Phase two: Introduction to classification modelling ideas

The focus for phase two was familiarising teachers with classification modelling ideas through

drawing on familiar statistical ideas related to medians and means. When asked to order the

photos from dark to light, all pairs of teachers found photos where they struggled to decide

their “lightness” position relative to the other photos. Ingrid explained that, “… these [photos]

are the hard ones because of the high contrast” and Naomi elaborated, “high contrast makes us

think of light … because when we see high contrast, we’ve got a lot of light around.” All pairs

of teachers expressed a lack of confidence that they had ordered the photos “correctly” from

darkest to lightest.

I asked the teachers to look at the medians of distributions attached to the sorted photos and

to examine if the medians increased in size as the photos increased in lightness. The teachers

observed that for their set of ten photos and plots, the medians did not always increase, which

led them to perceive that they were at fault and that they had incorrectly ordered the photos

from darkest to lightest. This perception was captured in a discussion between some of the

teachers and me below, which took place after the teachers had developed their own decision

rules for classifying a photo as “dark” or “light” based on the median grayscale value.

Amelia: We struggled to say which was light and which was dark, I don’t know that

a human is very good at this.

Naomi: No, that’s right, I would totally agree!

Amelia: If you’re training the computer to do it, you might be training the computer

to do it better than you could do it, so you’re not like trying to get it to match the

human model, it’s [the computer] doing it better.

Researcher: It depends, your target audience is still how a human perceives lightness

or darkness.

Amelia: Yeah, but to excuse the pun, there’s a lot of gray in the middle.

Researcher: Yeah, shades of gray!

Naomi: As humans we’re responding to other things than the median. I noticed that

if something was taken in lower light, I would want to classify it as dark rather than

just looking at the amount of light and dark because my brain starts thinking, “Oh
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yes, darker picture, taken in lower light” even if maybe there’s quite a lot of whiteness

in it.

Researcher: So, what we’re doing at this stage is we’re just developing an idea. We’re

not saying the median is the best way to do it or that it even is possible. It’s this

idea of “What if?” Could we try this out, could we try and classify photos using the

median?

Note that Naomi and Amelia articulated why human decision making might not be as consistent

as the median measure used by a computer. As the goal of the classification model was to

reproduce human judgements using the median, I reminded them the model is based on human

perception and that the model may not be correct. Some evidence that the teachers were able to

incorporate subjective human aesthetics as the basis for the classification model was the “cut off”

value used for the decision rule. Figure 6.9 shows the decision rule used by Harry and Nathan,

articulated with R code.

Figure 6.9: The decision rule used by Harry and Nathan

The code shows that photos with a sample median grayscale value greater than 150 are classified

as “light.” Harry explained that they, “… found the cut off point for the median was higher than

the middle of the distribution, as to our eyes it was more natural to put in the median where

we did.” The teachers also demonstrated some understanding of difficulties with dichotomising

numeric variables when they tested their classification model on ten photos from another pair of

teachers and identified that photos with median grayscale values “around the boundary” were

often misclassified using their decision rule.

Although the focus for this phase was on introducing new computational ideas related to

classification modelling, the teachers also continued to develop new ways of thinking about

distributions and the impact of sampling variation. This was apparent when the teachers were

asked to consider whether the median or the mean would be a better measure for the overall

lightness for a grayscale photo. Amelia shared her reasoning in the following excerpt:
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The reason we thought the median was better was that where you’ve got pictures

with like a big chunk of dark or a big chunk of light, you often have got the skewed

distribution, so it would pull the mean one way. But that big chunk of light makes

the picture look light, so you actually want to go with the median because you want

to go with that big chunk.

The other teachers shared similar reasoning about a preference for using the median as the

measure of overall lightness that best matched a human visual judgement. None of the teachers

commented on the usefulness of using a measure of central tendency for distributions that were

bimodal, however, Nathan indicated that he had begun to consider measures of spread when he

agreed with using the median, “… because of the variation that you have here with your lights

and darks.” The impact of sampling variation on the performance of the classification model was

also discussed by Ingrid, when she observed that the median jumped around more for random

samples of 500 pixels than the mean did.

After the teachers had developed their decision rule to classify photos as “dark” or “light” based

on the median grayscale, I realised that more information about classification models was needed.

In particular, I reminded the teachers that for a classification model, “the goal is not 100%

correct” and that they needed to be careful not to overfit their model. This new knowledge was

then used by the teachers as part of their evaluation of the classification model for this phase. To

illustrate, Harry reminded Nathan that, “… there is no perfect model, 90% will do” and not to

focus too much on “getting the model to work” for special cases. Ingrid also specifically discussed

being mindful of “overfitting” when describing their model to the other teachers at the end of

the phase.

The results from phase two indicated that teachers had begun to develop understanding of how

a human decision, such as subjectively measuring the lightness of a grayscale photo, could be

automated using a classification model based on statistical properties of data. The teachers also

appeared to recognise that classification models are evaluated based on the percentage of correct

classifications and that this percentage may not be 100%. The use of familiar statistical ideas

within the context of digital image data seemed to encourage new ways of thinking about the

use of the median and mean to summarise a distribution. Hence, the teachers appeared to be

connecting statistical and computational ideas in their thinking.

122



6.5.3 Phase three: Exploration of “high-contrast” grayscale photos

The learning goal for phase three was that teachers would integrate statistical and computational

ideas as they developed and used models to classify “high contrast” grayscale photos with R

code. This phase was less structured than the previous phases and provided an opportunity to

observe how the teachers applied the new statistical and computational ideas introduced earlier.

To gain an understanding of each pair’s modelling process, the transcripts and screen recordings

were analysed with respect to how much time in minutes each pair of teachers spent developing

their model, articulating their model using code, and checking or changing their model. The

analysis also considered when the unplugged (physical) photos and plots were used and when

the code-driven tool was used. A visual summary of this analysis is shown in Figure 6.10.

Figure 6.10: A visual comparison of the modelling process used by each teacher pair

Figure 6.10 also describes the classification model developed by each pair of teachers, for example,

Ingrid and Amelia’s final decision rule for high contrast was an absolute difference between the

mean and median greater than 20. The star indicates the time at which the pair of teachers

expressed that they were happy with their model. I now use Figure 6.10 and additional results

to compare and describe the modelling processes used by the three pairs of teachers.

The process used by all the teachers to develop a classification model for high contrast grayscale

photos involved:

1. making a conjecture about why the photo is high contrast, using human visual

analysis/observation
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2. making a conjecture about what statistical measure(s) might capture what the human has

analysed/observed, using the sample distribution of grayscale values for that photo

3. formulating a decision rule using a statistical measure from the sample of grayscale values

and using this rule with at least one photo to see if it “worked.”

Figure 6.10 shows each pair of teachers spent differing amounts of time developing their model,

ranging from around two minutes for Nathan and Harry to around 11 minutes for Ingrid and

Amelia. The use of the tools provided also differed for each pair of teachers. As Figure 6.10

illustrates, Nathan and Harry did not use the unplugged tool (physical photos and plots) and

the code-driven tool simultaneously while developing their model, in contrast to the other pairs

of teachers. Notably, Ingrid and Amelia used both tools simultaneously for around 10 minutes

while developing their model and then articulating their model with code. All pairs of teachers

successfully articulated their model using R code, with the amount of time for each teacher

pair depending on the complexity of their decision rule and their familiarity with using the

code-driven tool. Naomi and Alice spent the longest time checking or changing their model

before expressing happiness with their model. When checking or changing their model, the

teachers did not always clearly differentiate between using training data or testing data.

I now examine each pair separately to identify thinking practices that emerged as they developed

models to classify “high contrast” grayscale photos. After doing a Google search for “high

contrast”, Nathan and Harry discussed high contrast in terms of bimodality but then used

the same model they developed for classifying “light” photos to classify the physical grayscale

photos as “high contrast.” After the researcher interrupted the teachers to discuss how to use

the RMarkdown document provided for this phase, Nathan and Harry moved to the computer

and only used the code-driven tool for the rest of the phase. They took much longer to articulate

their model than the other teachers, struggling at first to figure out how to run the code and

consequently visualise the results within a RMarkdown document.

Nathan and Harry were much quicker to accept their model, with Nathan stating, “we

accomplished our task!” after testing just one photo. When the researcher asked how many

photos they had tested, Nathan replied, “one so far … before we continued, we wanted to make

sure it worked.” I interpret Nathan’s reference to making “sure it worked” to be a reference

to their code working, in that computationally they were able to make their model work. The

computational focus appeared to be confirmed later in the phase when Naomi and Alice shared

the model they had developed, which was based on standard deviation, and Nathan said, “we

probably should have changed to standard deviation or something ... we just went into robot
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mode!” Standard deviation was a feature Nathan and Harry had discussed with reference to

high contrast in phase one, and therefore after being given the model from Naomi and Alice,

they were able to adjust their code and use Naomi and Alice’s model to classify a few photos

as high or low contrast using the standard deviation.

Naomi and Alice began the phase with a pre-determined idea to use spread as the statistical

measure to identify high contrast photos, as they had noticed in phase two that high contrast

photos tended to have grayscale distributions with large standard deviations. Naomi stated,

“variation is what was important”, and consequently they explored the interquartile range and

the standard deviation as measures for the decision rule of their classification model. When

they sorted their photos into high and low contrast, they did not always agree on whether an

individual photo was high contrast or not. When disagreements arose, these were often resolved

by sorting the photos according to their current decision rule and then considering if they still

believed that the photo was high contrast or not.

Naomi and Alice used all ten of their photos to develop their model, and after quickly articulating

their model with code, checked their model with “new” photos from outside their training data.

The teachers agreed on a decision rule for their classification model that photos with a “standard

deviation greater than 60” would be classified as high contrast. Like phase two, when the teachers

demonstrated understanding of the difficulty of dichotomising numeric variables, Naomi and

Alice realised that photos with “standard deviations close to 60” were “borderline” and the

most likely to be misclassified.

Ingrid and Amelia demonstrated a more exploratory approach and consequently took longer to

develop their model. Figure 6.11 shows screenshots from the teachers’ RMarkdown-generated

HTML document and provides a description of the thinking they used to develop their

classification model and the code they modified to articulate their model.
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Figure 6.11: The classification model developed by Ingrid and Alice

Ingrid and Amelia appeared to be more open to exploring more than one way of classifying

high contrast photos and considered bimodality, skewness, and large proportions of “black” and

“white” as features of the grayscale distributions that might indicate a high contrast photo.

The teachers attempted to translate these distributional features into different decision rules,

for example, by noticing high contrast photos have either “a very wide IQR or a small one”

or that “you want a fairly high median.” Ingrid and Amelia continued to use the unplugged

physical photos and plots alongside the code-driven tool when developing their model. Using

both tools appeared to help them quickly repeat the process of making conjectures about high

contrast based on human visual analysis of a photo, making conjectures about what statistical

measure(s) might capture the human visual analysis, and then formulating and using a decision

rule based on a statistical measure to see if the rule worked.

Ingrid and Amelia also considered how their conjectures for statistical measures and decision

rules could be expressed using code. For example, after examining the physical plots in front of

her, Ingrid remarked, “you could look at the min and the max ... I’m thinking about things you

could actually put into our model.” Note in Figure 6.11, the teachers described that they wanted

to use a decision rule based on the upper quartile but it “wouldn’t work.” Indeed, Ingrid and

Amelia tried to modify the code to create a measure based on the upper quartile, but as this was

not a specific function provided by the code-driven tool, they disbanded this attempt. Similarly,

Ingrid stated, “it’s kind of hard to find a model that will pick up both skewness and bimodality at

the same time”, referring to their knowledge about how to articulate this model computationally

with the code provided, for example, by using more than one “if/else” statement.

Another reason why the development of their model took longer than the other teachers was
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that for each idea they had for a decision rule, they would try it out with several photos. If

they found one photo that wasn’t correctly classified by the rule, after confirming that they still

thought it was high contrast, they would discard the rule. Like Naomi and Alice, they were

prepared to change their judgement of whether a photo was high contrast or not, to get their

model “to work.” However, towards the end of the development phase of their model, Ingrid

suggested that they should forget about one of the photos they were using to develop a model,

saying, “maybe it’s just an odd ball.” Although Amelia initially resisted, she then agreed with

Ingrid’s justification that they are, “trying to find a model that will work in many cases but not

necessarily perfect.” I interpreted this change of approach as an indication that the teachers had

begun to evaluate a classification model from the perspective of Does our model get the photos

correct most of the time? rather than Can our model cope with the “weird” or “tricky” photos?

The results from phase three indicated that all the teachers had begun to understand how to

develop and compare classification models. They appeared to understand that they could create

new measures, which took different forms of variation into account, and they demonstrated they

could articulate their decision rule with code. By drawing on both statistical and computational

ideas in their modelling process, the teachers seemed to demonstrate integrated statistical and

computational thinking. The last phase of the task was described by Naomi, with agreement from

the other teachers, as providing an important learning experience of “trying to take something

complex and create a statistical measure for it.”

6.6 Reflection

One objective of my research was to identify statistical and computational thinking practices that

might emerge when teachers were exposed to a new learning environment involving digital image

data and classification modelling. The design decisions made when constructing the task seemed

to provide a positive “first exposure” to classification modelling with digital image data.

Overall, the teachers appeared to extend their statistical thinking within the context of

digital image data, and the tasks appeared to support them to integrate statistical and

computational thinking. According to Lee et al. (2011), computational thinking involves

abstraction, automation, and analysis. The teachers appeared to show these characteristics

while exploring how to classify “high-contrast” grayscale photos. I observed that all teachers

were able to: connect visual features of grayscale photos with features of sample distributions

of grayscale values (analysis); create rules to classify grayscale photos in different ways
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(abstraction); and use code-driven tools to interact with digital image data and to articulate

classification models (automation).

I now discuss some specific design decisions: framing the task in terms of distributions; using

a data science unplugged approach; and encouraging human-driven informal model building. I

make tentative links between these decisions and the results presented about teachers’ thinking

practices and then I reflect on my task design framework.

Framing the task in terms of distributions

The task directed teachers to reason with distributions throughout the task rather than leaving

the analytical approach open to the teachers (cf. Hjalmarson et al., 2011). I propose this decision

provided a way for the teachers to “look” at the digital image data through a familiar lens

(cf. Wild, 2006) and supported the introduction of new computational knowledge by extending

the familiar into unfamiliar data science approaches (Biehler & Schulte, 2017). A key task

design feature appeared to be the connecting activity, where teachers physically connected

photos (representations of the population distributions of grayscale values) with dot plots

(representations of sample distributions of grayscale values). The activity stimulated teacher

discussion about distributional shape (cf. Arnold & Pfannkuch, 2016) and helped to support the

teachers to successfully reason with hierarchal data structures inherent in digital image data

(Figure 6.1) through initially considering the pixels as the cases belonging to each photo. Once

the teachers were able to connect the sample distributions of grayscale values with the grayscale

photos, the connected photo-plots became the cases that could be summarised using a measure

such as the median. The approach to draw teachers’ attention to the median grayscale of the

distribution and the lightness of the connected grayscale photo is consistent with the findings of

Arnold et al. (2011).

