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This paper describes an emerging pedagogical framework for statistical inference for Year 11 (15 year-
old) students in response to new assessment demands. As part of a three-year research project on 
developing statistical thinking in a school, half of the students identified, through an open-ended 
questionnaire, that they found it difficult to draw conclusions when comparing data plots. This paper 
focuses on this problematic situation by giving a brief analysis of student assessment task responses and 
learning opportunities in the classroom, hypothesising the reasons for the problem, and presenting a 
framework to help redress the situation. 

 
Background 

As part of the national mathematics curriculum (Ministry of Education, 1992) all students study 
statistics from Year 1 to Year 12, with many choosing to specialise in statistics at Year 13. 
Conducting statistical investigations using the whole empirical enquiry cycle (problem, plan, data 
collection, analysis, conclusion) are a core part of the curriculum for all levels. In 2002 a new 
approach to national assessment was introduced at Year 11. Instead of one final external examination 
in mathematics, one third of the course is internally assessed with the rest being an external 
examination (New Zealand Qualifications Authority, 2001). Since students are assessed on a full 
statistical investigation at Year 13 it was decided that Year 11 students would be given data sets to 
investigate with the emphasis on comparison of data and bivariate relationships. The level of 
statistical thinking required at Year 11 with this new internal assessment, compared to the previous 
external assessment which largely asked students to read and interpret graphs and calculate measures 
of central tendency, has placed real demands on teachers and students.  
 
Previous research 

Before students are introduced to confirmatory or formal inference methods to decide whether 
the patterns they see are real or random they are usually presented with situations that require 
informal inference. Research on students’ informal inference from comparison of data plots is 
relatively recent. Biehler (1997) analysed a transcript and videotape of some Grade 12 students’ 
methods of handling multivariate data. From the perspective of how a statistical expert would handle 
the data he identified a number of problem areas for teaching data analysis. In particular for the 
comparison of boxplots he pointed out the difficulty of drawing conclusions, even for experts, when 
faced with a variety of patterns and when encountering differences in medians, ranges, and 
interquartile ranges each of which may support differing conclusions. He acknowledged the 
difficulty of verbally describing and interpreting graphs, and described the language used by both 
teachers and students as inadequate. The problem of describing what is being communicated by a 
representation was also recognised by Bright and Friel (1998). 

In Konold, Pollatsek, Well, and Gagnon’s (1997, p. 165) analysis of the same Grade 12 students 
they hypothesised that the students had not made “the transition from thinking about and comparing 
properties of individual cases or collections of homogeneous cases to thinking about and comparing 
group properties”. The desired thinking was described as a propensity perspective, the development 
of which was deemed problematic. McClain, Cobb, and Gravemeijer (2000), however, believed that 
their instructional experiments designed to develop seventh-grade students’ notions of distribution, 
and argumentation which focussed on patterns in how the data were distributed, developed students’ 
ability to reason about group propensities. This argumentation, for example, suggested that 75% of 



the observations for treatment X were greater than 75% of the observations for Treatment Y and 
therefore treatment X would be recommended. Issues such as sample size and sampling variability in 
the argumentation were not broached and would not be expected at this level. Ability to take into 
account the sample size when drawing inferences from data is described by Watson (2001) as a 
higher order skill. In fact, Konold and Pollatsek (2002) recommended that the early teaching of 
statistics should focus on informal methods of data analysis. They envisaged that the focus should be 
on why the data are collected and explored and what one learnt from the data. Their idea of a data 
detective approach to data analysis fits with Pfannkuch, Rubick and Yoon (2002), who believe 
students should approach data analysis in the thinking roles of hypothesis generator, discoverer, and 
corroborator when working with data. Whilst not disagreeing with these recommendations the 
question remains as to when and how do you start building up concepts for formal inference. 

Biehler (2001) argued that there was a four-stage development process for formal inference. In 
the context of an example involving the comparison of two boxplots he described the stages as: the 
EDA methods expert (fine tuning the comparison); the subject matter researcher and discoverer 
(widening and exploiting the context by bringing in more variables); the critical theory builder 
(generalisation); and the inferences statistics expert (Can group differences be “due to chance”?). 
These stages could be viewed as a learning pathway over time and as a four-stage approach to data 
analysis that would be expected from a senior student. The generalisation stage is fundamental to 
statistical inference in that there is recognition that sample data can be used to make predictions and 
decisions about the underlying population and that the sample selected is just one of many samples 
that could be drawn from the population. Recent research suggests that better teaching methods are 
needed to improve students’ conceptual understanding of sampling in relation to statistical inference 
(Watson, in press). Research on the last stage of Biehler’s model is limited. Efforts by Konold 
(1994) to improve students’ understanding of the distribution of the mean differences for statistical 
inference using a resampling approach were somewhat effective. Lipson (2002) reported that 
students’ understanding of sampling distribution with a particular software package was inadequate 
whereas delMas, Garfield, and Chance (1999) reported some success with their software. It would 
seem that the integration of statistical data analysis with theoretical probabilistic distributions and the 
assumptions underlying those models present a conundrum in teaching. 
 
