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Statistical reasoning is at the heart of understanding statistical concepts and ideas as well as is the 
foundation of empirical inquiry. It involves the use and application of statistical ideas to interpret 
data and make decisions based on given contexts. In other words, it is “the way people reason 
with statistical ideas and make sense of statistical information” (Garfield & Gal, 1999, p. 207). 
Along with the recent key shift in intellectual thought, permitting citizens and professionals to 
examine numerous complex phenomena of social importance, statistics and data analysis are 
becoming focal areas of mainstream school curricula in many countries. Therefore, there is a need 
for mathematics teachers to become more knowledgeable about reasoning with data using 
statistics. Further, a major shift in teachers’ mathematical perspective is necessary as teaching 
data and statistics tends to deal with the issues of uncertainty, approximation, modeling, 
estimation, and prediction in relation to context, rather than to focus nearly exclusively on 
deduction, proof, definition and abstract mathematical systems.  
 
Simultaneously, due to federal legislation entitled the No Child Left Behind Act, teachers and 
schools in the United States are being held accountable in many states based on students’ mean 
scores or percent passing on annual statewide high stakes tests. Disaggregated results by subgroup 
indicate that this system of testing is having a continuing adverse impact on students, particularly 
economically disadvantaged and minority students (McNeil & Valenzuela, 2001). Such testing 
may also result in several undesirable outcomes, including the use of high stakes testing to drive 
school mathematics curriculum and professional development, and the acceptance of narrowly-
defined content to meet more immediate, rather than long-term needs of students, thereby 
exacerbate the impact of disparities in educational resources.  
 
These factors have convinced us of the importance and urgency of assisting practitioners to 
engage in their own investigation of data, particularly in relation to equity and to potential 
instructional decision-making (Confrey & Carrejo, 2002; Confrey & Makar, 2002). In doing so, 
we would see improvement in their instruction on data and statistics, and at the same time 
strengthen their professional position as arbitrators of the information and pressures from the high 
stakes tests. We conducted two research studies on statistical understanding and reasoning of 
educational practitioners in spring and fall 2003. We reported on common elements of both 
studies in Confrey, Makar, and Kazak (2004) summarizing our activities in four areas: 1) issues in 
the development of educational practitioners’ statistical reasoning, 2) understanding of the 
meaning of and relationships among the concepts of validity, reliability and fairness as applied to 
testing, 3) the history of testing and its relationship to science, society and cultural inequality, and 
4) reports on independent inquiries conducted by our educational practitioners. 
 
The present paper will report on the fall study in which we developed and taught a one-semester 
course with an emphasis on assessment. In this course, educational practitioners (pre-service 
teachers, teachers in continuing education program, and graduate students) learned about high 
stakes testing and undertook studies analyzing real datasets using a statistical software tool called 
Fathom Dynamic Statistics (Finzer, 2001). Instruction in the use of the software and the 
development of the statistical reasoning was woven into the overall instruction on assessment for 
about an hour a week during the first ten weeks of the course. The last three weeks were devoted 
to group-designed data investigations. The development of statistical understanding and reasoning 
of the educational practitioners and their independent investigation of data on student 
performances in relation to issues of equity form the central focus of this paper.  
 



 

Development of Statistical Reasoning in the Instructional Sequence 
 
The statistics instruction was organized around three key conceptual areas in which educational 
practitioners were encouraged to develop deeper understanding of statistical concepts and 
statistical reasoning in the contexts relevant to them: 1) the meaning and relevance of distributions 
of scores, 2) the relationships among covariance, correlation, and linear regression, and 3) the role 
of probability in comparing the performance of two groups. We will briefly discuss each area.  
 