Using a data science unplugged approach

The decision to focus on distributions for this task was strongly linked to the decision to use a

data science unplugged approach. The use of physical grayscale photos and dot plots of sample

grayscale distributions removed the need to introduce an unfamiliar GUI-driven tool approach

for analysing digital image data and reduced the focus on mathematical structures. The physical

sorting of the connected photo-plots into different groups for classification (e.g., light versus dark)

appeared to offer similar benefits to the “hands-on” activities used within learning progressions

for simulation-based inference with respect to modelling ideas (e.g., Chance et al., 2004; Zhang

et al., 2021). I also observed that some teachers continued to refer to physical stimuli even when
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they had access to the code-driven tool, similar to what was found with the randomisation test

task (see Chapter 4).

The data science unplugged approach used for the task is also consistent with the pedagogy

described by Shoop et al. (2016) with respect to teaching robotics, where students work together

to build models for computational solutions and present these models to the class for discussion

before developing code. My findings appeared to demonstrate that teachers were able to learn

new ideas related to classification models and describe the computational steps in their own

words, before articulating their model using readable code (Wickham, 2018). The readable code

was made possible through functions that were named to match physical and described actions.

However, a limitation of the data science unplugged approach is that the teachers’ experiences

with evaluating classification models were small scale. The training and testing data sets only

contained 10 photos each and the hands-on approach prevented “scaling up” the evaluation of

their classification models. Similar to the teachers observed by Zieffler et al. (2021), the approach

did promote some initial modelling approaches that were based on overfitting specific features

of grayscale photos. As a “first exposure” learning task, the task seemed to provide a foundation

for further development of classification modelling ideas.

Encouraging human-driven informal model building

The decisions to frame the task in terms of distributions and to use a data science unplugged

approach were connected to the decision to encourage human-driven model building. Heeding

the same call as Lee et al. (2021) to take a humanistic stance towards data science education

at the school level, the task provided students with personal and direct experiences with data

and measurement. Notably, the sample distributions of grayscale values were provided for the

teachers, and no pre-labelled data sets were made available, as is commonly the case with

introductory classification modelling activities (e.g., Engel et al., 2019; Zieffler et al., 2021).

Similar to the task developed by Horton et al. (2022) to explore how learners produce data

from text to classify clickbait, the teachers needed to connect features they perceived as humans

(e.g., high contrast grayscale photos) to features of the data (e.g., skewness of distributions) to

computer extractable features (e.g., calculating the difference between the mean and median

for a random sample of grayscale pixels), before they could develop rules that could be used to

classify photos (Figure 6.11).

These human-driven decisions led to uncertainty with the modelling process, particularly as

the teachers often doubted their own ability to classify photos as light or dark, or as high or
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low contrast. In my findings, I presented examples of the teachers grappling with the differences

between how humans and computers make decisions. I contend that by not providing a complete

and accurate data set and relying on human choices for both the measures and decision rules,

the different sources of uncertainty that are faced by data analysts (cf. Yang et al., 2019) were

effectively incorporated into the learning task (cf. Podworny et al., 2021).

Even though formal classification models were not introduced, I note that when Datta et

al. (2006) attempted to create classification models for aesthetics of photographs using formal

computational approaches, they discussed similar difficulties that my teachers discovered,

specifically issues with dichotomising numeric variables. A teaching challenge is how to combine

thinking like a computer and thinking like a human (cf. Biehler & Fleisher, 2021). On the one

hand, statistical thinking requires learners to understand that data are numbers with context

(Cobb & Moore, 1997) and thus humanistic perspectives of model outputs are needed that

account for contextual implications.

On the other hand, I found that the context did at times distract the teachers from forming more

general ideas about statistical models (cf. Biehler & Fleisher, 2021; Pfannkuch, 2011; Zieffler et

al., 2021). Similar to Hjalmarson et al. (2011), I found that not all teachers developed a statistical

measure that incorporated the variation of grayscale pixels within a photo. If human decisions

are to be encouraged as part of modelling approaches, consideration may be needed of graphicacy

theory, which states that what learners see in the data depends on their prior knowledge and

experiences (Friel et al., 2001).

Task design framework

This chapter reports on the third task pertaining to my research, the purpose of which is

to propose a design framework to construct and implement tasks for introducing code-driven

tools through statistical modelling. Across the three tasks, my design framework seems to be

effective in explicating design decisions that introduced the teachers to statistical modelling

using code-driven tools: (1) the randomisation test using code-driven tools, moving from familiar

GUI-driven tools (Chapter 4); (2) predictive modelling using code-driven tools (Chapter 5); and

(3) classification modelling using unplugged and code-driven tools (this chapter).

The design principles and considerations were based on teaching strategies sourced from statistics

education and computer science education research (e.g., Garfield et al., 2012; Sentance &

Csizmadia, 2017). Additionally, the design principles and considerations of my design framework

are similar to those of emergent frameworks within statistics education and computer science
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education. For example, the practicing connections framework (Fries et al., 2021) explicates

that learning tasks for statistical modelling should help students make and practice connections

between concepts and different representations. The three tasks seemed to support the teachers

to make connections between different representations of data, computational actions, and

models. The PRIMM framework (Sentance et al., 2019) explicates a structured approach to

developing a learning task for computer programming using the learning actions Predict, Run,

Investigate, Modify, and Make. My framework recommends a similar structured approach using

design principles (see Table 6.1), the design consideration of the introduction of new knowledge

(C1), and a similar learning goal for learners to explore (P6) and thus create new ideas.

I contend that my framework provides further guidance than the PRIMM framework for the

development of statistical modelling tasks that introduce code-driven tools in at least two notable

ways. The design principles of immerse (P1) and re-familiarise (P2) encourage the design of

learning tasks where data contexts and statistical modelling ideas are developed initially without

using code-driven tools. I propose that these design principles and the design consideration of

the data used (C2) support statistical thinking through the development of learning activities

that encourage the integration statistical and contextual knowledge (Wild & Pfannkuch, 1999).

Furthermore, in line with Biehler (2018), my framework considers the relationship that exists

between tools, task design and learners’ statistical and computational conceptions. The design

principles describe (P3), match (P4), adapt (P5), and the design considerations of the tools

used (C3) and the level of computational transparency (C4), explicate how to make connections

between statistical modelling experiences, actions and representations for code-driven tools and

unplugged or GUI-driven tools.

6.6.1 Summary

I have proposed some practical design solutions for balancing the learning of new statistical

and computational ideas when introducing code-driven tools for statistical modelling. Using an

unplugged data science approach, the task provided an accessible introduction for the teachers to

use digital image data to develop classification models. My design framework, with an embedded

approach of drawing on familiar statistics ideas first before extending these ideas into less familiar

territory, appeared to support the teachers’ development of new statistical and computational

ideas related to algorithmic modelling.

In this chapter, I explored the introduction of code-driven tools through a classification modelling
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task (Task 1) and demonstrated how the second iteration of my task design framework was

aligned to this task. In Chapter 7, I explore the introduction of code-driven tools through a

simulation-based probability modelling task (Task 4) and use the task and its implementation

with teachers to evaluate and refine the task design framework and examine integrated statistical

and computational thinking.

132



Chapter 7: Probability modelling task

7.1 Introduction

Recommendations for the implementation of data science at the high school level include

providing opportunities for students to integrate both computational and statistical thinking

(e.g., De Veaux et al., 2017). The teaching of probability simulations offers opportunities for

students to use a variety of digital tools to co-develop statistical and computational knowledge.

For instance, there are code-driven tools, computational tools which users interact with

predominantly by entering and executing text commands (code) and there are GUI-driven

tools, computational tools which users interact with predominantly by pointing, clicking, or

gesturing. Although technology-enabled simulations have been used to introduce students to

probability and statistical inference since the earliest days of computers in classrooms (e.g.,

Simon et al., 1976; Thomas & Moore, 1980), advances in digital technologies have enabled the

development of intuitive tools for supporting and visualising results (e.g., Ben-Zvi, 2000).

Modern tools such as spreadsheets, purpose-built statistical GUI-driven software, and

programming languages are all possibilities for teaching probability simulations. Barriers for

broader implementation of digital tools for teaching probability simulation, however, include

teacher confidence with using these tools to articulate probability models, generate data from

these models, summarise and analyse the simulated data, and visualise the simulated data.

Because there is limited research in data science education for supporting teachers to move to,

and between, different computational tools for teaching statistical modelling, my research seeks

to explore how different tools can support or stimulate thinking about probability simulations

and new computational ideas.

Using a DBR approach, I explicated an initial task design framework to introduce learners to

code-driven-tools through statistical modelling in Chapter 4, which was refined in Chapter 5 and

corroborated in Chapter 6. In this chapter, I explore the design and implementation of a task
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for introducing teachers to code-driven tools for simulation-based probability modelling (Task

4). I ascertain if the task design framework can be applied for constructing a task that uses a

different statistical modelling situation (probability simulation) and unfamiliar computational

tools (both GUI-driven and code-driven). I also explore what statistical and computational

thinking practices emerge when the task is implemented with teachers.

7.2 Teaching probability simulations at the high school level

Traditional approaches to teaching probability have focused on calculating single probabilities or

expected values of random variables (Maxara & Biehler, 2006), often using coins, spinners, and

dice to demonstrate theoretical probability (Pratt, 2011). Consequently, teachers can associate

simulation activities with a frequency view of probability and not consider the use of simulation

to explore distribution as an important concept (e.g., Sánchez, 2002). Probability simulations

can be used to develop conceptual understanding of probability, in particular the notions of

randomness and its effect on variation and distribution (Engel, 2010; Pfannkuch et al., 2016;

Watkins et al., 2014). With respect to randomness, students can be encouraged to interact with

chance devices and visualise outcomes being generated dynamically (Pfannkuch & Budgett,

2016), and with learning focused on the random process not just the product of the simulation

(Kaplan et al., 2014b).

Simulations can be used to solve difficult probability problems, providing a simpler approach

than using difficult analytical methods (Biehler, 1991). Research has implored educators to focus

on the use of simulation to promote a modelling perspective to teaching statistics (Garfield et

al., 2012), as central to statistical thinking is the use of statistical models (Wild & Pfannkuch,

1999). As a probability simulation involves replacing a real random situation with a model,

which can be manipulated and used to generate data that can be analysed (Engel, 2010),

there is potential to adopt a greater focus on the model when teaching probability simulations.

Teachers could encourage students to see and apply structure as part of the probability modelling

process (e.g., Pfannkuch et al., 2016), and to explore “what if?” scenarios by changing features

of the probability model being used for the simulation. When using technology for probability

modelling, learners can quickly run multiple simulations and explore the relationship between the

model and the data it generates (Fergusson & Pfannkuch, 2020; Kazak & Pratt, 2021). Examples

of existing tasks that demonstrate the exploration of a model within a simulated environment

include a basketball simulation (Prodromou, 2014) and data games (Erickson, 2013). A focus
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on modelling for teaching probability simulations is also consistent with recommendations for

teaching data science at the high school or introductory level (e.g., Fries et al., 2021).

To support students to use technology to conduct probability simulations, they need to be

provided with hands-on tactile experiences with the processes that will be used by the technology,

so that their understanding can be connected to what the computer is doing (e.g., Chance

et al., 2004; Erickson, 2006; Gould et al., 2010; Pfannkuch et al., 2013). Using “unplugged”

simulations supports students to use physical actions to represent steps in the modelling process

(Wood, 2005), which can benefit student understanding when they move to using computational

tools (e.g., Chance & Rossman, 2006; Zhang et al., 2021). Technology which provides “virtual”

versions of physical chance devices such as coins and spinners has also been described as critical,

so that students view the computer models they build as generating the same data as they

would obtain using the actual devices (Konold & Kazak, 2008). Ideally, the computational tools

used to carry out simulations would place the focus on defining the model, not the physical

or time-consuming tasks of generating each trial manually. In this way, technology is used as

a mechanism to shift statistics from being focused on computations, formulae and procedures

towards a learning culture that supports informal and open exploration of data and models with

minimal barriers (e.g., Ben-Zvi, 2000; Wild, 2018).

Statistics education researchers have carefully considered how GUI-driven tools influence

students’ thinking when learning statistics and have also considered how to define the complex

relationship between software features, task design, and learners’ statistical conceptions (e.g.,

Ben-Zvi, 2000; Biehler, 1997b). For instance, guidelines developed by delMas (1997) for the

use of technology in the teaching of statistics present many pedagogical perspectives on the

use of simulations, such as the need to provide clear examples of how models are built and

interpreted, and the need for physical activities as well as computer simulations. Considering the

relationship between tool, task, and thinking for modelling activities is also important (Biehler,

2018; Doerr & Pratt, 2008; Moore, 1997). The design of the task should consider the design

of the computational tool and allow students to tinker with a model and to visualize changes

instantaneously. For instance, Tinkerplots (Konold & Miller, 2015) has been used extensively

by statistics education researchers to explore probability simulations and simulation-based

inference (e.g., Noll & Kirin, 2016; Wright et al., 2019). Furthermore, Wild et al. (2017) advised

teachers to focus on what students are seeing and thinking when interacting with software, and

to ask students to explain and describe the key elements of what they are doing with the tool.

GUI-driven tools dominate the teaching of statistics at the high school level, yet it is difficult
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to find substantial literature that explicitly communicates strategies for designing tasks that

introduce code-driven tools for probability simulations, or more broadly statistical modelling.

In a research study conducted by Ferreira et al. (2014), high school students successfully used

the programming language R (R Core Team, 2020) to conduct simulations after completing

“by-hand” probability activities. They reported that the students quickly became familiar with

the language and experienced a sense of control in being able to manipulate the computational

actions. Code-driven tools could lower the cognitive demands of statistical modelling tasks (e.g.,

Son et al., 2021) and assist the teaching of probability simulations, although it is not clear how

teachers would balance learning new statistical and computational knowledge within the same

task. For example, when encountering issues with executing code, learners might frame problems

as either statistical or computational (Thoma et al., 2018).