Research method 

A developmental research method is used that is based on the ideas of Gravemeijer (1998), 
Wittmann (1998), and Skovsmose and Borba (2000) (Pfannkuch & Horring, 2004). The school 
selected draws on students from low socio-economic backgrounds, is culturally diverse, and has 
teachers interested in improving their statistics teaching. The teachers selected Year 11 (15 year-
olds), and the case study teacher was self-selected. A workshop, which focussed on communicating 
the nature of statistical thinking (Wild & Pfannkuch, 1999) to the teachers, was conducted by the 
first author. After the workshop the case study teacher and another teacher were interviewed to 
identify problematic areas in their statistics-teaching unit (Pfannkuch & Wild, 2003). These two 
teachers and the first author then discussed teaching ideas that could be implemented to enhance the 
development of students’ statistical thinking. The case study teacher then wrote a new four-week 
statistics-teaching unit. Although all Year 11 teachers implemented the new teaching unit research 
data were mainly collected from the case study classroom. Data collected were videotapes of 15 
lessons, student bookwork, student responses to the assessment tasks, student questionnaires, and the 
teacher’s weekly audio-taped reflections on the teaching of the unit. The first analysis of these data 
focused on the identified problematic area of informal inference, which led to a consultation group of 
five statisticians being formed to debate and discuss possible ways to progress. 
 



The assessment task 
The students were given a table of data showing the maximum temperatures of two cities Napier 

and Wellington, which were taken from some summer newspapers. A story involving a decision 
about where to go for a summer holiday was communicated to the students. Students were required 
to pose a question (e.g., Which city has the higher maximum temperatures in summer?), analyse the 
data, draw a conclusion, justify the conclusion with three supporting statements and evaluate the 
statistical process. All students analysed the data by calculating the five summary statistics with 
many using back-to-back stem-and-leaf plots for these calculations and then drawing boxplots by 
hand. Figure 1 shows the boxplots drawn electronically. Note that Year 11 students are not expected 
to identify outliers so the whiskers were drawn to the minimum and maximum observations. 
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Figure 1. Comparison of Napier (N) and Wellington (W) maximum temperatures in the summer 

 
Results 

The analysis of the student assessment responses to the assessment tasks used a hierarchical 
performance level approach based on the SOLO taxonomy (Biggs & Collis, 1982). A spreadsheet 
was used to categorise the responses. Based on the student responses, four categories of justifications 
for their conclusions were identified: comparison of equivalent summary statistics; comparison of 
non-equivalent summary statistics; comparison of variability; and comparison of distributions. 
Within these categories hierarchies of responses were identified and qualitatively described. 
Generally the levels had the following characteristics: No response; prestructural – irrelevant 
information; unistructural – some relevant information but non-discriminating; multistructural – 
some relevant information with some discrimination; and relational – information communicated is 
relevant to the question and is discriminating. After the qualitative descriptors for each category and 
each level within a category were written, the second author independently coded all responses. A 
consensus was reached between the first and second author on the final codes for each student 
response. The details of the student responses are recorded in Table 1. 
 
Table 1: Details of student responses when comparing boxplots 
 
 Conclusion Comparing 

equivalent stats  
Comparing non-
equivalent stats  

Comparing 
variability 

Comparing 
distributions 

No response 2 3 12 9 21 
Prestructural 0 2 3 1 0 
Unistructural 11 8 7 15 9 
Multistructural 11 7 4 5 0 
Relational 6 10 4 0 0 
Total number of students 30 30 30 30 30 
 
This analysis revealed that most students compared features in a non-discriminating manner, and did 
not justify or explain how their analysis supported their conclusion and was appropriate in relation to 
the question. For the boxplots, comparing similar summary statistics (27/30), including the range 
(16/30), which was not relevant to the question, were prevalent student responses. Eighteen students 
attempted comparison of non-equivalent summary statistics. There was no attempt at comparing the 
variability in relation to the difference in medians and little attempt at comparing the shape of the 



distributions. Conclusions ranged from non-use of comparison language to comparisons that 
suggested statistical tendency. Figure 2 gives examples of student responses. A qualitative analysis 
of the learning experiences provided, using the videotape and student bookwork data, suggested that 
students had learning opportunities that only compared features of the data.  
 