Distributions of Scores. As consideration of variation and sources of variation in data plays a 
central role in statistical thinking (Wild & Pfunnkuch, 1999), the first unit in statistics instruction 
initially emphasized understanding the idea of variation in scores and moved to systematic 
comparison of outcomes in the context of high stakes assessment. To motivate these ideas 
visually, we began by asking practitioners to compare the scores of student populations from two 
schools, one large and one small, on the same test and decide which student population showed 
higher achievement. Drawing from research by McClain and Cobb (2001), we chose to use 
unequal groups with disparate distributions and the same mean scores to stimulate a rich 
discussion of distributions. In particular, we found two emerging and competing approaches: 1) to 
partition the groups into equal numbers and compare the resulting intervals, which leads towards 
box plots, 2) to partition the groups into equal intervals and compare the resulting numbers in the 
groups, which supports the use of histograms. Figure 1 below shows the original dot plots and the 
two competing displays.  
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Figure 1. School A and School B distributions with the same mean and different sample sizes. 

 
In box plots, the central tendency is represented by the median as four groups are formed by 
quartiles. We believe that too often box plots are inadequately developed, which undercuts their 
value in a) helping people use multiplicative reasoning in comparing distributions and b) 
developing a conceptually strong interpretation of percentile rankings as used by testing 
companies.  
 
Next, we discussed the concept of standard deviation as a statistical measure of variability in 
distributions, using histograms and means. In particular, we developed one version of standard 
deviation as the square root of the sum of the squares of the distances of values from the mean, 
divided by n-1 (one less than the sample size), and contrasted this to mean absolute deviation 
(MAD)-the average of the absolute deviations of values from the overall mean, which is rather an 
intuitive way to think of measuring variability in the data. Further, we linked the standard 
deviation to the inflection points in a normal distribution as a defining characteristic of that curve 
by transforming histograms into density curves. We discussed how changing the vertical axis to a 
percentage rather than a frequency does not alter the histogram’s shape but does produce a display 
in which the total area of the bins is equal to one. We combined this with a discussion of shapes 
and distributions (i.e. skewed, uniform, and normal). We discussed the concept of a normal curve 
in this setting, as a symmetric distribution with inflection points and tails. This approach set up 
the transition to a distribution interpreted as a probability of outcomes. 



 

 
We then assigned our students to make a normal distribution on a transparency of graph paper 
using 100 squares (Dienes unit blocks) and then to repeat the exercise with a different normal 
curve-one tall and thin, and the other short and wide. For each, we asked them to trace the shape 
on the graph paper and to mark the points of inflection (where the normal curve changes from 
falling ever more steeply to falling ever less steeply) and count the number of squares inside the 
vertical lines that would be created by using the two inflection points as bounds. Students were 
also asked to report the following distinguishing characteristics of their approximations of normal 
distributions: a) height of the tallest point, b) distance from the ends to the vertical center line 
passing through the tallest point, c) location of points of inflection relative to the vertical center 
line (i.e. the mean), and d) number of squares within the vertical bounds of inflection points. This 
last characteristic led towards a discussion of the percent of the data within one standard deviation 
of the mean. Accordingly, students’ exploration with tracing the class of normal curves revealed 
that 60%-78% of the squares fell within the vertical bounds of inflection points. See Figure 2 for a 
simulated version of our students’ explorations. After this investigation, they became convinced 
that if normal curves have points of inflection one standard deviation above and below the mean, 
then approximately 2/3 (68%) of the squares lie within this area. We then discussed how someone 
might have produced a formula for such a curve and argued that the general form of 2xe−  would 
produce a possible candidate. Next, we discussed how one could transform the equation to locate 
one standard deviation at the point of inflection and still keep the area at a total probability of one, 

using the normal probability density function, 2
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link the standard deviation to the normal curve and to argue for how to interpret one, two and 
three standard deviations in relation to the idea of a probability distribution.  

 
Figure 2. Investigating the class of normal curves. 

