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S.A.M.P.L.E.R.—Statistics As Multi-Participant Learning-Environment Resource—is a 
participatory simulation (Wilensky & Stroup, 1999a). In participatory simulations, a classroom 
of students collectively simulates a complex phenomenon that they are studying, with each 
student playing the role of a single agent or a set of agents in this phenomenon. For example, 
students may each “be” an atom in a molecule, a bird in a flock, or a sample in a distributed 
population. Technology-based participatory simulations are built in the NetLogo (Wilensky, 
1999) cross-platform agent-based modeling-and-simulation environment and operate through the 
HubNet (Wilensky & Stroup, 1999b) architecture. Each student operates a NetLogo computer 
“client” connected through wireless hubs to the NetLogo “server” (in other HubNet activities, 
students operate calculators). This server “scoops up” student input, processes and displays this 
collective input, and sends messages back to the students’ computers. The activity moderator, 
e.g., the teacher or student leader, controls the simulation parameters. So students embody agents 
in the virtual simulation they see projected onto a classroom screen. Also on this screen, monitors 
and plots display mathematizations of the simulation, so the class can explore relations between 
the model’s initial conditions, student–agent rules of behavior, and collective outcomes. One 
example of a HubNet participatory simulation is “Disease,” in which students “become infected” 
and then infect others in their virtual population. In “Gridlock,” another example, each student 
controls a traffic light in a city grid. SAMPLER is a mathematics participatory simulation. It is 
part of the NetLogo ProbLab model-based curriculum under development (Abrahamson & 
Wilensky, 2004a, 2004b). SAMPLER classroom activities are designed to help students: (a) 
ground statistics in visual proportional judgments, stochastic-process intuitions, and additive and 
multiplicative action models; (b) reconcile micro–probabilistic (samples) and macro–gestalt 
(population) levels of reasoning; and (c) negotiate and integrate these personal resources through 
interpersonal discourse. SAMPLER statistical activities involve collecting data that informs 
estimations of population metrics under conditions of uncertainty and limited resources. 
 

 
Figure 1. NetLogo S.A.M.P.L.E.R.: fragment of server interface with revealed population mosaic 

(scrambled, on the left, or ‘organized,’ in the middle) and histograms of students’ guesses of the color 
density and mean of these guesses (note alignment with population green–blue contour). On right is a 

fragment of the student interface with personal samples from the population. The average color density in 
these ten 3-by-3 samples is 60/90 and the student has input 67%. 

 
Design of Classroom Activities 

The population in SAMPLER is a large square “mosaic” of thousands of green and blue tiles 
(NetLogo “patches,” see Figure 1, on left). The population property in question is the overall 



percentage of green or the greenness in the population. Alternatively, one might couch the issue 
in terms of the chance of a single hidden tile to be found as green. Yet, one might adopt a mid-
level perspective and focus on the greenness of 9 cells, or 25 cells, etc.  
 
Working in SAMPLER, students use their individual computers to sample from the shared 
population (see Figure 1, on right) and then each student determines and inputs a calculated guess 
of the overall greenness based on his/her samples. Student input is pooled and displayed as a 
histogram. If enough students are participating, then even if some of the guesses are outliers, the 
histogram’s central tendencies will be quite accurate, stimulating discussion about the advantage 
of collaboration, pooling resources, and strength in diversity of opinions. 
 