Advice for using technology to teach statistics has included that a combination of tools

may be best for student learning (e.g., Chance et al., 2007; Hesterberg, 1998). When

selecting and combining different computational tools for teaching probability simulations,

however, considerations are needed about how to support students’ mental images and visual

representations for each aspect of the modelling process. According to dual coding theory,

humans store information in their memory in two distinct representations, verbal and non-verbal,

and employing both representations enhances learning (e.g., Clark & Paivio, 1991). Using both

GUI-driven and code-driven tools allows learners to interact with text-based and graphics-based

representations of statistical and computational concepts (e.g., Cook & Goldin-Meadow, 2006).

According to Erickson et al. (2019), the naming of actions that alter a data set’s contents or

structures as “data moves” might help students move between GUI-driven and code-driven

tools. Similarly, I propose that the closer the match between modelling actions carried out with

GUI-driven and code-driven tools, the smoother the move for the learner. However, there is

limited research on high school teachers or students using both GUI-driven and code-driven

tools within the same statistics learning programme (e.g., Biehler & Fleischer, 2021; Deitrick et

al., 2017; Thoma et al., 2018).

7.2.1 The New Zealand teaching context

Probability simulations are included in the assessed curriculum for statistics students in their

last two years of high school. A common situation used for teaching and assessing probability

simulations is the “cereal box problem.” The “cereal box problem” involves a certain number of

different “cards” that can be collected from “cereal boxes”, with the goal to collect a full set
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of “cards” (one of each different card). Students are typically asked to carry out a probability

simulation to estimate the mean number of “cereal boxes” that need to be collected to obtain a

full set of “cards.” Two of the three national exemplar assessment tasks provided to teachers in

New Zealand are based on the “cereal box problem”: Fruity freezes and Oh what a seed! For the

Fruity freezes task ice blocks (popsicles) are used instead of cereal boxes. There are four symbols

that are printed on the ice block sticks (apple, pineapple, grape, strawberry) and each symbol

has a different probability (0.4, 0.3, 0.2, 0.1). The Fruity freezes task includes an additional

stopping clause, which is that a person called “Grace” will only buy one ice block per day for

up to 10 days.

The Fruity freezes national exemplar assessment does not demonstrate the use of GUI-driven

or code-driven tools for teaching probability simulations. Instead, it demonstrates the use of a

calculator to generate random numbers, each of which are mapped to a particular symbol, and a

“by hand” approach to recording and summarising the data to calculate the mean number of days

ice blocks are bought. The data generated during the simulation are recorded in one table, where

each row represents a different trial. The exemplar does not show the data generated visually as

a distribution, which would allow for greater discussion of the variation of the outcomes under

chance. Because teachers are familiar with the exemplar, I decided to design a task that explored

the same Fruity freezes situation with new GUI-driven and code-driven tools.

7.3 Task design framework

Through retrospective analysis of three other tasks (Chapters 4, 5, & 6), I explicated a design

framework to introduce learners to code-driven tools through statistical modelling. Because

design-based research is an iterative process, I retrospectively analysed the second iteration

of the task design framework (Chapter 5) against the criterion of producing a more general

design framework rather than one that was too specific to the nature of the tools and tasks

used previously. For the third iteration of the task design framework, changes were made to two

design considerations: the data used (C2) and the level of computational transparency (C4).

In previous iterations of the design framework, the data used (C2) design consideration referred

to “sets of data.” However, the use of data in the other tasks included data sourced dynamically,

for example from APIs (Application Programming Interfaces). Therefore, the data used (C2)

design consideration now refers to “sources of data.” The level of computational transparency

(C4) design consideration in previous iterations of the design framework did not explicate the
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need to select or develop features of computational tools. This directive has now been added, as

the task designer may often need to modify the interface of the GUI-driven tool or develop new

functions for a code-driven tool.

Table 7.1 provides the modified design considerations for the third iteration of the task design

framework.

Table 7.1: The four design considerations of the design framework
Design consideration Related design decisions

Introduction of new knowledge (C1) Identify content and use a sequence of phases and steps
within a task to introduce learners to new ideas

Data used (C2) Select and use different variables or different sources of data
within the same data context for the task

Tools used (C3) Combine different tools for statistical modelling (unplugged,
code-driven, GUI-driven) and connect actions or
representations between tools within the task

Level of computational transparency
(C4)

Select or develop features of computational tools with
respect to how obvious the computations performed by the
tool are to the learner

7.4 Task design characteristics

I now discuss how the third iteration of my task design framework explicates the key

characteristics of the task used for the research reported in this paper. The statistical modelling

approach for the task involved: adapting probability models represented using technology;

using these models to generate data through simulation; and using the model-generated data

to calculate estimates of model-related values, for example, probabilities or expected values.

The learning goal for the task was for teachers to use a code-driven tool and probability

simulations to develop a probability model that would inform the requirements for a fictional

“card collecting” competition. The data used (C2) were generated through simulation from

probability models based on two of the national exemplar assessment tasks provided to teachers

in New Zealand, Fruity freezes and Oh what a seed!

7.4.1 Tool-related design decisions

Unlike the previous three tasks, I could not assume that the teachers had experience with using

a GUI-driven tool for conducting probability simulations and visualising results graphically.
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Additionally, the unplugged approach demonstrated in the national exemplar assessment

represented the data generated in one table, where each row was one trial, rather than a

hierarchal data structure. Therefore, there were two tool-related task design challenges that

needed to be resolved: (1) the selection and sequencing of computational tools to move students

towards a code-driven tool, and (2) the introduction of an unfamiliar structure, hierarchal, for

representing the data generated. In line with the design consideration of tools used (C3), which

recommends connecting actions or representations between different tools, the task introduced

three different computational tools to explore the same probability simulation problem: (1) the

Simple Sampler tool, a new online application that I developed specifically for this research;

(2) the software tool CODAP (codap.concord.org) using a modification of the existing Sampler

plugin; (3) the programming language R, via a web page created using the R package learnr

(Schloerke et al., 2018) that allowed code to be run in the browser. As the computational tools

were unfamiliar to teachers, the design consideration of introduction of new knowledge (C1)

informed the development and modification of features of the tools simultaneously with the

design consideration of level of computational transparency (C4).

At the core of the design principles for the framework is that learners are familiar with a

statistical modelling process (P2) and can describe the computational steps of the process based

on experiences with non-code-driven tools (P3). CODAP was selected as the GUI-driven tool

to support the teachers to move from an unplugged approach to a code-driven approach, as the

tool provided actions or representations for the modelling steps needed to design, carry out and

interpret the results from a simulation. Additionally, CODAP provided (1) a sampler plugin that

automated and visualised the random generation of outcomes (C3), and (2) interactive tables

of data that could be manipulated using formulae in similar ways to the functions the teachers

would meet in the programming language R (C4). The CODAP Sampler plugin, however, did

not allow for a trial to end when one of each outcome (or symbol) had been generated, one of the

conditions for the Fruity freezes task. Consequently, I developed new code to modify and produce

an adapted Sampler plugin that could be used for the teaching experiment (C4). A feature of

the data generated from the CODAP Sampler plugin was its organization into multiple tables

in a hierarchal structure, a data structure that was unfamiliar to the teachers. As I began to

develop materials for the task using CODAP, I realised there would be too much new information

to grasp at the same time if teachers moved from an unplugged approach directly to CODAP

(C1).

Therefore, the decision was made to create a new GUI-driven tool called the Simple Sampler.
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The design of the Simple Sampler was based on the key computational representations, actions

and words needed to support and describe the computational steps for a probability simulation

using CODAP and the programming language R (C3). Figure 7.1 shows the graphical user

interface of the Simple Sampler tool and the use of the tool to carry out one trial.

Figure 7.1: An example of using the Simple Sampler tool to carry out one trial with annotations
showing key features of the graphical user interface and visualisations

The Simple Sampler tool was designed to visualise the probability model for the simulation in a

very similar way to the Sampler plugin for CODAP (C4) and provided four different buttons for

teachers to use: shuffle, select, next trial, clear. The “shuffle” button replaced all sampled items

and shuffled them (Figure 7.1a). The “select” button selected the first shuffled item (Figure 7.1b),

and if the “select” button was then pressed again, it took the second shuffled item, and so on.

Visually, the value from each selection was shown horizontally as a row (Figure 7.1c), to match
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to how teachers were familiar with recording the values of one trial from a simulation using an

unplugged approach (C3). Simultaneously, each value was shown in a table at the bottom of

the page (Figure 7.1d), where each row represented a new value (obs_num), and an additional

column that kept track of the trial number (trial_num). When the “next trial” button was

pressed, a new row was added to the horizontal presentation of the values (not shown), and the

trial number increased by one to the table representation of the values. In this way, the tool

supported the teachers to make connections between the different data structures and those

produced by CODAP (C3).

The use of CODAP for the task also required careful consideration, particularly with respect

to computational transparency (C4). At the time of the teaching experiment, there was no

function/formula provided by the tool that could be used to determine how many unique values

there were in the results from one trial, an essential requirement for the Fruity freezes problem.

Therefore, the decision was made to demonstrate the pre-prepared “finished product” of using

CODAP for the Fruity freezes simulation, rather than engage the teachers with the complexities

of the formulae used within the summary data table. In this way, the structure of the summary

data table could be the focus and could be used to support the teachers to make connections

between the names of variables and the sequence of calculations and logic needed to determine

when a trial ends and whether a prize has been won or not (C3). The CODAP tool was also used

to introduce a graphical approach for calculating the model-generated estimates required for the

Fruity freezes problem (C1). For example, the probability of winning a prize was calculated by

constructing a bar chart and reading the proportion for the outcome “yes.”

Both the Simple Sampler and CODAP tools provided teachers with the computational actions

and representations for the key modelling steps needed to make connections to the R code

used in the code-driven tool, the learnr created web page (C3). The tidyverse (Wickham, 2017)

ecosystem of R packages was used for the code, with additional functions that I developed to

assist the readability of the code and plotting functions from the R package iNZightPlots (Elliott

et al., 2021). For example, the visualise function was written to enable teachers to visualise the

probability model for the simulation in a very similar way to the CODAP Sampler plugin and

the Simple Sampler tool (C4). The names assigned to objects used within the R code were also

carefully matched to the labels and words used in both the Simple Sampler and CODAP tools.

Additionally, emojis were used within the code-driven tool, as they had been across all tools, to

represent the outcomes for the probability model.
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7.4.2 Summary of task phases

Each of the six phases of the task is now described (see also Appendix E). For each phase, the

description begins with the relevant design principle, related learning action or experience, and

anticipated learning from the third iteration of my task design framework.

Phase 1

Immerse in data context (P1) | Participate in activities that promote engagement with the

data context | Understanding the nature of the data that is used across the task

The teachers were introduced to the modelling context of people collecting objects. They were

shown a video explaining some reasons why people collect objects and then they were provided

with examples of recent media articles discussing current “collecting promotions” run by a

supermarket and a cereal food company. The teachers were asked to discuss the following

questions: What drives people to become collectors? What are your experiences with collecting?

Have you ever collected cards/tiles/etc. as part of competition or promotion?

Phase 2

Re-familiarise with statistical modelling ideas (P2) | Carry out familiar statistical modelling

activities without using code | Application of statistical thinking

The teachers were given a paper copy of the Fruity freezes task and asked to discuss with each

other how they would teach students to complete the task. The teachers then moved to a web

page and were given access to the Simple Sampler tool to carry out the simulation. Figure 7.2

shows the instructions and graphical user interface of the Simple Sampler tool.
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Figure 7.2: The task instructions and graphical user interface for the Simple Sampler tools

The tool CODAP was then introduced to the teachers using two links to pre-prepared files with

the simulation part-way through, Figure 7.3 and Figure 7.4 respectively.

Figure 7.3: The first pre-prepared CODAP file showing the modified Sampler plugin and the
task instructions for considering how the situation is being modelled
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Figure 7.4: The second pre-prepared CODAP file and the task instructions about what to look
at in the data and how to analyse the results

Phase 3

Describe computational steps of statistical modelling process (P3) | Use words to describe

key computational steps of statistical modelling process | Decomposition of modelling steps

and recognising required computation

The teachers were given five individual pieces of paper, each showing a modelling step in the

form of screenshots taken from CODAP to model the Fruity freezes situation (Figure 7.5). They

were asked to arrange the screenshots in the order that they would use CODAP to investigate

the Fruity freezes task. In the space beside each screen shot/step, the teachers were asked to

write brief notes about what was happening statistically and/or computationally, and how this

linked to the Fruity freezes task.
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Figure 7.5: The five screenshots taken from CODAP to model the Fruity freezes situation

Phase 4

Match statistical modelling steps to code chunks (P4) | Read and match lines of code with

statistical modelling steps | Recognising aspects of code syntax and structure

The teachers were progressively given chunks of code that matched each of the five modelling

steps presented in Phase 3. The teachers were asked to match each code chunk to one of the

screenshots from Phase 3 and to add short comments to the code to describe what they thought
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the code did. Figure 7.6a shows the screenshot for the first modelling step and Figure 7.6b the

first code chunk revealed to the teachers.

Figure 7.6: (a) The screenshot of the first modelling step, (b) The first code chunk revealed to
the teachers

Phase 5

Adapt code chunks with slight modifications (P5) | Identify features of code to change

to complete a statistical modelling action | Integration of statistical and computational

knowledge

The teachers were given a paper copy of the Oh what a seed! task, a very similar situation to

the Fruity freezes task, which involved a gardening store running a promotion for customers to

collect different seed packets (C2). The teachers were asked to adapt the code provided to model

the new situation. All the code used from Phase 4 was presented to the teachers (Figure 7.7).
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Figure 7.7: The R code provided to teachers in Phases 4 (progressively), 5 and 6

Phase 6

Explore ”what if?” changes to code (P6) | Modify at least one aspect of provided code to

produce new or unexpected outputs | New knowledge gained by integrating statistical and

computational thinking

The teachers were again provided with all the code used in Phase 4 for the Fruity freezes task

(Figure 7.7). They were asked to use the code-driven tool to explore three “what if?” questions:

What if Grace only buys ice blocks for five days?, What if there was no limit on how many

days Grace buys ice blocks for? and How does Grace’s chances of winning a prize change as

the number of days she buys ice blocks for increases? Finally, they were asked to complete

147



the challenge where they had to create a new version of the competition with two prizes: one

that over 90% of customers could win if they collected 20 cards and one that no more than

20% of customers could win if they collected 20 cards. The teachers had to decide how many

“cards” would be used, the probabilities for each card and how two different prizes would be

determined.

7.5 Analysis

The implementation of the probability modelling task took place during the fourth day of the

professional development workshops. Four of the ten teachers had participated in the earlier

workshops and six had not. The teacher pairings for the task were: Amelia and Harry; Erika

and Laina; Naomi and Umika; Ella and Yin; and Alice and Matiu (pseudonyms have been used).