 
In our pre/posttests, we included questions to see if students understood the ideas of variation. 
Results were mixed, but showed overall growth. One question, for example, asked students to 
write at least three conclusions comparing the performance of Hispanic students with that of 
African American students in the context of high stakes test data presented as box plots of scores 
for each student subgroup and a table which presents disaggregated descriptive statistics, such as 
the sample size, mean score, and percent passing on the test for each sample. The overall 
distribution of student responses is displayed in Figure 3, and can be summarized as follows: 1) In 
the pretest, of twelve students, four stated very general conclusions, while most others focused 
highly on percent passing or measures of central tendency (i.e. mean and median scores), 
neglecting variation; 2) Only a few students used some kind of reasoning about distribution in a 
visual sense besides centers in the pretest; 3) None utilized the box plots in order to compare the 
quartiles at the beginning of the semester; 4) Even though several students continued comparing 
the two distributions with the measures of center in the posttest, about 75% of them also 
compared the variability between the distributions; 5) Moreover, after the course, many students 
(58%) were able to compare box plots of distributions, looking at the variability in quartiles and in 
the inter-quartile-range (IQR); 6) Overall, student responses in the posttest were more complete, 



 

and the emphasis was on measures additional to central tendency or percent passing. Finally, final 
projects indicated that our students had developed a keener appreciation of variation and 
distribution of scores. 

 
Figure 3. Student responses to comparing two box plots. 

 
Covariation, Correlation, and Linear Regression. The second statistical unit centered around the 
issues of covariation-the relationship between two variables. Adapting the treatments in Rossman, 
Chance, and Lock (2001) and Erickson (2000), we sought to differentiate ideas of strength and 
direction of the relationship through the examination of a set of exemplars in the context of 
testing. Various representations and simulations were utilized to discuss how these two 
dimensions could be linked into a single scale from -1 to 1 in which zero would represent no 
strength and no direction.   
 
On the posttest only, we included two items to see whether students understood the ideas related 
to the linear regression and the correlation between two variables. For instance, we asked students 
to estimate the correlation coefficient using the information provided in a scatterplot along with 
the linear regression line on the graph, the equation of the linear regression with negative slope, 
and r2. Of all students, 69% estimated the correlation coefficient by calculating the square root of 
the given r2 value and taking the negative relationship between the variables into account. The 
rest, however, simply tried to guess from the scatterplot looking at the direction and the strength 
of the relationship. We found that one of these guesses mistakenly violated –1 ≤ r ≤ 1 and did not 
consider the negative association. In the other multiple-choice-type item, all students were able to 
choose a correct interpretation of a linear regression equation in the context of the relationship 
between grade point averages and standardized test scores. 
 
Statistical Inference. The final statistical reasoning focus was to discuss sampling distributions 
and confidence intervals, and use these to develop the idea of inferential statistics. We began by 
exploring the notion of sampling distributions using simulations in Fathom. Our students used the 
tutorial in Fathom in the context of voting, where they could control the likelihood that a 
particular outcome of a vote was “Yes” or “No”. After calculating the proportion of “Yes” votes 
for a random sample of 100 votes, they automated drawing repeated samples of measures and 
plotted the distributions of proportion of cases that voted “Yes” (Figure 4, with “true” probability 
0.5). Through this they could see that although the “true” proportion of votes was fixed, there was 
a great deal of variation in outcomes due to sampling variability. After examining this simulation 
for proportions, we repeated a parallel exercise to predict an unknown population mean on a math 
test using various sample sizes.  

n

4
8

12
16
20

100

Co
un

t

0.40 0.44 0.48 0.52 0.56
proportionOfYes

( )mean  = 0.500325

Measures from Sample of Voters Histogram

 
Figure 4. Sampling distribution in Fathom displaying proportion of “Yes” votes in each sample. 



 

 
Two key ideas relevant to the sampling distributions emerged from student investigations: the 
impact of taking a larger sample of a population and drawing more repeated samples of measures 
on the shape of the sampling distribution. While the former exploration reveals that the larger the 
sample size is, the narrower the shape of the sampling distribution is (i.e. less standard error), the 
latter simulation shows that collecting more repeated samples of measures makes the shape of the 
sampling distribution more smooth and normal. It is clear that it is important to separate these two 
ideas, which are easily conflated, and to develop a strong intuition about standard error as 
reported in testing. 
 