SAMPLER units begin with two preparatory stages that familiarize students with the learning 
environment. Initially, students observe and interpret a classroom projection of the population 
without the help of their own computers. The population is uncovered so all the green and blue 
tiles are visible (Figure 1, on left). Students initiate and practice strategies for gauging, 
measuring, and indexing the greenness of the population, each student guesses the greenness, and 
students suggest, evaluate, and debate methods for establishing a class guess (e.g., sharp-eyed 
student’s guess, teacher’s guess, the average). Once a class guess has been established, for 
instance by calculating the mean of all student guesses, the moderator “organizes” the population 
(see Figure 1, middle). The ‘organize’ function rearranges the mosaic tiles, putting all the green 
tiles on the left and all the blue tiles on the right. Students are encouraged to see how the 
organized population self-indexes its greenness along a left-to-right continuum. For instance, in 
the organized population in Figure 1 (middle image), the green extends 2/3 of the population’s 
width. Next, the moderator creates a new population with a random, unknown greenness. The 
moderator demonstrates a sampling action by mouse-clicking on the server interface at locations 
the students select. Each click reveals a square sample around the cursor. Students discuss how to 
optimize sample parameters, such as location, size, and number of samples, so as to maximize the 
accuracy of their guess that is based on these samples. Finally, and during most of the unit, each 
student, clicking on their personal monitor, samples from a new hidden population (so students 
each see only their own samples). Students may choose to work alone, in pairs, or in groups. In 
between rounds, the teacher leads conversations about sampling strategies. Students receive a 
limited sampling “allowance” (how many tiles in the population they may reveal per round). 
Also, students receive initial points and then points are deducted for imprecision, 1 point for 
every 1% off mark. Students may discover that it is worthwhile to pool information and 
“gamble” on the group guess, but some students may wish not to do so in order to get ahead of 
the group. SAMPLER is designed to facilitate and mobilize classroom group dynamics: students 
are encouraged by the design to engage in interpersonal negotiation of facts and skills. Just as 
samples may be individually different yet must all be embraced in quantifying population 
metrics, so each student’s voice may be unique yet equally important as all other classroom 
voices. In a sense, the mathematical machinery of statistics that is embedded in the design of the 
SAMPLER participatory simulation projects onto the classroom forum as a model of diversity, 
equity, and collaboration.  
 

Design Principles 
We strive to build learning environments that foster students’ grounding deep understanding of 
mathematics in accessible and engaging contexts (Confrey, 1993; Lesh & Doerr, 2002; Papert, 
1980; Wilensky, 1997). Based on our previous research into student intuitions about probability 
(Wilensky, 1993, 1995, 1997), we designed SAMPLER so as to foster a community of users 
who: (a) experience a complementarity of probability and data analysis (Biehler, 1995); (b) 
distinguish and connect mathematical and empirical probability (Henry, 2001); (c) see a 
population as an aggregate of successive sampled events (keeping all the raw data rather than 
representations of the data); (d) experiment through re-sampling (Simon & Bruce, 1991; Konold, 
1994); (e) express probability as base rate (Gigerenzer, 1998); (f) understand statistical patterns 



   
 

Figure 2. A 6th-grade student interpreting the SAMPLER population of green and blue tiles. On the left and in the 
middle, the student is explaining a histogram that compiles his classmates’ guesses of the population’s greenness 

(the tall thin line between the histogram bars is the mean guess). On right, the student discusses how the scrambled  
population that is 50% green became “organized” (all green on the left, all blue on the right) to facilitate comparison 
between the histogram mean and the population greenness (note how the green–blue contour indexes the greenness). 

as emergent phenomena (Wilensky, 1997); (g) engage judgments of proportion (Spinillo & 
Bryant, 1991) and density (Gelman & Williams, 1998) as natural qualitative-cum-quantitative 
interpretations of visual information; (h) ground stochastic processes in spatial metaphors 
(Abrahamson & Wilensky, 2003); (i) analyze color density/intensity as a metric affording 
conceptual continuity between micro and macro levels of reasoning (from small sample to large 
sample to whole population); (j) re-invent mathematical strategies in response to challenging 
problems (diSessa, Hammer, Sherin, & Kolpakowski, 1991); (k) use fairly simple arithmetic to 
broaden the zone of classroom inclusion (Fuson et al., 2000); (l) build a cohesive, coherent, and 
fluent conceptual domain through mathematizing phenomena and, reciprocally, ‘storyizing’ 
mathematical representations (Fuson & Abrahamson, 2004); and (m) utilize collaborative group 
dynamics to connect to statistical constructs (Wilensky, 1993). 
 