Due to technical issues, the last pair of teachers was not recorded.

Four themes were identified with respect to teachers’ statistical and computational thinking

practices related to probability simulations: reconciling prior tool thinking, prior task-frame

thinking, tool-stimulated thinking, and task-stimulated thinking. For each theme, I focus on one

pair of teachers to illustrate common actions and reasoning.

7.5.1 Reconciling prior tool thinking

I observed that when the task introduced the new computational tools, the teachers did not

seem to activate or transfer their existing statistical thinking practices related to probability

simulations. Because their thinking appeared to be driven by familiar computational tools, I

described the theme as reconciling prior tool thinking. An example of reconciling prior tool

thinking was related to how random outcomes can be generated from a probability model.

In Phase 2 of the task, the teachers discussed using the random number function available on

commonly used calculators or spreadsheets to carry out a probability simulation for the Fruity

freezes task. For instance, Amelia and Harry discussed how to use a random number function

to generate a value between 1 and 10 and how to “map” this value to one of the outcomes of

the probability model. They discussed that if a 1, 2, 3, or 4 was generated, then it would be

recorded as an apple, as the symbol apple had a probability of 0.4. However, in Phase 3 when the

Simple Sampler tool was introduced, Amelia and Harry initially sampled without replacement
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when generating outcomes for each trial. Figure 7.8 provides a screenshot of how they used the

tool to randomly generate four symbols without replacement using the Simple Sampler tool.

Figure 7.8: A screenshot of Amelia and Harry using the Simple Sampler tool to randomly
generate four symbols without replacement

Sampling without replacement from a set of 100 emoji meant that the probabilities of each

symbol that the emojis represented did not remain constant. The tool the teachers were familiar

with, the random number function on a calculator or spreadsheet, does not require a decision to

be made about the method of sampling, as it is always samples with replacement. Additionally,

the random number function on a calculator or spreadsheet provides no visual imagery of how

the number is randomly selected or generated. In fact, Amelia discussed with Harry her concern

with using spreadsheets for teaching simulation ideas for similar reasons stating, “the connection

is often lost when you are simulating the process by using the spreadsheet, it’s random you

know.”

In contrast, the Simple Sampler tool appeared to highlight randomness to the teachers, as

Amelia and Harry connected the shuffle button to the visual shuffling of the emojis, concluding

this shuffling process produced random outcomes. Also, it appeared the teachers were unfamiliar

with using objects as probability models and the additional thinking and computational actions

using objects required, as Amelia described:
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Honestly, we didn’t even think about with or without replacement, we just thought,

“Oh, it’s shuffled it, so it’s random, so we just take one and that’s our thing, and you

just keep taking them”, and it never occurred to us that, “Oh, you have to put it

back, because that way you keep the probabilities the same.”

The teachers suggested that if there had been another button in the Simple Sampler tool labelled

“replace”, then this may have triggered them to consider whether they needed to sample with

or without replacement. The introduction of the new Simple Sampler tool seemed to activate,

elicit, and support the teachers to reconsider the underpinning random sampling ideas, which

were inherent and not explicitly obvious in the tools that they used in their teaching, because

the new tool was more transparent about the generation of random outcomes from a probability

model. Specifically, they realised that randomly sampling with replacement using objects of

different types and weightings produces the same result as using a random number function to

generate values that are then mapped to outcomes. Hence, their thinking about how random

outcomes were generated from a probability model was reconciled by a blending of prior tool

and new tool perspectives.

7.5.2 Prior task-frame thinking

I observed that when the task introduced a sequence of five modelling actions for conducting a

probability simulation, that some of the statistical and computational ideas embedded in these

actions were not familiar to the teachers. Because their thinking about probability simulations

appeared to be associated with familiar assessment task structures, I described the theme as

prior task-frame thinking. An example of prior-task frame thinking was related to the use and

description of a probability model for simulations.

In Phase 3 of the task, the teachers were given five screenshots that each captured one of the

five modelling actions needed to complete a probability simulation-based investigation for the

Fruity freezes task. Figure 7.9 shows the screenshots provided and the order and descriptions

that were written by Ella and Yin.
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Figure 7.9: The annotated screenshots created by Ella and Yin, showing their names/labels and
descriptions for each step

During Phase 2, Ella and Yin referred to the acronym TTRC (Tool, Trial, Record, Calculate)

when they discussed how they would teach a task like Fruity freezes. Figure 7.9 highlights where

these teachers used the words “tool”, “trial”, “record” and “calculate” when describing each

screenshot. Ella and Yin also attempted to use part of the acronym PPDAC (Problem, Plan,

Data, Analysis, Conclusion), also known as the statistical enquiry cycle. Hence Steps 1 and 2

are labelled “plan” by the teachers, Step 3 is labelled “data”, and Steps 4 and 5 are labelled

“analysis”.

Ella and Yin, similar to two other pairs of teachers, did not use modelling language in their

discussions about the steps displayed in the screenshots. Instead, they framed the probability

simulation in terms of the tool being used, what constituted a trial and what needed to be

calculated. Ella and Yin also did not use the word “assumptions” when describing the probability

model for the situation described in the Fruity freezes task, although they did refer to using

sampling with replacement “to represent that each new sample of an ice block is independent

from the previous one.” Overall, it appeared that the teachers were used to framing probability

simulations in terms of TTRC, rather than through the lens of a modelling perspective.
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7.5.3 Tool-stimulated thinking

I observed that when the new computational tools were used to analyse data generated from a

probability model, the teachers did not immediately recognise the need for the user to initiate

computer-automated actions. Because it appeared that investigating the same modelling actions

with different computational tools helped the teachers to develop new thinking practices, I

described the theme as tool-stimulated thinking. An example of tool-stimulated thinking was

related to the set of connected functions used to calculate the probability of winning a prize.

In Phase 2, the teachers were given two links to different pre-prepared CODAP files: the first

link provided the model for the simulation partially set up using the adapted sampler plugin

and the second link provided the table of results with the different variables needed to calculate

the probability of winning a prize. Erika and Laina used the first pre-prepared CODAP file

to generate data and immediately recognised that the model was not set up correctly. After

changing the options for the sampler tool, so that each trial stopped when a full set of symbols

was obtained, the teachers’ attention moved to finding the number of values (symbols) generated

per trial from the data produced. Their expectation was that the “number of ice blocks bought”

per trial would be provided by the tool at the same time as generating the data. After the

teachers realised the “number of ice blocks bought” per trial was not automatically produced

by CODAP, Erika stated:

How do we get the number? Why don’t we do a graph or a table? We’re recording

on a table, we should be able to!

Figure 7.10 shows how Erika and Laina attempted to create a graph to display the “number

of ice blocks bought” per trial and how they attempted to create a new variable at the case

level that counted the number of values for each trial. They were unsuccessful, however, in both

attempts as they did not know how to work with the hierarchal data presented.
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Figure 7.10: A screenshot of Erika and Laina attempting to use CODAP to find the number of
values generated for each trial

When Erika and Laina interacted with the second pre-prepared CODAP file, the visual linking

of a row in the parent table to the case-level values of the child table appeared to help them start

to understand the hierarchal structure of the data. Figure 7.11 shows that after Laina clicked on

row 6 in the “samples” parent table, the five rows in the “items” child table were highlighted.

Figure 7.11: A screenshot showing how clicking a row in a parent table in CODAP highlights
the relevant rows in the child table

The visual representation of the hierarchal data structure then appeared to support the teachers

to understand how the summary variables num_values , unique_values, num_unique and prize
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were calculated, in particular that the computer needed to check how many of the symbols

were different (num_unique) in order to determine if a prize was won. The teachers’ deepening

understanding of how the variables unique_values, num_unique and prize were linked was

demonstrated during Phase 3. Figure 7.12 provides the teachers’ annotations to the relevant

screenshot for the modelling step.

Figure 7.12: The annotated screenshot created by Erika and Laina for the modelling step related
to the calculation of the variables num_values , unique_values, num_unique and
prize

Figure 7.12 shows that the teachers drew an arrow linking unique_values and num_unique

together, and their annotation for unique_values states, “represents only different icons that

appear, reduce repeats.” It did take some time for Erika and Laina to understand why the

different variables were needed, as they had to put themselves in the position of a computer not

a human, which Erika explained as:

Yeah, I think that’s what we’re missing computationally is, all of this data, we don’t

know how the computer is thinking, we’re still thinking like humans.

In Phase 4, Erika and Laina were presented with R code that matched the modelling step from

the screenshot shown in Figure 7.12. Figure 7.13 shows the R code provided and the comments

written by the teachers on lines 1 and 9.
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Figure 7.13: The R code provided for Step 4 of Phase 4

Erika and Laina, similar to the other pairs of teachers, were able to match the lines of code to the

different variables shown on the CODAP table. For example, Laina said, “group by trial number,

yep it’s going to group it”, before pointing to the num_values , unique_values, num_unique and

prize variables in the table from the relevant screenshot and matching each of these to the lines

4, 5, 6 and 7 of the code. After running the code and viewing the output, Erika exclaimed:

And you’ve had to use some functions to get to this, there’s something really

complicated going on there computationally!

The different tools seemed to stimulate the teachers’ thinking about the calculation of the

probability of a prize needing computer-automated actions and a set of connected functions.

They recognised that the nature of these computations was quite complex for the Fruity freezes

task.

7.5.4 Task-stimulated thinking

I observed that when the task prompted teachers to change the probability model and to reason

with the data generated, the teachers appeared to utilise thinking practices related to probability

modelling. Because the task instructions that stimulated “model tinkering” were not familiar to

the teachers, I described the theme as task-stimulated thinking. An example of task-stimulated

thinking was when the teachers were asked to explore “what if?” scenarios related to the Fruity

freezes task.

In Phase 6 of the task, three “what if?” questions were initially given to the teachers to explore.

Similar to the other pairs of teachers, Naomi and Umika quickly identified and adapted the line

of code that determined the maximum number of days that Grace buys ice blocks. Figure 7.14
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provides two examples of their modified code, with line 14 highlighted by a box, and the plots

produced when running each set of code.

Figure 7.14: Two examples of the code modified by Naomi and Umika, with line 14 highlighted
by a box and the plots produced when running each set of code

Both Naomi and Umika articulated the change to the probability model and anticipated the

plots that were produced by their code modifications. For example, when Umika used a hash

symbol (#) to “comment out” line 14, she stated, “then that condition gets obsolete”, referring

to one of the “stopping” conditions of the probability model. Umika also appeared to expect

the plots that were produced from the modified code shown in Figure 7.14b, remarking, “that’s

correct, she’ll keep on trying and trying until she gets a full set.” Naomi and Umika continued

to explore how the probability of winning a prize changed, as the maximum number of days

that the cards were collected increased. Figure 7.15 provides the hand-written record of their

exploration.
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Figure 7.15: The hand-written record of Naomi and Umika’s exploration for the “what if?”
questions

Using the results recorded in Figure 7.15, Naomi and Umika observed that at first the probability

of winning “jumped up” but then the “jumps” got smaller. Both teachers also discussed that

they wanted to be able to write code to automate the generation of the “probabilities of winning”

as the number of maximum days increased.

The exploration of the “what if?” scenarios, in particular the quick actions of changing the model

and viewing the data produced, led Naomi to wonder about chance variation. Naomi and Umika

kept the maximum number of days that the cards were collected fixed at five, and then examined

the variation between the proportions calculated for winning a prize across three simulations.

They observed that the simulated “probability of winning” varied (13%, 22%, 10%). Based on

these results, Naomi correctly stated, “there’s a lot of variation with the simulations, you’re

not going to get a very good estimate with 100 trials.” Hence their thinking about probability

modelling appeared to be stimulated by “what if?” scenarios posed by the task.

7.6 Reflection

One objective of my research was to test and refine a design framework to introduce teachers to

code-driven tools for statistical modelling. Another objective of my research was to explore the

statistical and computational thinking practices that might emerge when teachers were exposed

to new GUI-driven and code-driven tools for teaching probability simulations. I found that the

teachers were able to use different computational tools to engage with probability simulations
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and that the task and tools seemed to support them to successfully modify probability models

and interpret features of the data generated (cf. Pfannkuch & Budgett, 2016). I now discuss the

teachers’ emergent thinking practices and make tentative links between these results and my

task design framework.

Emergent thinking practices

One of the motivations for using the Fruity freezes situation was its familiarity to the teachers

in my study. However, when the teachers were introduced to using GUI-driven tools to model

the Fruity freezes situation, they did not always transfer their prior statistical understandings

and did not immediately recognise the need for the user to initiate some computer-automated

actions. Similar to Nilsson’s (2014) research, where students explored probability models by

selecting physical items from a bag, the teachers did not initially realise the need to sample with

replacement when they interacted with the first GUI-driven tool, the Simple Sampler tool. They

either assumed the tool would generate what was needed or admitted to not thinking about the

sampling situation. Additionally, the Fruity freezes situation is quite complex to model using

automation within computational tools, due to the stopping condition(s) for a trial. When the

teachers were introduced to new GUI-driven tools and asked to think about and describe what

was happening computationally in Phases 2 and 3 of the task (cf. Wild et al., 2017), they began

to appreciate the need for computers to be “told what to do.”

Although probability models are central to probability simulations, most of the teachers did not

refer to the word model in their discussions throughout the task, in direct contrast to the “cereal

box” example provided by Garfield et al. (2012). An explanation for the lack of reference to a

probability model could be the fact that the national exemplar task (Fruity freezes) did not use

the word model. My finding appears to give weight to the recommendation by Biehler and Schulte

(2017) that modelling needs to be added as a step to the PPDAC cycle. Even though probability

simulations are one of the oldest statistical modelling approaches taught at high school (e.g.,

Simon et al., 1976; Thomas & Moore, 1980), I propose that there is still much to learn about

how to support teachers to select and combine technology for teaching probability simulations.

My results indicate that national assessment tasks and tools can influence teachers’ perspectives

on probability simulations (cf. Sánchez, 2002) and that a modelling perspective on probability

and effective use of technology is needed (e.g., Kazak & Pratt, 2021). I have presented examples

of how both the features of the tools and tasks appeared to stimulate teacher thinking.

Furthermore, the repeated experiences with the same modelling steps across the tools appeared
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to support development of computational thinking. The teachers often made use of the

CODAP screenshots to support their reading of the R code presented in the later phases of

the task, behaviours that align with the assertion by Erickson et al. (2019) that the naming of

computational actions with data might help students move between GUI-driven and code-driven

tools. The readability of the R code appeared to further support teachers to connect the lines of

text to familiar computational actions and to successfully modify the code, which is consistent

with the findings of Ferreira et al. (2014). The identification of modelling steps that could

transfer across computational tools, and the modification of features of these tools to support

teachers to make connections between tools, were important and purposeful design decisions.