It was relatively straightforward to move to confidence intervals as a procedure for estimating 
unknown population mean and developing the idea of inferential statistics because of the earlier 
probability-based discussions on normal distributions and sampling distributions. Specifically, our 
discussion of confidence intervals followed this chain of reasoning: Based on the investigation of 
normal distributions, the probability is about 0.95 that the sample mean will fall within two 
standard deviations of the population mean. Equivalently, the population mean is likely within 
two-standard deviation of the sample mean, and thus 95% of all samples will capture the true 
population mean within two-standard deviation of the sample mean, or, if we repeat the procedure 
over and over for many samples, in the long run 95% of the intervals would contain the 
population mean.  
 
Later, the movement to the t-test as an examination of a sampling distribution using the difference 
of the mean scores seemed relatively straightforward to our students. They used it repeatedly in 
their projects and through repetition their use of it became secure, although we do not know about 
their conceptual depth. We also encouraged our students to verbalize the meaning of p-value 
produced by software as a way to assess the strength of evidence, i.e. “whether the sample 
outcome is surprising” (Cobb & Moore, 1997). In the posttest, when asked to write a conclusion 
statement about the given t-test output in the context of 10th grade students’ science test scores by 
gender, 85% of our students correctly responded to the question. Many of these responses also 
stated the meaning of the p-value (i.e. the observed difference is so large that it would occur just 
by chance only about 0.67% of the time). Further, in their final project papers many reported 
probabilities near p>.05 as close, while others adjusted the level of probability in consultation 
with statistical consultants for valid reasons. 
 
Types of Inquires Conducted by Educational Practitioners 
 
Students’ independent inquiries into an issue of equity through an investigation of high stakes 
assessment data took place at the end of the course where inquiries began as group efforts and 
were then reported individually by the group members focusing on different aspects of a general 
research question. Given student-level data from nine schools in the same district in a Midwest 
urban area on the state-mandated test in years from 1999 to 2003, there were four groups 
interested in: 1) investigating how racial/ethnic backgrounds, mobility, testing accommodation, 
and low socio-economic status affect special-needs students’ test scores; 2) examining variations 
in student achievement, particularly in science, among demographically similar schools in a single 
district and identifying possible student-, teacher-, and school-level attributes that are correlated 
with student achievement on the test; 3) studying disparities in math and communication arts 
scores on the test between the students identified as gifted and the other students and the problems 
of equity and efficacy in gifted education; and 4) examining the alignment of the state 
accountability system with the current No Child Left Behind legislation, predicting the state’s 
projected level of future compliance using statewide and local data, and determining the trends in 
student achievement on the test by disaggregated subgroups. Thus, the variety of research foci is 
reflected in the range of inquiries undertaken by educational practitioners.  



 