Design-Research Methodology, Implementation, and Findings 
We maintain that SAMPLER engages and carries students’ probabilistic–statistical intuitions 
towards mature domain fluency. This section presents data to support this claim. We have 
worked with two focus groups and a pilot 6th-grade classroom, with students ranging in age (10 
to 13), SES, ethnicity, and mathematics achievement. Each implementation informed 
modifications in the design towards the subsequent implementation. The students were told they 
would play mathematics learning games. The design-research team conducted the interventions 
according to a lesson plan that evolved into the plan laid out earlier in this paper. Throughout the 
intervention, students were encouraged to share and discuss their opinions. All interventions and 
pre- and post-interviews were video- and audio-taped for close analysis, and extensive parts were 
transcribed and debated in our research team. The following findings are based on microgenetic 
analysis of the data. We discuss only themes that recurred across interventions and many 
participants. The themes are mathematical, social, metaphorical, and combinations thereof. 
 

Group Theory of Social–Statistical Interaction 
A surprising analogy emerged between student intuitions regarding the two axial populations 
inherent in SAMPLER: the mosaic as a collection of samples and the classroom as a collection of 
guessers. Students’ anticipation of the validity of their collective guess interacted with these 
aggregates. On the one hand, students expected an increase in the variability of the distribution of 
guesses as a result of an increase either in the number of samples or of guessing students. On the 
other hand, they argued that whereas adding samples always increases accuracy, adding humans 
beyond some critical number of peers decreases guessing accuracy. So a design that taps group 
dynamics in mathematical practices must negotiate social sensitivities. 
Group guessing modeled mutual liability in democratic societies: diligent students complained 
when taxed by the errors of classmates. Also, students discovered that in order to avoid a biased 



distribution of guesses, it is better to “guess first, discuss later” rather than “discuss first, guess 
later.” That is, first bidders—in particular charismatic and/or high-achieving students—may sway 
the group towards an anchor point, around which the group converges. Perhaps the most curious 
debate occurred after three students saw that whereas their histogrammed guesses were clustered, 
their fourth group-mate’s guess was “way off.” At first, they accused him of ruining the group 
guess. Lo, once we revealed the true population value, it turned out that all 4 students as a group 
had achieved a perfect hit. The outlying student took full credit for having tugged the group 
towards the hit. His three peers had mixed feelings: they were not sure how to judge him now, 
since he was still more “off” than each one of them individually. 
The Law of Large Social Numbers  
Students must take a leap of faith in order to surrender themselves to the power of aggregate 
guessing. In particular, students struggle with what is for them an apparent paradox: an increase 
in the number of guessers increases the cluster of guesses around the mean, yet it also increases 
the range of all guesses. Perhaps the law of large numbers is difficult to understand precisely 
because students have difficulty reconciling this apparent paradox. It is a challenge of our design 
to articulate, clash, and synthesize these would-be irreconcilable beliefs through simulation and 
dialogue. One interesting direction to pursue is that of the notion of compensation or balance, 
which students were groping at—for every guess that is x percentiles “way off” to the left there is 
another that is equally deviant to the right (see also Wilensky, 1997).  

Equity and Inclusion 
Because all students—the more and the less “number crunchers”—work and guess under shared 
uncertainty, alternative mathematical thinking is embraced as long as it is effective. For example, 
a 10-year old low-achieving student gained new social status through innovative pragmatic 
strategies, even though she could not quite explain the strategies in mathematical nomenclature.  
Sampling Strategies 
Students developed complex strategies to maximize the effectiveness of their sampling 
distribution over the mosaic. Students debated over optimal tradeoffs between few–large and 
many–small samples. Students were particularly concerned with strategies for addressing 
populations with non-random distribution of green and blue tiles (see Figure 1, on left). Those 
students who had argued that strategic distribution of samples over the mosaic is irrelevant to the 
accuracy of sampling re-evaluated their hypotheses once the entire population was revealed. 
Some students who spontaneously applied a many–small sampling strategy, appeared 
comfortable in basing their approximation of the population’s greenness on a quasi-qualitative 
impression accumulating over repeated sampling (‘base rate’ strategy). For example, one 10-year 
old student rapidly re-sampled 3-by-3 arrays of tiles (“9-blocks”) that each vanished the moment 
a new sample was taken. While sampling, this student uttered the number of green tiles in each 
sample—“3, 0, 1, 2, 2, 1, 2, 3, 3, 1, 0, 2, 3, 2”—and then stated that about 2/9 of the population 
were green. This strategy was emulated and improved by another student who, working at the 
maximum speed the software allowed her, took numerous repeated samples of size 1 tile.  