These design decisions align to three of the design considerations of my framework (Table 7.1):

the introduction of new knowledge (C1), the tools used (C3) and the level of computational

transparency (C4).

Task design framework

The design principles of my task design framework also explicated the construction of task phases.

Using the immerse (P1) principle, the first phase of the task engaged teachers with context

of collecting objects. All teachers discussed personal experiences with collecting, for example,

supermarket promotions or cereal cards. Unlike previous tasks implemented with teachers within

the larger study, contextual information was not used to guide model decisions in the task

(cf. Pfannkuch, 2011), and this may be due to the complexity of accounting for human decisions

within a probability modelling context.

In the second phase of the task, using the re-familiarise (P2) principle, the teachers were first

asked to discuss how they currently teach tasks like the Fruity freezes problem. The familiarity

of the teachers with the specific outcomes and associated probabilities for the probability model

and the two different “stopping” conditions for each trial did support them to engage with the

new ideas introduced later in the phase and in later phases in the task. Unlike previous tasks

implemented with the teachers in the larger study, however, there were no familiar computational

tools to use during this phase, and so this phase was also used to introduce and familiarise

teachers with two new GUI-driven tools: the Simple Sampler and CODAP. Although there were

some difficulties with the teachers learning how to use the tools, the struggle appeared to be

productive as it ensured key statistical modelling ideas were met before new computational ideas

were introduced.

The importance of being able to identify modelling steps was demonstrated in the third phase of
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the task, when the teachers were given screenshots from CODAP and asked to describe (P3) what

was happening statistically and/or computationally for each step. The teachers demonstrated

engagement with new computational ideas, for instance, recognising the sequence of steps and

calculations needed to determine when a trial ended. The complexity of modelling the “stopping”

conditions for a trial then became the focus for phases four and five of the task, and the teachers

were able to match (P4) and adapt (P5) the code provided to explore both the Fruity freezes

and Oh what a seed problems using a code-driven tool. Adapting the code to match the features

of the Oh what a seed problem, without changing data contexts (C2), provided support for the

teachers to integrate statistical and computational thinking.

Using the explore (P6) principle, the sixth and last phase of the task encouraged teachers

to explore changes to the code, with the expectation that new or unexpected outputs from

these adaptations would stimulate an integration of statistical and computational thinking. The

teachers successfully adapted the code provided to explore the “what if?” questions provided in

phase six of the task and demonstrated a growing awareness of how technology could automate

more of the statistical modelling process than is currently taught for probability simulations.

For instance, all teachers expressed wanting to be able to automate the production of data to

explore how the probability of winning a prize changed as the number of days ice blocks were

collected increased. When the teachers were challenged to develop the rules for prizes for a

new competition, they successfully integrated statistical and computational thinking to make

changes to the underlying probability model and conditions for stopping a trial, facilitated by

quick adaptations to their code, similar to the pair of teachers discussed in Chapter 4.

7.6.1 Summary

In this chapter, I have demonstrated how a task can be designed to support teachers to transition

to, and move between, GUI-driven and code-driven tools. My task used a six-phase approach to

introduce and consolidate the teachers’ interactions with the different computational tools. The

learning goal for the task was for teachers to use a code-driven tool and probability simulations to

develop a probability model that would inform the requirements for a fictional “card collecting”

competition. Combining different computational tools within the task is included in both the

design principles and design considerations of my framework, as well as the goal of the larger

study to adopt a data science perspective on teaching statistical modelling at the high school

level.
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My findings indicate that there is a need to build teacher confidence to move fluently between

and within digital tools and to develop their ability to choose and/or invent tools to enhance

student learning. My findings also highlight how a task might facilitate teachers to play with and

read code and explore “what if” probability modelling situations using code. I have elucidated

how teachers’ thinking about probability simulations might draw upon previous experience and

how different tools might stimulate thinking. Because a task influences how people think and

act and what concepts they develop, research is recommended on specific design features of

computational tools and associated tasks that support teacher and student learning for statistical

modelling at the high school level.

In this chapter, I explored the introduction of code-driven tools through a simulation-based

probability modelling task (Task 4) and demonstrated how the third iteration of my task design

framework was modified and aligned to this task. In Chapter 8, I present the final iteration of the

Introducing Code-driven Tools (ICT) task design framework and two hypothesised frameworks

to support assessment of integrated statistical and computational thinking.
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Chapter 8: The ICT task design framework

8.1 Introduction

Chapter 8 presents the final iteration of the Introducing Code-driven Tools (ICT) task design

framework, the result of a final reflection and retrospective analysis across the entire DBR

process (Figure 8.1) including the four tasks, which were presented in Chapters 4 to 7.

Figure 8.1: DBR process model (adapted from Hoadley and Campos, 2022, p. 212)

As a designer I used my prior experience and the research literature to ground and embody

the design of my tasks to introduce high school statistics teachers to code through statistical

modelling. “Although design research [DBR] typically applies to the gathering of information

that feeds into a creative process of design, design itself creates knowledge” (Hoadley & Campos,

2022, p. 210). Knowledge creation through design occurs through: (1) iterative reflections

whereby each iteration is documented by describing the essential characteristics of the design
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solution, which in this case is the development of ICT task design framework over Chapters 4

to 7; and (2) through a final reflection across the entire DBR process (Figure 8.1).

In Section 8.2, I return to the grounding phase of the DBR process to review relevant literature

to theorise about task design. In Section 8.3, I present the final iteration of my ICT task design

framework. The design principles and design processes are elaborated on and discussed in Section

8.4 through a reflection across all phases of the DBR process that “narrates design moves,

rationale, and other aspects of the design narrative” (Hoadley & Campos, 2022, p. 211) with

reference to task design and other literature. Because the ICT task design framework purports

to enable the integration of statistical and computational thinking, Section 8.5 presents two new

hypothesised frameworks that seem to capture integrated statistical and computational thinking

and support its assessment. The chapter concludes with a summary in Section 8.6.

8.2 Relevant theoretical perspectives on task design

To inform the final iteration of the ICT task design framework, I identified and reviewed

education research literature that provided relevant theoretical perspectives on how to design

statistical modelling tasks that introduce code-driven tools. Particular attention was given

to literature about teaching statistical modelling using computational tools or introducing

text-based computer programming to novices and that also substantively discussed theoretical

constructs and features of tasks. Based on this review, I selected three theoretical perspectives

on task design relevant to the ICT task design framework: instrumental genesis, the PRIMM

model for teaching computer programming, and purpose-first programming.

8.2.1 Instrumental genesis

When designing statistical modelling tasks that introduce new computational tools,

consideration is needed of how learners develop new conceptual-based and tool-based

understanding simultaneously (Madden, 2021; van Dijke-Droogers et al., 2021). Instrumental

genesis (Guin & Trouche, 1998), the process by which artefacts such as computational tools

become instruments for one’s use, is therefore a relevant perspective to explore. As summarised

by Pratt et al. (2006, p. 5), “the theory of instrumental genesis has explained how the individual

gives meaning to artefacts, turning them into instruments, and accommodates himself to those

instruments by inventing how they might be used” (cf. Artigue 2002; Trouche 2004). The design
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of a task may influence how a computational tool is used by the learner (Podworny & Biehler,

2014), and so in turn influences the instrumental genesis process.

According to Rabardel and Beguin (2005), a learner develops schema for using a particular tool

while they are using it to solve a problem. Each schema represents a different thinking practice or

behaviour for using the tool that connects tool actions with concepts. A pedagogical approach for

teaching statistical modelling from an instrumental genesis perspective could involve providing

students with a scheme for a particular tool to enable its use as an instrument. For instance,

Podworny and Biehler (2014) developed a worksheet that provided screenshots of TinkerPlots

elements arranged in the order that matched the modelling process. Text boxes were provided

for each element and students were asked to complete the boxes, thus assisting them to develop

their own schema. In a similar approach, van Dijke-Droogers et al. (2021) provided students with

a reference document that presented key elements of a simulation-based statistical modelling

approach. However, their document linked each element with a screenshot and description of

the TinkerPlots technique, as well as a description of the related conceptual understanding,

rather than students creating the descriptions themselves.

Both groups of researchers (Podworny & Biehler, 2014; van Dijke-Droogers et al., 2021)

conjectured that the use of worksheets or documents to support intertwining computational

techniques and statistical modelling ideas positively affected learning. Podworny & Biehler

(2014) found that the completed worksheets provided a useful document for students to reflect

on their approach, and van Dijke-Droogers et al. (2021) found that using the same reference

document across different modelling scenarios supported conceptual development. Different

computational tools place different cognitive demands on learners, and when combining different

types of tools, the transitions between these tools may impact their success with modelling

(Madden, 2018). TinkerPlots is a GUI-driven tool and learning is facilitated by a well-designed

dynamic interface, where learners can point, click, and use other gestures to visualise changes

to their data and models. The use of code-driven tools, where computational actions are

initiated using text commands, however, places different cognitive demands on learners. Thus,

theoretical perspectives related to introducing text-based computer programming to novices

need to be considered.
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8.2.2 The PRIMM model for teaching computer programming

The PRIMM model developed by Sentance et al. (2019) explicates a structured approach to

developing a learning task for computer programming, based on the learning actions Predict,

Run, Investigate, Modify, and Make. The PRIMM model provides a useful way to think

about designing a sequence of learning activities where reading code is the initial focus, an

approach that is consistent with longstanding research in computer science education (e.g., Van

Merrienboer & Krammer, 1987). PRIMM aligns with sociocultural approaches commonly used

within statistics and computer science education, where learning environments are designed

that stimulate students to construct knowledge and students are encouraged to discuss their

learning with others (e.g., Garfield & Ben-Zvi, 2009; Tenenberg & Knobelsdorf, 2014).

A task sequence designed using PRIMM would involve students working in small groups, being

given an example of code, and then asked to predict what the code will produce when executed

(run). After the code is run, the students are asked to discuss the results and compare these back

to their predictions. Students then investigate the code and what it produces, with a focus on

developing an understanding of abstraction and language. In the final phases, students modify

the provided code to explore related problems, with any scaffolding support gradually removed,

before being asked to solve a new problem that requires them to make their own code, drawing

on the approaches introduced in earlier phases of the task sequence.

Sentance et al. (2019) described how the development of the PRIMM model was influenced

by theories such as levels of abstraction (e.g., Perrenet et al., 2005), the abstraction transition

taxonomy (Cutts et al., 2012), and the block model (Schulte, 2008). These theories seek to explain

how learners develop an understanding of the syntax and semantics of code as they engage

with reading it. Relevant pedagogical considerations include focusing beginner programmers on

individual elements of the language such as keywords and statements (atoms), and on blocks

of code that accomplish a specific purpose (Schulte, 2008). Learners could also be supported to

transition across different levels of language in programming, such as English, computer science

speak, and code (Cutts et al., 2012) and could benefit by describing and reading code aloud

(e.g., Hermans et al., 2018).

Although the PRIMM model provides an important theoretical perspective on how to structure

and design a task sequence to support reading and understanding code, by itself it is insufficient

for designing tasks for statistical modelling. In relation to understanding code, Kaplan (2007,

p.6) stated: “Good notation reveals structure; bad notation obscures it. But no notation can
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be clear if you haven’t learned to read it and haven’t learned the concepts that underlie it.”

Learners cannot be expected to predict what code will produce within a statistical modelling

context if they have not yet had experiences with visualisations or other representations of

data or models. Additionally, the goal of a statistical modelling task is not to learn computer

programming. Emphasis is instead needed on how to design tasks that promote learning

that connects the statistical, computational, and contextual domains, and where students

are supported in purpose-driven construction and to appreciate the utility of the concepts

developed (Ainley et al., 2006).

8.2.3 Purpose-first programming

Cunningham (2021) proposed that learners who are introduced to computer programming within

non-computer-science subjects should be taught from a purpose-first perspective. In her research

with undergraduate students from a data-oriented programming course, Cunningham found

that novice programmers were often discouraged by tasks that required them to read code first,

in part because code tracing can require high cognitive load (Sweller et al., 1998), and also

because students perceive code reading tasks as having low value. Instead, the “purpose-first”

programming approach supports programming novices to learn common code patterns associated

with specific learning domains, by building on theories of programming plans (e.g., Soloway &

Woolf, 1980). Specifically, students are provided with plans that achieve particular goals, for

example web scraping.

Each “plan” consists of a chunk of code (the “frame”) and indicates which part of the code

can be changed (the “slots”). The contents of each “slot” are described using domain-specific

concepts, similar to the reference documents provided by van Dijke-Droogers et al. (2021) to

students when introducing TinkerPlots as a tool for statistical modelling. By providing all the

code needed but directing learners’ attention to the specific parts of the code that need to be

changed to accomplish a purpose, Cunningham argued that her approach provides “glass-box”

scaffolding (cf. Magana et al., 2011). In summary, the purpose-first pedagogical proposes that

learners do not need to focus on reading and understanding what every line of code means.

Initially, it is more important to embed the use of code within a task that is purposeful and

engages students, and that students perceive as being useful (cf. Ainley et al., 2006).
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8.3 Core aspects of the ICT task design framework

The purpose of the ICT task design framework is to provide practical guidance for data science

teachers at the senior high school level on how to introduce code-driven tools through statistical

modelling. The final iteration of the ICT task design framework is summarised in Figure 8.2.

Figure 8.2: Final iteration of the ICT task design framework

The three core aspects of the ICT task design framework are: learning foci (Table 8.1), design

principles (Table 8.2), and design considerations (Table 8.3).

8.3.1 Learning foci

To use the design framework to construct a task sequence that introduces a code-driven tool for

statistical modelling, the task designer needs to decide what data technologies and statistical

modelling approach will be used and determine the learning goal(s) (Table 8.1).
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Table 8.1: Learning foci for the ICT task design framework
Learning focus Task designer action

Data technologies (L1) Select data contexts that involve data technologies
Statistical modelling approach (L2) Identify key statistical modelling actions,

representations, and associated language
Learning goal(s) for task sequence
(L3)

Set learning goals that require students to create
computational products

These learning foci (L1 to L3) are reviewed and refined during the design of the task sequence

and finalised at the end of the construction process.

8.3.2 Design principles

The design principles (P1 to P6) are used to inform decisions about features of the learning

task sequence in terms of what learners will be asked or encouraged to do, and the chronological

order of these actions or experiences (Table 8.2).