Conclusion  
• Napier has the highest temperature  
• Napier is warmer than Wellington 
• Napier tends to be warmer than Wellington. 
 
Comparing equivalent summary statistics 
• Also the fact that the statistics for Napier are higher than Wellington (except the interquartile range) 
• Napier has a higher median than Wellington. Napier has a highest temperature of 33.1°C but Wellington’s 
highest is 27.4°C. 
• This is shown in the median, with Napier’s median being several degrees higher than Wellington’s 
 
Comparing non-equivalent summary statistics 
• Napier’s median temperature is higher than Wellington’s upper quartile 
• Also because the median of Napier’s temperature is higher than three quarters of Wellington’s 
temperature which suggest that half of Napier’s temperatures are warmer than three quarters of 
Wellington’s.  
 
Comparing variability  
• Napier has a larger range of data compared to Wellington 
• The box-and-whisker plot also shows that Napier has a wider range of temperatures, and that many of the 
temperatures are grouped between 22.75°C and 23.8°C, while in Wellington the temperatures are more 
evenly spread.   
 
Comparing distributions 
• The box plot for Wellington is drawn lower than Napier’s.  

Figure 2. Examples of student responses 
 
When the students evaluated the statistical process 20/30 said that more data should be made 
available before making a decision. For thirteen students, however, a typical comment was:  

Firstly Wellington only has 30 temperatures where as Napier has 33.  Giving Napier an unfair advantage.  For 
this to be a fair test there needs to be exactly the same number of temperatures.  Those 3 extra temperatures 
have affected the result. 

Even though students had compared data sets of unequal size in class they were not asked to raise 
concerns about the comparison and hence their belief that data sets should have equal sample sizes 
was not uncovered. 
 
Discussion 

Hypotheses were generated as to why drawing a conclusion and justifying it were problematic 
when comparing data plots. One hypothesis was that texts and therefore teaching tended to compare 
only features of boxplots and to not draw a conclusion, since significance testing and confidence 
intervals are introduced at a later stage (Wild & Seber, 2000). Other hypotheses were that the 
assessment demands were beyond the capabilities of Year 11 students, that ‘informal inference’ 
techniques are not established or recognized within the statistics discipline, that the curriculum does 
not provide a teaching pathway to build students’ concepts of formal inference or provide learning 
experiences for the transition between informal and formal inferential thinking. 

Informal inference could have been presented to the students by giving clear-cut examples and 
limiting them to comparing data sets of similar spreads and samples of size 30. This was not what 
the teachers wanted, it was the inherent messiness of data, the absence of a clear decision, and the 
positing of possible contextual explanations, that made data comparison interesting. If informal 



inference was to be taught there might need to be more awareness amongst teachers of the formal 
inference ideas underpinning comparison of data plots.  

From the perspective of formal inference for the comparison of data plots the statisticians 
determined that there were four basic aspects to attend to in order to understand the concepts behind 
significance tests, confidence intervals, p-values and so forth before drawing a conclusion. These 
were: comparisons of centres; taking the variability into account relative to the differences in the 
centres; checking the distribution of the data (normality assumptions, outliers, clusters); and the 
sample size effect. In cognizance of these conceptual underpinnings for formal inference and of the 
student responses, a pedagogical framework for comparison of data plots for Year 11 is beginning to 
be developed. This framework, based on the assumption that formal inference notions should begin 
to be developed by Year 11, will continue to be under debate amongst the teachers, researcher, and 
statisticians.  It is a framework for making teachers aware of the ‘big ideas’ that students need to 
experience and develop for inference, namely, (i) knowing why they should compare centres, (ii) 
describing and interpreting variability within and between sample distributions, (iii) developing their 
sampling reasoning, and (iv) how to draw an acceptable conclusion based on informal inference. 

 
Comparing the centres 

Wild and Pfannkuch (1999, p. 240) said that “the biggest contribution of statistics is the isolation 
and modelling of “signal” in the presence of “noise””. If the comparison of boxplots is considered 
then the medians are the signal and the variability within and between the boxplots is the noise. One 
third of the students recognized that the comparison of the medians only was one justification for 
their conclusion. According to Konold and Pollatsek (2002, p. 273) statistical reasoning will elude 
students unless they understand that the comparison of averages is the statistical method for 
determining whether there is a difference between two sets of data and that “this pattern is 
symptomatic of students’ failure to interpret an average of a data set as saying something about the 
entire distribution of values”. It would not be obvious to these students why the comparison of 
centres should be the focus of their reasoning. Konold and Pollatsek (2002) suggest that the central 
idea of searching for a signal amongst the noise has not been the focus of teaching and hence 
students have not developed this notion. The learning experiences that they suggest involve students 
appreciating causal-type variability in a process, its inherent probabilistic nature, and the consequent 
building of a mound shape. These ideas based on the Galton board should be extended to include 
drawing two graphs of the same data. First, students should construct a series graph to visualise and 
experience the random variation and signal, and second, construct a mound-shaped graph in which 
the signal and noise are represented in a different perhaps non-intuitive way.  