   
 

Figure 3. Students of diverse mathematical skill engage in sampling and calculating population metrics in the 
SAMPLER participatory simulation. From left: students (a) compute the mean of their samples; (b) lead the class by 

taking samples from the server; and (c) share a computer in taking their own samples from the population. 



Students showed great flexibility and creativity in their sampling strategies. For instance, at a 
moment when 5 samples were revealed on the screen, each of 25 tiles, one student computed that 
each tile was weighted as .8% of the data because 100/125 = .8. When the total number of green 
tiles in the data was tallied at 64, his peer computed 64 * .8 and they inferred a 51.2% greenness 
in the population. These students were comfortable, for later samples, to work in a manner which, 
using the same numbers as above, would look as following: first count up the total tiles (125) and 
the total green tiles (64) and then divide 64/125, to get 51.2%. Yet another strategy, initiated by a 
10-year old student, was to plan how many tiles she would reveal in total and then figure out how 
many green tiles would comprise 1% of this total, e.g., 3 tiles are 1% of 300 total sampled tiles. 
As she sampled, she eyeballed each sample, adding up 1 percent for every additional 3 green tiles 
that were revealed. Although she worked rapidly, nonchalantly, and not too accurately, her 
strategy proved highly effective, probably because her errors compensated one for the other. 
Agent–Aggregate Density Relations 
SAMPLER populations can be set as not bi-linear randomly distributed (see Figure 1, on left), 
creating clumps of green and/or blue tiles. Students were wary of hasty inferences in the absence 
of what they deemed as sufficient information. Their strategies and discourse revealed both an 
interpretation of samples as instances within a distribution and sensitivity to typicality of 
samples. Small- and medium-sized samples were not expected to be representative of the 
population, especially when initial samples revealed high variability in local density.  
Spatial Metaphors and Statistical Reasoning 
In order to contextualize students’ discourse and rationalize the sampling procedure, we set the 
following task: “I am the CEO of an international shampoo company and I’ve assigned you, my 
statisticians, to determine the average number of hairs on peoples’ heads around the world.” 
Fortuitously, the mosaic resembled a map of the world, with the green clumps being continents in 
a blue sea. So context guided metaphor, and metaphor served as a vehicle of reasoning. One 
student said that if we concentrate our limited sampling resources in “South America” (green 
clump on lower left hemisphere of the mosaic-as-map), our inferences would not generalize to 
other continents. Another student localized the metaphor to sampling from different states in the 
U.S. We suggested a sampling strategy by which all samples should be taken from a remote town 
in the north of Finland. Students were not stumped. As one 10-year-old student objected, “What 
if they’re all bald?” 
Other interpretations students suggested for the mosaic were: (1) a maze; (2) “a green plain 
viewed from above and people wearing square blue hats”; (3) “a patchwork quilt”; (4) a 
representation of fashion styles over a whole year [sic]; (5) “the blue is small flocks of sheep and 
the green is hundreds and hundreds of walls”;  (6) “the blue is flowers and the green is lots of 
forest plants that eat flies.” These imaginative metaphors students construct for green and blue 
tiles suggests that: (a) the mosaic does not necessarily constrain students to a narrow 
conceptualization of the statistical construct “population”; and (b) any notion that students need 
explicit imagery so as to be engaged and making sense of a learning activity and that nondescript 
visual cues are too abstract is at the least questionable (see also Wilensky, 1991; Uttal and 
DeLoache, 1997). 