Table 8.2: Design principles for the ICT task design framework

Design principle
Task design features (what students are
asked to do)

Immerse in data (P1) Participate in activities that promote engagement
with the data context and data technologies

Familiarise with key statistical modelling actions
(P2)

Carry out statistical modelling activities without
using code

Describe computational aspects of statistical
modelling process (P3)

Use words to describe key computational aspects
of statistical modelling actions

Match statistical modelling actions to code chunks
(P4)

Read and match lines/chunks of code with
statistical modelling actions

Adapt code chunks with slight modifications (P5) Identify aspects of code to change, in order to
carry out statistical modelling actions

Explore “what if?” changes to code (P6) Modify at least one aspect of provided code to
produce new or unexpected outputs

Task sequences can be designed using separate phases for each design principle, or several design

principles may be used within the same phase.
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8.3.3 Design considerations

Alongside the design principles, the construction of the task sequence is simultaneously guided

by four design considerations (C1 to C4) that inform broader decisions (Table 8.3).

Table 8.3: Design considerations for the ICT task design framework
Design consideration Task designer decision

Introduction of new knowledge (C1) Consider when and how much new knowledge is being
introduced within each phase of the task sequence

Data used (C2) Use one general data context and either one data source
that provides different variables or subsets, or closely
related data sources

Tools used (C3) Connect actions and representations when learners move
between different computational tools

Level of computational transparency
(C4)

Select or develop features of computational tools by
considering how obvious the computations performed by the
tool are to learners

With respect to computational tools, the immerse (P1) component of the task sequence can

utilise any tool, the familiarise (P2) and describe (P3) components should utilise unplugged or

GUI-driven tools, and the match (P4), adapt (p5), and explore (P6) components should utilise

code-driven tools.

8.4 Development of the ICT task design framework

The task design framework was developed a posteriori rather than a priori. Given the focus

on introducing a specific tool for a specific domain of data science, the task design framework

can be described as a domain-specific learning theory (diSessa & Cobb, 2004). The design

framework is grounded on teaching as craft knowledge (Watson & Ohtani, 2015) and was

developed using a design-based research approach. I created and implemented a sequence of four

statistical modelling tasks to introduce high school statistics teachers to code-driven tools. The

tasks involved four different types of statistical modelling: classification modelling, predictive

modelling, randomisation tests (simulation-based inference), and probability modelling

(probability simulation). The tasks were informed by three initial guidelines I developed, which

in turn were based on a review of relevant literature and my years of experience designing

activities for statistics teaching and assessment. These three guidelines were:
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• Guideline 1: Data science tasks that introduce code-driven tools should be based on

structured statistical modelling activities

• Guideline 2: Data science tasks that introduce code-driven tools should explicitly support

learners to integrate statistical and computational thinking

• Guideline 3: Data science tasks that introduce code-driven tools should connect unplugged

or GUI-driven tool-based modelling actions with code-driven tool-based modelling actions

After implementing the four tasks with high school statistics teachers during professional

development workshops, I used four iterations of retrospective analysis to develop and refine

the task design framework. Chapters 4, 5, 6 and 7 provide details about the four tasks created

and their alignment to three iterations of the ICT task design framework. As the designer, I

now summarise my final reflections and retrospective analysis across the entire DBR process

(Figure 8.1) on the key analytical actions made at each iteration of the ICT task design

framework to provide a design narrative (Hoadley & Campos, 2022). The narrative is linked

to the literature, incorporating aspects of research and theoretical perspectives from across

statistics, mathematics, and computer science education.

8.4.1 First iteration

The first iteration of the ICT task design framework was developed using the randomisation

test task (Task 3, Chapter 4). An underlying assumption of the randomisation test task was

that teachers were familiar with relevant statistical ideas and associated visualisations and

had used unplugged activities such as shuffling cards or flipping coins to build ideas of null

models and simulation-based inference before completing this task. I focused on describing how

the learning in the six phases of the task was scaffolded towards using a code-driven tool for

statistical modelling and what features I intentionally included in the task to support and

develop statistical and computational thinking. The rich descriptions of each phase of the task

and robust conversations with the wider research team (my PhD supervisors) (cf. McKenney &

Reeves, 2018) led to the initial names and characterisations of six design principles: immerse,

re-familiarise, describe, match, re-use, and explore. Figure 8.3 summarises the first iteration of

the task design framework.
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Figure 8.3: First iteration of the task design framework

Figure 8.3 illustrates how each phase of the task was aligned with one design principle

(cf. Sentance et al., 2019) and one type of tool (unplugged, GUI-driven, or code-driven). I

initially conjectured that the thinking across the phases of the task should follow a sequence of

statistical (Phases 1 & 2), computational (Phases 3 & 4), to an integration of the statistical and

computational (Phases 5 & 6). For this iteration, I conceived of statistical and computational

thinking as two dimensional, where phases that focused on statistical thinking could be

illustrated as horizontal movement and phases that focused on computational thinking

could be illustrated as vertical movement. Phases that focused on integrating statistical and

computational thinking could be illustrated as diagonal movement, with flexibility as to the

angle of the movement which represents the weighting of each type of thinking.

With a focus on developing statistical and computational thinking, Figure 8.3 explicates the

design of the randomisation test task. Phases 1 and 2 aimed to support statistical thinking

and focused on immersing teachers in the data context for the modelling and carrying out

the randomisation test using familiar computational tools, building awareness of relevant

statistical and computational aspects of the modelling task. Phases 3 and 4 aimed to support

computational thinking and draw teachers’ attention and thinking to the computational aspects

of the modelling. These phases introduced code as a tool for articulating modelling actions

and encouraged teachers’ to connect familiar statistical modelling actions and visualisations

with the “words” used in the code provided (cf. Clark & Paivio). Phases 5 and 6 attempted
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to simultaneously develop statistical and computational thinking by providing teachers with a

new problem/data scenario and a modelling challenge to create test statistics, both of which

required teachers to explore model production using a code-driven tool (cf. Lee et al., 2011).

Although the structured approach of using phases that aligned to design principles (cf. Sentance

et al., 2019) captured core features of the randomisation task, it did not explicate other

important design decisions. Three design considerations I made during the task design process

included: how to introduce new knowledge (C1), what data to use (C3), and how much to

reveal about the computational process using code (C4). Statistical modelling tasks that

introduce code-driven tools can draw on a range of statistical, computational, context-related,

data-related, and tool-related knowledge, many of which may be new to learners, and so I

had to think carefully about what specific new knowledge to introduce in the task and when

(C1). To minimise cognitive load (Sweller et al., 1998), I conjectured that each phase of the

task should focus on the use of one tool and should introduce at most one new knowledge

(cf. Wouters et al., 2008). Similarly, it appeared to be important that I had selected two data

sets with the same data context (C3) (cf. Patel, 2021). Both data sets were from experiments

involving the estimation of heights and the possible impact of considering values that were too

high or low first, but the data sets had different properties that could be exploited to stimulate

both statistical and computational thinking.

For the teachers to be able to describe and match computational steps between a GUI-driven

tool and a code-driven tool, I had to make decisions about the specific code that would be used. I

considered how the code could be written in a way that would make sense to teachers with little

experience with using code for statistical modelling and prioritised readability (cf. Wickham,

2018). This part of the design process took a considerable amount of time and deliberation, and

I finally decided to use the key modelling steps provided by the GUI-driven tool VIT online as

the basis for code syntax decisions. As each computational step identified could be represented in

many different ways using code, I identified that the task designer would need to decide the level

of computational transparency (C4) that should be used across the learning task (cf. Kaplan,

2007). For example, I decided to create additional functions to the ones provided by the infer R

package (Bray et al., 2018), as it was important to me that the teachers could see the calculation

of the test statistic expressed with code and create their own test statistics, rather than use a

function that hid the calculation and limited what test statistics could be used (cf. Hesterberg,

1998).
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8.4.2 Second iteration

The predictive modelling task (Task 2, Chapter 5) was used to develop the second iteration

of the ICT task design framework. An evaluation of the classification modelling task (Task 1,

Chapter 6) confirmed that the second iteration was also applicable. As both tasks used statistical

modelling approaches that were not currently assessed in senior high school statistics classes

within Aotearoa New Zealand, there were some key differences between the design of these

two tasks and the randomisation test task (Task 3). Unlike Task 3 where the teachers were

familiar with a GUI-driven tool for conducting a randomisation test, there were no familiar

tools for teachers to use to develop models that generated prediction intervals or models that

classified photos using a single numeric-based decision rule. The predictive modelling task

only used a code-driven tool, and the classification modelling task used “unplugged” tools

alongside code-driven tools. Consequently, the design principle that was formerly described as

“re-familiarise with GUI-driven tool” was re-written as “re-familiarise with statistical modelling

ideas”, to remove the dependency on the existence, and familiarity with, GUI-driven tools.

A new design consideration was also added to the task design framework called tools used

(C3), to draw attention to the need to consider how to combine different tools for statistical

modelling (unplugged, code-driven, GUI-driven) and connect actions or representations between

tools within the task (cf. Erickson et al., 2019).

The teachers’ unfamiliarity with the modelling approaches required me to think differently about

the design of the tasks with respect to how code-driven tools were introduced. For both tasks

I used informal approaches to prediction and classification modelling, drawing on features of

several MEA tasks from the CATALST project (Zieffler et al., 2019) and relevant principles of

informal inferential reasoning (Zieffler et al., 2008). For the predictive modelling task (Task 2),

teachers were asked to develop the error component of their model based on a visual assessment

of a scatter plot rather than using formulae. Similarly, for the classification modelling task (Task

1), teachers were asked to develop a simple decision rule based on reasoning with visualisations

of numeric distributions rather than using a formal algorithm. Reflections on the nature of

the statistical modelling approach led me to identify that although the first three tasks had

differences, a commonality was that all three tasks culminated in producing or creating “new”

models (cf. Lesh et al., 2000), and that the learning goal was implicit in my task design decisions.

These reflections on the similarities and differences in task design decisions led to the addition

of two additional components to the task design framework: statistical modelling approach (L2);

and learning goals for the task (L3).
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Another key difference was the source of the data used for the tasks. For the randomisation

test, the data was supplied as a rectangular data set, a CSV (Comma Separated Values)

file, where each row was a different participant, and each column was a different variable.

However, for the predictive modelling task, the data was sourced dynamically from an API

(Application Programming Interface) and for the classification modelling task, the data was

sourced by processing the digital image data of grayscale photos. For both the prediction and

classification modelling tasks, I had to consider how to introduce and familiarise teachers with

these new sources and structures of data and identified that the immerse phase of the task

needed to support teachers to understand both the data context and associated data technologies

(Wilkerson & Laina, 2018). These considerations resulted in use of specific task design features

such as tinker questions (see Chapter 5, Section 2.4). Looking back across Tasks 1 to 3, I also

realised that this tinkering approach of changing something and seeing what happens was the

driver for later phases of all the tasks, and so the principle, which was formerly described as

“re-use code chunks with slight modifications”, was re-written as “adapt code chunks with slight

modifications.”

8.4.3 Third iteration

The probability modelling task (Task 4, Chapter 7) was the last task implemented with teachers

and was used to develop the third iteration of the ICT task design framework. The probability

modelling task was designed after the results of the first three tasks were reviewed and the first

iteration of the design framework was completed. Only small changes were made to two of the

design considerations, which indicates a high level of reusability. In the previous iterations of the

framework, the data used (C2) design consideration referred to “sets of data”. However, a review

of the use of data across all four tasks highlighted that the data could be sourced dynamically, for

example from APIs (Application Programming Interfaces), as well as from probability models.

Therefore, the data used (C2) design consideration was changed to refer to “sources of data.” The

level of computational transparency (C4) design consideration in previous iterations of the design

framework did not explicate the potential need to select or develop features of computational

tools (cf. Biehler, 1997a). This directive was added, as I needed to modify the interface of the

GUI-driven tool (CODAP) and develop new functions for a code-driven tool, to support teachers

to move between multiple computational tools in the same task sequence (cf. Madden, 2018).

Although the changes to the task design framework were minimal, I found the process of creating

the probability modelling task challenging. High school statistics teachers in Aotearoa New
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Zealand are not expected to use computational tools for assessing simulation-based probability

modelling, and existing tasks for teaching and assessing simulation-based probability modelling

do not use modelling language. Additionally, the Fruity freezes task that I based Task 4 on

involved a relatively complex probability model with respect to automation with computational

tools. To scaffold teachers’ learning towards using code-driven tools to carry out probability

simulations, therefore, required greater attention to the co-development of concepts and tool

knowledge (cf. Doerr & Pratt, 2008). Consequently, I created a new GUI-driven tool, called the

Simple sampler (see Figure 7.1, Chapter 7) for the specific purpose of highlighting key modelling

actions and associating these with the necessary modelling language (cf. Son et al., 2021). In

this way, the third iteration of the ICT task design framework captured my considerations

and reciprocally strengthened the components of the framework that emphasise computational

transparency (C4) and connecting actions or representations between tools within the task

(C3).

8.4.4 Final iteration

The fourth and final iteration of the task design framework involved re-examining all four tasks

for their alignment to the task design framework and considering integrated statistical and

computational thinking practices. The main changes made to the framework in this iteration

were: the addition of data technologies (L1) and the visual presentation of the framework

(Figure 8.2).

In earlier iterations of the task design framework, the immerse phases of the tasks were aligned

to activities that familiarised the teachers with the data context, which included any associated

data technologies. Based on further analysis and reflection across all four tasks and consideration

of my proposed frameworks for integrated statistical and computational thinking (see Section

8.5), I identified that there were two different uses of data within the tasks. The data used (C2)

needs to provide one general data context for the task and be either one data source that provides

different variables or subsets, or two closely related data sources (cf. Lee et al., 2016). In the

predictive modelling and classification modelling tasks (Task 1 and 2), however, the use of data

technologies such as APIs served a greater purpose than the development of statistical modelling

ideas. The use of data technologies also supported thinking about the computational nature of

the data and supported a broader data science goal of building greater awareness of nature and

diversity of data (cf. Gould, 2010). This distinction between data context and data technologies

appeared important, and so a third learning focus was added to the ICT task design framework
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called data technologies (L1). The learning foci aspect of the task design framework was also

strengthened by explicating the actions that the task designer should take when creating the

task.

The final iteration of the ICT task design framework is summarised in Figure 8.2. Visually, the

three core aspects of learning foci, design principles and design considerations are presented as

three “layers” of the task design process. The new visual presentation of the ICT task design

framework also provides guidance as to how these three “layers” are connected to each other, by

the horizontal position of the components of the framework and the addition of lines showing

key connections between components (cf. Fries et al., 2021). Smaller changes included changing

the description of the second design principle (P2) from “re-familiarise with statistical modelling

ideas” to “familiarise with key statistical modelling actions”, to acknowledge that the statistical

modelling approach might be new to learners. The subtle change from “ideas” to “actions” was

to further reinforce the need to identify the key statistical modelling actions that would be

translated to computational actions across the task sequence (cf. Woodard & Lee, 2021). Lastly,

the ICT task design framework refers to a task sequence rather than a task to acknowledge that

a series of connected tasks are needed.