 
For instance, one student reported on how mobility affects academic achievement of 3rd and 4th 
grade special-needs students, among whom minorities are over-represented. This inquiry was 
motivated by high mobility among students, especially African American (AA) and economically 
disadvantaged students, and the educational reform efforts aimed at improving students’ academic 
achievements, in particular special-needs students (students with Individualized Education 
Programs (IEP)). The strength of this inquiry was the way the context for the statistical analyses 
was set up through use of the literature and systematic exploration of related ideas. In the data 
analysis section, the visual representations were used to display the distribution of students who 
were identified as IEPs in different subject areas and to show the racial backgrounds of special-
needs students by mobility. After finding a statistically significant difference in the mean scores 
of students with and without IEPs on both math and communication arts tests by employing t-tests 
at a significance level of 0.001, the effect of mobility on the test scores of students with and 
without IEPs was investigated. In doing so, individual t-tests were performed for each pair, such 
as the difference between mobile and non-mobile students with IEPs and the difference between 
mobile and non-mobile students without IEPs. In this kind of inquiry, using ANOVA (which was 
not covered in the course) could be a better choice in order to see the interactions since there are 
two independent variables with two levels (i.e. mobile/non-mobile and with/without IEP). 
Analysis of mean scores of students with IEPs by the mobility status suggested that mobile 
students with IEPs performed better than their non-mobile counterparts. Individual t-tests, 
however, showed no statistically significant difference between the mean scores of mobile and 
non-mobile students with IEPs in either content area on the test. Since neither the standard 
deviations in samples nor the p-values obtained in the t-tests were reported, one must be cautious 
about making such a conclusion. The limitation of this inquiry, however, was due in part to the 
data source provided. For instance, mobility in the data sets was defined as whether or not a 
student was in the district and in the school for less than a year, however the data only listed 
“Yes” to indicate mobility and thus blank cells were simplistically interpreted as “No”. Moreover, 
the sample sizes were fairly low when the data were disaggregated for the purpose of the study. 
 
Another student carefully examined the variation in science achievement among nine elementary 
schools in the same district. The initial descriptive analysis of the data indicated that the variation 
in student proficiency among these schools ranged from 17% to 60%. With this student’s current 
statistics knowledge, the group decided to run ANOVA in order to investigate this variation 
further. The ANOVA result suggested that there was a statistically significant difference on 
students’ science scores among schools (p<.05). In an attempt to explain this variation among 
demographically similar schools, several possible factors of which the effects on student academic 
achievement were suggested in the literature were investigated by correlation analysis. 
Specifically, student, teacher, and school related attributes (i.e. % AA, % White, % free/reduced 
lunch, % females, % males, % Limited English Proficiency, attendance rate, % satisfactory 
reading, % teachers with advanced degrees, school size, student to teacher ratio, years of teacher 
experience) were taken into account in this part of the inquiry. These indicator variables were 
correlated with disaggregated mean scores (by gender, AA, non special education, free/reduced 
lunch, and non-free/reduced lunch) and overall mean scores of each school. The only significant 
factors were found to be student to teacher ratio, teacher experience, and reading proficiency, 
which were correlated negatively with male mean scores, positively with overall, AA, female, 
male, and non-special education students’ mean scores, and positively with overall, female, male, 
non-special education, and non-free/reduced lunch students’ mean scores, respectively (p<.10 was 
reported in all cases). One possible explanation of this result could be that the sample data were 
too limited in terms of variability and size to see significant correlations among other variables. 
 
 
 



 

Discussion and Conclusions 
 
In the pre/posttest analysis, we looked at students’ performances on four statistics items relevant 
to the following topics: 1) interpreting box plots to compare two groups, 2) interpreting the 
variability in distributions, 3) understanding the measures of central tendency and of variability, 
and 4) comparing the means of two distributions. Our analyses showed overall gains (Figure 5). 
The box plots for the distributions of scores on pre- and posttests revealed that the majority of the 
students performed better at the end of the course with less variation in the middle 50% of the 
scores. The second box plot representation shows the distribution of change in scores over the 
course. The shape of the distribution is left-skewed (the mean is less than the median) and the top 
75% of the distribution indicates gains in scores after the course. Particularly, most of the gains in 
scores were accounted for the item on the resistance of the measures of center and variability to 
outliers.  
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Figure 5. Distributions of percent correct in pre- and posttests with summary statistics  

and change in percent correct over the fall course. 
 
Our experience with the course reveals the value of involving practitioners directly in the 
examination and analysis of data. Moreover, the context of data relevant to teachers supports their 
understanding and motivation to learn the statistical content, which in turn allows them to dig 
further into their understanding about equity and testing. Similarly, the experience in data analysis 
provided them with ways to strengthen chains of reasoning on issues that were otherwise sensitive 
to discuss. Their compelling and competent choices of investigations show that this audience was 
able to examine raw data and to conduct independent inquiries. 
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