Living With Uncertainty 
Although students playfully guessed the greenness of individual samples, their attitude gradually 
shifted towards less commitment to samples and more to the population. That is, participants’ 
intellectual investment and personal stakes centered on inferences concerning the aggregate and 
not on guesses concerning each successive bit of local data. For instance, samples that were “way 
off” caused surprise and updating of macro values but did not call for re-evaluation of strategy 
and did not harm students’ esteem as mathematicians. Also, students learned to compile samples 
and to average classroom guesses so as to approximate the true population mean, which “you can 
never be certain of.” This tenuousness of statistical truth informed students’ seeing sampling as a 



compromise between limited resources and desired accuracy. Also, students often referred to the 
time factor. Yes, they could count up thousands of tiles in a revealed mosaic to achieve 100% 
accuracy, but “that would take days.” In that, time became as important a resource to consider in 
sampling strategies as were sample size, location, and number. Time interacts with these three 
spatial attributes because it dictates efficiency. 
Intuitive Statistics 
Students’ spontaneously intuited mathematical constructs closely shadowed a host of real 
statistical concepts. Using simple quantitative vocabulary, students: (1) re-invented margin of 
error and confidence interval; (3) sensed that a mean is not always meaningful if the data is not 
distributed normally; (4) manifested and argued for sophisticated sampling strategies that address 
the gauged distribution of target values in the population; and (5) specifically expressed concern 
that samples from clumpy populations are problematic (“you should spread it out!”). Thus, 
probability and statistics can be seen as a high-precision enhancement of common-sense 
calculated estimation under conditions of uncertainty 

Conclusions and Future Work 
SAMPLER engages students in activities wherein a shared object serves as a platform for 
articulating intuitions, learning professional vocabulary, testing hypotheses, and debating 
strategies of statistical inquiry. The inherently collaborative activities in SAMPLER, embodied 
primarily in students’ interdependence for data and for estimates from these data—impelled 
students to scholastic argumentation that: (a) teased out individuals’ intuitions; (b) afforded 
opportunities to engage in and refine mathematical terminology, representational forms, and 
conceptual tools; and (c) introduced and positioned ‘distribution,’ ‘variability,’ and 
complementary micro and macro perspectives in probability and statistics as cultural–-
mathematical constructs. We conclude that advanced statistical conceptual tools that are 
traditionally introduced as secondary school constructs already have their qualitative-cum-
quantitative roots in elementary-school students’ reasoning. These roots can grow deeper and this 
reasoning can flourish, given appropriate learning environments. 
We are planning to conduct further research on SAMPLER in middle 
school. In this context, SAMPLER will be implemented in conjunction 
with ProbLab (Abrahamson & Wilensky, 2004a, 2004b), a suite of 
curricular models that we are designing in collaboration with middle-
school teachers. In ProbLab, students working with computer models 
in a collaborative learning environment: (a) reason about their own 
assumptions concerning randomness (see Abrahamson, Berland, 
Shapiro, Unterman, & Wilensky, 2004); (b) analyze and represent 
strings of random events (e.g., hit-miss-miss-hit-miss, etc.) using 
multiple plots (of m/n, attempts-until-hit runs, and samples); (c) 
manipulate and run experiments with mathematical objects that bridge 
between the familiar–concrete and the virtual–conceptual space of 
probability (e.g., computer-based dice and color boxes); (d) conduct 
combinatorial analyses of mathematical objects; and (e) use geometry 
to connect mathematical and empirical understanding of stochastic 
processes (Abrahamson & Wilensky, 2003). A key mathematical 
object in Problab is the square array of NetLogo “tiles” (e.g., the 3-by-
3 “9-block,” see samples in Figure 1). Students investigate and build, 
in both concrete and virtual media, the combinatorial sample space of 
all possible 9-blocks, where each of the 9 squares may be one of two 
colors (see Figure 4). The perceptuality of this histogrammed sample 
space may inform students’ sense of sample distribution in working 
with the ProbLab models. 

 

 
Figure 4. Fragment from 

NetLogo ProbLab  
Sample Stalagmite.  

The combinatorial sample 
space of 3-by-3 arrays 

grows probabilistically. 
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i SAMPLER and ProbLab models are available for free download at http://ccl.northwestern.edu . 
Special thanks to Matt Goto and Ethan Bakshy for their help in programming SAMPLER. 