When comparing the final iteration of the ICT task design framework against the three selected

perspectives on task design (Section 8.2), the main similarities to the PRIMM framework

(Sentance et al., 2019) is the structured step by step approach in the middle layer, P1 to P6,

the naming of design principles and the attention to readability of code and code language

development (C4). Instrumental genesis theory (e.g., Artigue, 2002) is most closely associated

with the bottom layer, namely the tools used (C3), and the connections between the tools used

and learners, illustrated in the connection of C3 to the unplugged and/or GUI-driven approach

and code-driven approach, which in turn are connected to their respective design principles.

Purpose-first programming (Cunningham, 2021) is about introducing learners to code, without

the goal of turning students into programmers. With the focus on what code can do rather than

on how code works and creating code for a purpose, purpose-first programming aligns with the

setting of learning goals for task sequence (L3) that require students to create computational

products, which is in the top layer of the ICT task design framework.

The ICT task design framework (Figure 8.2) embodies a theory about how to design a task

sequence for introducing code-driven tools through statistical modelling. My final design

narrative for the reflecting phase of the DBR process (Figure 8.1) included more theorising

from the grounding phase, more reflection on how I created the tasks for the embodying phase,
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and more analysis across the four tasks in the iterating phase, which have resulted in my final

account of the design principles and design processes. However, because the underlying premise

of the ICT task design framework is that tasks that introduce code-driven tools should explicitly

support learners to integrate statistical and computational thinking (see Guideline 2, Section

8.4, and Figure 8.3), and there is limited research on how to recognise, define and assess it, two

new hypotheses arose from the reflecting phase, which are presented in the next section.

8.5 Assessing integrated statistical and computational thinking

For data science students to access modern data and associated technologies, students may need

to learn new computational skills (Gould, 2015; Nolan & Temple Lang, 2010; Toews, 2016).

Two broad uses of computational tools include: accessing and creating data; and developing

statistical products, such as models and visualisations (See Chapter 2, Section 2.2). Statistical

modelling tasks that introduce code-driven tools could provide an excellent learning situation

for developing and assessing integrated statistical and computational thinking (cf. Wickham,

2010), as according to Lee et al. (2011) computational thinking requires analysis, abstraction,

and automation. For data science to be taught as a subject at the senior high school level, not

only do curricula need to provide opportunities for students to integrate computational and

statistical thinking (e.g., De Veaux et al., 2017; NASEM, 2018), but also need to give clear

guidelines and examples to support the assessment of integrated statistical and computational

thinking (Gould, 2021).

It is difficult to find examples from statistics education research literature that specifically

explain how to assess integrated statistical and computational thinking. Woodard and Lee

(2021) explored tertiary-level statistics students’ actions as they used code-driven tools to

explore statistical problems. To assess the students’ computing actions, Woodard and Lee

developed the statistical computing framework which comprised four categories: (1) automation

of computational procedures, (2) computational thinking, (3) utilising new methods, and

(4) pattern recognition and decision making. A useful feature of their framework is that

they combine statistical and computational aspects with respect to observable actions. An

example is the automation of computational procedures category, where Woodard and Lee

specify that students should be able to “use the technology to efficiently create graphs or

summaries to make sense of the data, and to perform statistical calculations and use the results

to make appropriate statistical decisions, without overloading cognitive processes” (p. S146).
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Computational thinking is presented as a different category from automation (cf. Lee et al., 2011)

and pattern recognition, and requires students to “create a solution strategy and communicate

that strategy to the computer software, demonstrate critical or abstract thinking about a

concept that the technology presents, revise code that has been provided to them, to perform a

new task” (p. S146).

Practical examples of assessment criteria also offer some insights into how to identify integrated

statistical and computational thinking in student work. In a paper about using visualisation to

teach data analysis and programming, Wickham (2010) provided two rubrics for grading student

work. The first rubric was used to assess data analysis tasks and has three criteria: curiosity,

scepticism, and organisation. Notably, curiosity and scepticism are also two dispositions of

Wild & Pfannkuch’s (1999) framework for statistical thinking. The second rubric was used to

assess computer programming tasks and had three criteria that focused on the code submitted:

planning, execution, and clarity. The rubrics provide guidance for assessing statistical and

computational thinking independently, however, the computational tools are assumed to

be code-driven ones. The assessment-related examples provided by Wickham (2010) and

Woodard and Lee (2021) highlight the difficulty in trying to define integrated statistical and

computational thinking. If statistical computing is viewed exclusively through the perspective

of using code-driven tools, then computational thinking can be incorrectly equated with using

a code-driven tool (cf. Repenning et al., 2010), with too much emphasis placed on reading

or writing code. Instead, the goal for using any computational tool for statistical modelling,

including code-driven ones, is “not to produce technological sophistication per se, but rather

access to a mode of thought” (Toews, 2016, p. 713).

As the implementation of data science at the senior high school level may involve GUI-driven

tools, guidance for assessing integrated statistical and computational thinking should be tool

agnostic. For instance, Erickson et al. (2019) defined data moves as “a set of actions made possible

by a broad class of emerging digital tools designed to facilitate the manipulation and analysis

of large, complex datasets” (p. 2). Similar to Woodard and Lee (2021), data moves are framed

in terms of computational actions, for example, filtering, grouping, summarising, calculating,

merging/joining, and making hierarchy. What is needed to assess the integration of statistical

and computational thinking, however, is a conceptual framework that supports the identifying

and connecting of knowledge and skills from both the statistical and computational domains

(cf. Gould et al., 2018). In Chapter 2, Section 2.2, I reviewed statistical and computational

thinking frameworks and posited that it may be useful to interpret “integrated” as connected
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rather than combined. From this perspective, I hypothesised two frameworks to show how I

assessed the integration of statistical and computational thinking by characterising different

connections between the context, statistical, and computational spheres when undertaking

statistical modelling (cf. Stigler & Son, 2018) — the shuttling between spheres framework, and

the observable integrated statistical and computational thinking practices framework — which

are now discussed.

8.5.1 Two hypothesised frameworks to support assessment of integrated statistical
and computational thinking

To explain my characterisation of the integration of statistical and computational thinking,

I created a framework based on the notion of shuttling between contextual, statistical, and

computational spheres (Figure 8.4).

Figure 8.4: Shuttling between spheres framework (adapted from Wild and Pfannkuch, 1999,
p. 228)

The shuttling between spheres framework draws heavily on the work of Wild and Pfannkuch

(1999). The framework theorises that to identify the thinking practices of learners, one should

analyse sequences of actions in terms of how learners move between spheres, rather than

describing thinking based on observing individual computing actions in students’ statistical

work (cf. Woodard & Lee, 2021). The framework incorporates humanistic perspectives related to
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computational product design (e.g., Brennan & Resnick, 2012) to characterise shuttling between

the contextual sphere and the computational sphere. I identified that the interplay between the

contextual and the computational represented new ways of thinking about statistical modelling

that were not explicitly captured by the proposed interplay between the contextual and

statistical spheres (cf. Wild & Pfannkuch, 1999). Focusing on locating and connecting students

thinking within and between statistical and computational spheres also aligns with emerging

research involving high school students using code-driven tools for statistical modelling. Thoma

et al. (2018) found that learners often framed problems as either statistical or computational,

and struggled to make connections between their knowledge of the computational tool and their

knowledge of statistics (cf. Woodard & Lee, 2021).

These considerations led to the six questions that have been added as annotations for each of

the six shuttles on Figure 8.4, with each question deliberately written from the perspective of a

learner. I found that the complexity of describing the integration of statistical and computational

thinking could be partially reduced by exploring two key questions: (1) In what ways do

computational approaches support the development of statistical thinking? (2) In what ways

does using data support the development of computational thinking? (cf. Gelman & Nolan, 2017).

In Chapters 4 to 7, I presented examples of the teachers’ observed thinking practices during their

engagement with four different tasks. Using Figure 8.4 and existing theoretical perspectives for

statistical and computational thinking (see Chapter 2, Section 2.3), I compared and contrasted

the thinking practices across the tasks to identify eight observable thinking integrated statistical

and computational thinking practices (Table 8.4) that appeared to align with shuttling between

the statistical and computational spheres. These thinking practices included what was observed

in the teachers’ actions and discussions, and what was not observed, that is, cases where a

thinking practice could have been advantageous. I also considered my expectations and intentions

as the task designer for the nature of thinking that could be supported or stimulated by different

task features.
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Table 8.4: Observable integrated statistical and computational thinking practices framework
Observable thinking practice Example from research tasks

Connecting features of visualisations with
statistical model components expressed
computationally (OTP1)

Linking the band visualised around the fitted line
to the line of code that determined the error
component of the prediction model that generated
prediction intervals (predictive modelling task)

Articulating a sequence of statistical modelling
actions in computational terms (OTP2)

Describing the computational aspects of each
modelling step using natural language, to match
the computational actions captured in the
screenshots from VIT online (randomisation test
task)

Automating statistical modelling actions
effectively using computational tools (OTP3)

Copying and adapting the given code for a
probability simulation to explore the Oh what a
seed problem situation and successfully producing
a viable model for the card collecting promotion
(probability modelling task)

Tinkering with statistical models productively to
develop generalisations (OTP4)

Exploring new test statistics by changing aspects
of the code for the model, leading to
generalisations about the relationship between the
features of the sample data, the test statistic, and
the re-randomisation distribution (randomisation
test task)

Restructuring or manipulating data for a
statistical modelling purpose (OTP5)

Recognising the hierarchal nature of the data
generated from the probability simulation and
how it was represented in the computational tools
(probability modelling task)

Developing algorithms by analysing data and
selecting relevant variables (OTP6)

Developing a decision rule to classify grayscale
photos as high contrast or low contrast by
determining what features of the grayscale data to
use for each photo and what “cut off” value to use
(classification modelling task)

Obtaining data from digital sources and using
data strategically to develop models (OTP7)

Sourcing data from the OMDb by using code to
making queries to the API, then using the data
from one query for training and the data from
another query for testing (predictive modelling)

Considering uncertainty and generalisability when
using models as computational products (OTP8)

Discussing how random samples of pixels were
being used to create the grayscale distributions for
photos and the impact of this on model developed,
specifically the decision rule (classification
modelling)

Each observable thinking practice in Table 8.4 connects knowledge or use of data, models, and

computational tools and is illustrated using one example from the research tasks. A general

characteristic for each observable thinking practice is that the learner needs to draw on aspects

of analysis, abstraction, and automation, the three core aspects of computational thinking
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according to Lee et al. (2011). Each observable thinking practice also demonstrates the need

to shuttle between spheres, namely the statistical and computational spheres. Consequently, the

observable integrated statistical and computational thinking practices framework provides a

guide for assessing integrated statistical and computational thinking, and some guidance for

designing data science learning tasks. From a practical teaching perspective, it is difficult to

strike the right balance between too general and too specific assessment criteria. A limitation of

my Table 8.4 framework is that it is over-fitted to the teaching context of statistical modelling,

and hence focuses on connections between the statistical and computational spheres based on

data and models. Nonetheless, the observable integrated statistical and computational thinking

practices framework alongside the ICT task design framework could provide useful support to

data science teachers at the senior high school level to create statistical modelling tasks that

introduce code-driven tools.

8.6 Summary

Knowledge creation through design is a bricolage (Gravemeijer, 1994), as it is practice based,

drawing on all available means such as experience, other research, experimentation, trialling,

learning and critical reflection. From this perspective, I have presented an explication of how to

design tasks to introduce students to code through statistical modelling and a visualisation of

that design in the ICT task design framework (Figure 8.2). Furthermore, I have articulated a

possible way of conceiving and assessing the integration of statistical and computational thinking

(Figure 8.4 and Table 8.4). Chapter 9 concludes this research project by answering the research

questions, and by discussing limitations of the research and recommendations for practice and

future research.
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Chapter 9: Summing up and looking forward

9.1 Introduction

In Chapter 1, I explained that my motivation for this study was the realisation that I needed

to rethink my task design approach when using data students interact with in their daily lives

(Gould, 2015) and that the design would require thinking about how to integrate statistical

and computational thinking. The lack of literature on how to create effective tasks for teaching

statistics using programming and the need for me to explicate and communicate the design

principles and considerations underpinning my tasks, led me to undertake this research project.

Hence, within the context of teaching statistical modelling at high school, I have explored,

produced, and articulated an ICT task design framework, hypothesised two Integrated Statistical

and Computational Thinking (ISCT) frameworks, and provided evidence that the tasks seemed

to help the teachers to integrate statistical and computational thinking.

Chapter 9 provides my final reflections on the research questions in Section 9.2 including my

contributions to the research knowledge base, acknowledges the limitations of my research in

Section 9.3, and discusses implications for teaching and research in Section 9.4. The chapter

finishes with concluding remarks in Section 9.5.

9.2 Final reflections on research questions

The final reflections on my two research questions consider the study objectives and point out

how my research has added to and confirmed existing research and provided new contributions

to the statistics and data science education research knowledge base.
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9.2.1 What observable thinking practices emerge as teachers, positioned as
learners, engage with statistical modelling tasks that introduce code-driven
tools?

The first objective for this study was to describe the observable thinking practices that emerge

when teachers completed tasks that introduced code-driven tools within the teaching and

learning context of statistical modelling. Supporting research questions for this objective

were: Can these observable thinking practices be characterised as integrating statistical and

computational thinking? and if so, What features of the tasks appear to stimulate or support the

integration of statistical and computational thinking? As the teachers in the study were familiar

with high school level statistics, I explored what new thinking practices emerged due to the

contextual and practical computational demands of the statistical modelling tasks.

The introduction of code-driven tools through statistical modelling appeared to provide a solid

basis for stimulating the integration of statistical and computational thinking. Modelling is

core to both statistical and computational thinking, however, statistical models are not always

viewed as computational products within existing statistical modelling tasks or statistical enquiry

frameworks (cf. Wild & Pfannkuch, 1999). In this research, the four tasks presented statistical

models as computational products that could be developed, tested, and used “in production”,

which appeared to support the development of computational thinking by simultaneously

drawing on abstraction, automation, and analysis (Lee et al., 2011). For example, abstraction

was demonstrated by the teachers’ development of and generalisations about their models,

automation was demonstrated by the teachers’ engagement with the code representations of

their models, and analysis was demonstrated by the teachers’ interpretation of the features of

data used to create their models or produced from their models.