 
Variability, checking and comparing the sample distributions 

When comparing variability half of the students compared the ranges, which was not relevant to 
the question. Formal inference requires comparison of the variability relative to the difference in the 
centres, which presupposes an understanding of standard deviation or confidence intervals. A 
statistician might informally infer by mentally intuiting confidence intervals for the true population 
means and visualizing whether there might be an overlap. This would be an impossible inference for 
a Year 11 student with no experience of confidence intervals. The students, however, could look at 
variability within a data set and between data sets. The focus in teaching should be on describing, 
interpreting, and comparing the variability in the data sets not on using it to answer a question that 
asks for “the warmer” or “the better” and so forth. In particular students should not continue to 
believe that comparing a feature such as “50% of Napier’s temperatures are higher than 75% of 
Wellington’s temperatures” is evidence for a real difference, rather that it is a noteworthy feature to 
describe.  



 
Sampling reasoning 

A major problem with informal inference is taking sample size into account. There are many 
strands to building up concepts about sample size effect. From this research some matters that need 
to be attended to are: comparison of sample data of unequal sample size; the notion of a sample; 
small sample versus large sample variability; the sample and its relationship to the population; and 
the size of the sample and its relationship to the population. A repertoire of teaching and learning 
possibilities needs to be considered to build up these concepts (Watson, in press). 

For these students it is necessary first to overcome the belief that the data sets must be of the 
same size. Using Curcio’s (1987) hierarchical model for interpreting graphs the first author’s 
observation, corroborated by the teachers, was that the students had experience of reading the data, 
not much experience at reading between the data, and little experience of reading beyond the data. If 
these students had some experience of inferring “missing data” from a data set they may have learnt 
that their predictions were likely to be within the interquartile range or at least within the range. 
Missing data is a well-known problem in statistics and students should be given opportunities to 
impute values for observations and to analyse data with and without the imputations. Specific 
attention should be drawn to students’ beliefs and to whether their conclusions would change with 
unequal sample sizes. 

This problem is compounded by sample size and variability being interconnected. Simulations 
such as taking random samples of the same and different size from a population to ‘see’ the 
variability of the sample mean, and the variability within and between samples should be part of 
students’ learning. Meaningless simulations would not advance students’ conceptions of the sample 
size effect. Hypothetical situations grounded within the context of a problem (e.g. If they took 
another summer’s temperatures would they get the same graphs?) might start to induct students into 
some formal inference ideas. 

 
Drawing a conclusion 

If there were no overlap between the boxplots statisticians would not carry out a formal test for 
no difference between the means. Such a test may be required when plots are considered to be 
overlapping. Simulations could be used to overcome students’ beliefs that “50% of Napier’s 
temperatures are higher than 75% of Wellington’s temperatures” is evidence for a real difference and 
that the sample size of 30 is large enough. For example, students’ attention could be drawn to 
noticing that some of the randomly generated plots of sample size 30 from the same distribution 
would give rise to the above statement. The simulations should generate boxplots and histograms, as 
these are the types of graphs from which the students are required to make informal inferences. 

To remedy the Year 11 assessment requirements of drawing a justified conclusion it was 
suggested that students “look at the plots” and compare the centres, spreads, and anything else that is 
noteworthy. After comparing and describing features, students should then draw an informal 
inference along the lines: “the sample data suggest that Napier has higher maximum temperatures on 
average in summer than Wellington”. The words “sample”, “suggest”, and “on average” were used 
to reinforce formal inference notions. The conclusion could be justified by referring to the 
comparison of centres. The question of whether the students are drawing a valid conclusion is being 
addressed in another framework that focuses on the evaluation of the statistical process. 

 
The building of a pedagogical framework, in response to a problematic situation, should be 

viewed as a sub-framework that interconnects with other statistical frameworks at Year 11 and 
across all Year levels. In relation to Biehler’s (2001) four-stage model the Year 11 experience should 
be building up concepts for the third stage, the critical theory builder. The framework will give 



teachers a sense of the overall aims and purposes of statistical inference and the statistical reasoning 
processes that need to be developed when they teach the prescribed curriculum content. Without 
attention to the complexity of informal inference and to the provision of a teaching pathway towards 
formal inference, statistical inferential reasoning will continue to elude most students. 
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