Statistical thinking requires learners to understand that data are numbers with context (Cobb

& Moore, 1997) and thus humanistic perspectives of model outputs are needed that account

for contextual implications. Involving teachers in the creation or manipulation of data used for

modelling appeared to support their humanistic thinking (cf. Lee et al., 2021), as the teachers

often needed to connect features they perceived as humans, to features of the data, and then to

computer extractable features (cf. Horton et al., 2021). These human-driven decisions sometimes

led to uncertainty with the modelling process, and my findings include examples of the teachers

grappling with the differences between how humans and computers make decisions (cf. Biehler

& Fleisher, 2021). I also found that the context did at times distract the teachers from forming

more general ideas about statistical models (cf. Pfannkuch, 2011; Zieffler et al., 2021), and at
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other times the teachers’ consideration of contextual knowledge needed to be suppressed while

they engaged with the underlying structure and properties of the particular statistical model

being explored (cf. Cobb, 1997). Teachers were often frustrated when they knew what they

wanted the computer to do statistically but didn’t know how to make the associated modelling

action happen using code (cf. Woodard & Lee, 2021).

To understand and assess the observable thinking practices of the teachers, I developed two

hypothesised ISCT frameworks based on the notion of integration as connection and by

extending Wild and Pfannkuch’s (1999) metaphor of shuttling between spheres to include the

computational sphere (Figure 8.4). The observable integrated statistical and computational

thinking practices framework (Table 8.4) provides characterisations of eight integrated statistical

and computational thinking practices illustrated with examples from the teachers’ interactions

with the tasks used in this research. I found that specific task design features appeared to

support the teachers to integrate statistical and computational thinking. For instance, using

web-based tasks that comprised a sequence of steps that carefully ordered the introduction of

new statistical and computational ideas appeared to minimise cognitive load (cf. Wouters et al.,

2008). The use of small chunks of code that only required small modifications allowed teachers

to engage with new computational ideas such as creating scatterplots, similar to the findings of

Wiedemann et al. (2020). The design and use of tinker questions also appeared to support the

introduction of new computational ideas and the development of data habits of mind (cf. Finzer,

2013) as they provided guidance for noticing and considering selected features of computational

representations or actions.

I have characterised the integration of statistical and computational thinking through observable

thinking practices and identified features of the tasks that seemed to support integration, both

of which contribute to a better understanding of how to recognise, design for and assess the

integration of statistical and computational thinking.

9.2.2 What design principles could guide the construction of statistical modelling
tasks that introduce code-driven tools?

The second objective for this study was to develop a task design framework, comprising a

cohesive set of design principles and processes, to guide construction of statistical modelling

tasks that introduce code-driven tools. Supporting research questions for this objective were:

How could tasks be constructed to support the introduction of new sources of data and modelling
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approaches, simultaneously with new code-driven tools? and, Does using familiar computational

tools or modelling approaches within the same task support the introduction of new code-driven

tools? Given that teachers were familiar with existing statistical pedagogical approaches involving

technology, I explored what changes to the task design process were needed to create statistical

modelling tasks that introduced coding.

Two core threads through the task design principles and processes presented in the ICT task

design framework (Figure 8.2) are: (1) extend the familiar into the unfamiliar (e.g., Biehler &

Schulte, 2017) and; (2) use the informal before the formal (e.g., Gravemeijer, 2004). Both threads

have been explored substantially in the statistics education research literature and their relevance

for the construction of data science tasks has now been demonstrated in my research (cf. Gould,

2021). The statistical modelling tasks I created used teachers’ familiarity with numeric data

distributions, probability simulations, simple linear regression, and randomisation (permutation)

tests as a basis for introducing new contextual and practical computational ideas. The tasks share

similar properties to MEAs (cf. Garfield et al., 2010) and model development sequences (cf. Lee

et al., 2016), by using a structured approach that combines guided discovery and instruction

(cf. Grover et al., 2015). My findings also build on statistics education research that shows the

benefit of using of unplugged activities before computational tools for statistical modelling (e.g.,

Chance et al., 2004; Zhang et al., 2021) and encouraging informal model-based reasoning (e.g.,

Makar & Rubin, 2018; Zieffler et al., 2008).

I found that the use of data technology contexts appeared to stimulate thinking about new

computational approaches (cf. Hicks & Irizarry, 2018). Accessing dynamic movie ratings data,

for example, provided a rich computational context to support the teachers’ development of

predictive modelling ideas (cf. Weiland, 2016) without distracting them from core statistical

concepts (cf. Bargagliotti & Groth, 2016). Setting the statistical modelling task within a modern

data technology context and structuring a task sequence towards an end goal of creating a

statistical model as a computational product appeared to help teachers appreciate both the

purpose and utility of their learning (cf. Ainley et al., 2006). My task design approach has

similarities to the purpose-first approach (Cunningham, 2021), the structured task approach

employed by the PRIMM model (Sentance et al., 2019), and the use of “computational templates”

to introduce code to statistics students (e.g., Finch et al., 2021; Hardin, 2018; Grolemund &

Wickham, 2014; Wickham, 2010). However, one important contribution of my research is the

explication of the task design process that led to the creation and use of the computational

templates within a statistical modelling task sequence.
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The ICT task design framework I created combines and extends previous research in statistics

and computer science education and provides new pedagogical theories. I have explicated the

need to: identify the modelling actions or steps that could transfer across computational tools;

create adaptable code chunks that represented each modelling action; consider the computational

transparency of the modelling action when enacted by a computational tool; and connect each

modelling action across the different computational tools used in the task sequence, both visually

and textually. In my findings, I have presented instances where the teachers did not immediately

recognise the need for the user to initiate some computer-automated actions, but when asked

to think about and describe what was happening computationally (cf. Wild et al., 2017), were

able to appreciate the need for computers to be “told what to do.” I have reported how some

teachers continued to refer to visual representations embodied in physical stimuli and GUI-driven

tools to support their reading of the R code presented, highlighting the need to consider how

well-designed GUI-driven tools can support the informal and open exploration of data and

models (e.g., Ben-Zvi, 2000; Wild, 2018) before moving to code-driven tools.

I have provided examples of how the readability of the R code appeared to support teachers to

connect computational actions with code (cf. Ferreira et al., 2014; Kaplan, 2007), strengthening

my assertion that computational transparency is a new but important consideration in task

design (cf. Hesterberg, 1998; Burr et al., 2021). In alignment with Son et al. (2021), the use of

R code in the task appeared to be germane load (Sweller et al., 1998), potentially because

the computations represented by the code were familiar to the teachers. The focus on the

language of modelling, specifically on words that can connect modelling actions across different

computational tools, aligns with computer science education research regarding reading and

verbalising code (e.g., Hermans et al., 2018; Van Merrienboer & Krammer, 1987), and the naming

of computational actions with data (cf. data moves, Erickson et al., 2019). The relationship

between computational tools, task design and learners’ statistical conceptions is complex (e.g.,

Biehler, 1997b; delMas, 1997; Doerr & Pratt, 2008) and my research contributes to a greater

understanding of how learners could simultaneously develop conceptual-based and tool-based

understanding (cf. Artigue, 2002).

9.3 Limitations

As this was a small exploratory study involving ten high school statistics teachers, the findings

from these learners cannot be generalised to all high school statistics teachers. There are further
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limitations to the applicability of the findings of my research for the following reasons.

First, high school statistics teachers were used as participants for the study, rather than senior

high school students. As computer programming is not required as part of the New Zealand

school curriculum for statistics, it was not feasible to implement the tasks I had designed within

senior high school statistics classrooms. Therefore, I focused my research on high school statistics

teachers, and positioned them as the learners for the teaching experiments. All the teachers were

familiar with senior level statistics content and therefore had a strong pre-existing knowledge

base on which to incorporate new approaches to statistical modelling. Although the teacher

participants had minimal to no experience with data technologies and had not used coding-based

approaches for teaching statistical modelling, they were open to learning new technology and

were interested in teaching data science at the senior high school level.

Second, the research involved the design and implementation of only four tasks within four

full-day workshops. All these tasks were created by me and reflect my personal beliefs and

knowledge about task design and were shaped by my perspective on data science education.

All four tasks were highly structured and were designed for the specific purpose of introducing

code-driven tools through statistical modelling. Hence, the tasks were not intended to be

complete tasks for learning about statistical modelling approaches, nor do they explore

important aspects of data science such as ethics, data responsibility, data ownership, data

sovereignty, algorithmic bias, and related political and historical contexts of data (cf. Wilkerson

& Polman, 2020). Consequently, the observations of teachers’ thinking practices are constrained

by the design of the tasks, but it is plausible that tasks designed in different ways could produce

similar results.

Third, there are a wide range of code-driven tools and environments available for teaching

data science. In this study, the computational environments were limited to web-based tasks

and environments, including the use of RStudio Cloud, RMarkdown documents, and interactive

tutorials created using the R package learnr. I did not explore the use of notebooks (cf. Fleischer

et al., 2022), R scripts, or other code-driven tools such as graphics calculators (cf. Burrill, 2017).

As the task designer, I made many decisions about what packages to use, what functions to use,

what code syntax to use, and how to name objects. These decisions, along with the interface of

the code-driven tools used, will have influenced the teachers’ learning (Abbasnasab Sardareh et

al., 2022) and further research is needed to determine to what extent (e.g., Myint et al., 2020).

Fourth, the analysis focused on the design of the task, and did not specifically take into account
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the learning environment I created as the teacher/researcher guiding the learners/teachers

through the task. As I have more than 20 years’ teaching statistics, significant curriculum

and assessment design experience, and advanced computing skills, the learning environment

I created in the teaching experiments is an important mitigating factor when interpreting my

findings. Teachers were asked to reflect on the tasks and their suitability for teaching at end

of each workshop, but my research did not explore the teachers using the framework to design

tasks nor measure their capacity to recreate a similar learning environment when implementing

the four tasks used in the research with their own students.

9.4 Implications for teaching and research

The outcomes of this study have several implications for teaching and future research. The ICT

task design framework is already being used by me and other teachers within my department

to develop tasks for undergraduate statistics and data science students in their first and second

year at the University of Auckland. Further research is planned to collect and analyse student

responses to tasks, and use these to refine the observable integrated statistical and computational

thinking practices framework (Table 8.4) (cf. Woodard & Lee, 2021). Additionally, greater

exploration of the impact of computational environment and software interfaces is needed. The

tasks used in this research were developed during 2018 to 2019. New advances in web-based

tools to support student learning need to be considered, including computational environments

that combine code-driven tools alongside GUI-driven tools.

Greater professional development for statistics education is already an important priority

(Bargagliotti & Franklin, 2015), and this required support extends to the implementation of

data science education at the senior high school level. The teachers who participated in my

research were enthusiastic about using similar data science tasks with their students but needed

practical support to increase their own skills and that of their colleagues with using code-driven

tools for statistical modelling. I have already shared key findings from my research with high

school teachers and facilitated practical workshops using adapted versions of the research tasks,

but much more is needed to equip teachers with the pedagogical content knowledge needed to

implement tasks confidently (Shulman, 1986).

Future research is needed to understand how useful the ICT framework is for assisting teachers

to create tasks for introducing code driven tools through statistical modelling and to learn more

about how the tasks created using the ICT framework support students learning (cf. Sentance
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et al., 2019). A strategy to support the introduction of data science at the senior high school

level could involve working with a smaller group of interested teachers to create and trial a data

science curriculum suitable for Aotearoa New Zealand (cf. Begg, 2004), one that includes and

promotes Matauranga Māori and Te Ao Māori approaches to data.

9.5 Concluding remarks

In this thesis, I have explored the design and implementation of four statistical modelling

tasks that introduced code-driven tools. The consideration of the practical implications of

implementing data science as a subject at the senior high school level led to a focus on task

design, as I had identified that there were limited research-based theories or frameworks to

guide teachers’ construction of tasks. Although other studies within statistics and computer

education have considered data science learning environments involving code-driven tools, this

is the first substantial study focused on task design that specifically considers how to support

learners to move from non-code-driven tools towards code-driven tools within the learning context

of statistical modelling. My research can enhance the implementation of data science at the senior

high school level by providing theoretical and practical guidance for creating tasks and assessing

integrated statistical and computational thinking.
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Appendix A - Teacher questionnaire

Questions used

• What is your name?

• What is your gender?

• How many years have you been teaching at the high school level?

• How many years have been teaching New Zealand Curriculum Level Seven or Eight

Statistics (Year 12 or 13)? Include this year if applicable.

• Did you complete a major in statistics or operations research (or equivalent) as part of

your tertiary study? (Yes/No)

• Did you complete a major in mathematics as part of your tertiary study? (Yes/No)

• Did you complete a major in computer science or information science (or equivalent) as

part of your tertiary study? (Yes/No)
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Appendix B - Discussion and reflection

questions

Discussion questions

• Have you used this data context in your teaching before?

• Are you familiar with this data context?

• What key concepts do you think this part of the learning task might help build

understanding of?

• How do you think your students might react to this learning task?

• What potential issues can you see with using this learning task with your students?

• How would you modify/change aspects of the learning task?

• What other knowledge or skills do you think are needed before, during or after use of this

learning task?

Reflection questions

• What key concepts related to statistical thinking do you think these workshops might help

build understanding of?

• Are there any concepts related to statistical thinking you feel you understand better having

completed these workshops?

• What key concepts related to computational thinking do you think these workshops might

help build understanding of?
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• Are there any concepts related to computational thinking you feel you understand better

having completed these workshops?

• How do you think computational thinking could enhance statistical thinking?

• Is there an example of something done in the workshops that illustrates this?

• What new data-related knowledge do you think these workshops might help build

understanding of?
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Appendix C - Randomisation test task

Slides used during task
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200



201



202
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Data sets

Giraffe data set: https://goo.gl/Dhx8Yy

Man data set: https://goo.gl/wMRbyx
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A3 sheet with screenshots from VIT Online
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learnr activity

A static version of the web-based task is provided below.
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RMarkdown activity

Screenshots from the RMarkdown document are provided below.
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Appendix D - Prediction modelling task

Slides used at the start of the task
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Web-based task

A static version of the web-based task is provided below.
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Appendix E - Classification modelling task

Slides used during task
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RMarkdown activity

Screenshot from the RMarkdown document used to explore using the mean or median to classify

photos as light or dark (meanvsmedian.Rmd)

Screenshot from the RMarkdown document used to develop a classification model for high

contrast photos (contrastchallenge.Rmd).
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Appendix F - Probability modelling task

Slides used during task
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Web-based task

A static version of the task is shown below.
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CODAP links

Link to the model set up: https://codap.concord.org/releases/latest/static/dg/en/cert/index.

html#shared=134988

Link to the data table set up: https://codap.concord.org/releases/latest/static/dg/en/cert/in

dex.html#shared=134991
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