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A probabilistic reasoning hierarchy, for the concepts of sample space and probability of a 
compound event, is proposed as a tool to describe the performance of high school students when 
they solve two text-book problems, before and after a teaching and learning period. As expected, 
the responses to the posttest indicate an improvement in the levels of reasoning with respect to the 
pretest. In the pretest, the most used procedures to count the elements of the sample space and 
calculate the probabilities of compound events were list and table making. In the posttest, they were 
list making and tree diagrams. Such diagrams seem a useful tool to improve the probabilistic 
reasoning level.  

INTRODUCTION 

A documented fact in literature is the difficulty to build sample spaces and calculate probabilities of 
compound events (e.g. Polaki, 2005; Jones, Langrall & Mooney, 2007; and Chernoff & Zazkis, 
2011). In addition, such topics are present in the high school education curriculum in several 
countries (Jones et al., 2007) and authors as Heitele (1975) consider the sample space and the 
measure of probability as fundamental concepts. For these reasons, we propose the following 
research questions: 

• How is the high school students’ reasoning to find the sample space of a compound random 
experiment and to calculate the probability of a compound event, using the classical 
approach before and after a teaching and learning process? 

• Which difficulties do the students face when solving such problems? 

CONCEPTUAL FRAMEWORK 

The SOLO (Structure of Observed Learning Outcomes) Taxonomy by Biggs, J. & Collis, K. (1991) 
states five modes of representation of levels of abstraction that constitute the basis of development 
and the age at which they typically emerge. The five modes are: sensorimotor (from birth), ikonic 
(from 18 months), concrete-symbolic (from 6 years and on), formal (from 14 years) and postformal 
(from 20 years and on). Every mode includes learning cycles constituted by unistructural, 
multistructural and relational levels, which are defined according to the structural complexity of the 
responses to a task. The Probabilistic Reasoning Framework (Jones, Langrall, Thornton & Mogill, 
1997) distinguishes, in increasing order, the subjective, transitional, informal quantitative and 
numeric levels. Finally, the Probabilistic Thinking Framework  (Mooney, Langrall & Hertel, 2014, 
p. 495) considers levels of growth in probabilistic reasoning (which “result from maturational or 
interactionist effects in both structured and unstructured learning environments”) for a set of 
concepts and seeks to summarize research results of the past 20 years for elementary and middle 
school. 
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Below are presented some of the concepts developed by the Onto-Semiotic Approach (OSA) to 
mathematics education. These concepts will be useful to analyze the students’ responses to the 
problems presented.  

The OSA states an ontology of mathematical objects which considers mathematics as: a) a socially 
shared problem solving activity; b) a symbolic language; and c) a logically organized conceptual 
system. According to OSA, a mathematical practice is any action or manifestation that a subject 
carries out to solve mathematical problems and communicate the solution to other people so as to 
validate and/or generalize the solution to other contexts and problems (Godino, Batanero & Font, 
2007, p. 129). 

When carrying out a mathematical practice, a subject involves a set of primary mathematical 
objects: problem-situations, language, concepts, properties, procedures, and arguments. The 
situations (problems, exercises, etc.) are tasks that induce mathematical activity while the language 
is constituted by terms, expressions, notations or graphs. The procedures are operations, algorithms 
or techniques carried out to solve a mathematical task; the concepts are given through definitions or 
descriptions and properties in the form of statements or propositions. Finally, an argument 
(deductive, inductive, etc.) is used to explain or validate propositions and procedures (Godino, 
2002, pp. 245-246). 

METHODOLOGY 

Participants 

Twenty-eight third-year high school students (ages 17-18), from a Mexican public school, 
participated in a probability course. 

Instruments 

Pretest and posttest questionnaires, with eight items each one, were used. By the time the pretest 
took place, the group had already taken a course focused on descriptive statistics topics as well as 
probability elements of one-stage experiments. The posttest was applied to half of a class taking 
their second four-month course on probability distribution (binomial and normal) and sample 
distributions. Probability problems in two or three dimensions which involve the concepts of sample 
space and measure of probability (classical approach) were included in the questionnaires.  

Below, two of the common problems in the questionnaires are shown and their responses are 
analyzed. Problem 1 involves a random experiment in two stages while problem 2 includes a 
random experiment composed of three stages.  

Problem 1.  A couple plans to have two children. Suppose it is equally likely that a boy or a girl be 
born and that the gender of any child not influence the gender of another.  

a) Write down all arrangements of the genders of two children. 
b) Supposing that the listed results in a) are equally likely, what is the probability that two girls 

be born? 
c) What is the probability of having a child of each gender exactly? 

 (Prepared by the authors based on Moore, 2007, p. 268). 
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Problem 2. We toss a $1 coin, a $2 coin, and a $5 coin in the air.  

a) Determine the number of possible results of tossing the three coins in the air, based on 
getting heads or tails for each coin. 

b) What is the probability of getting no tails when tossing the three coins?  

c) What is the probability of getting one tail exactly when tossing the three coins?  

d) What is the probability of getting two tails exactly when tossing the three coins?  

e) What is the probability of getting three tails exactly when tossing the three coins?  

(Pastor, 1998, p. 76) 

Procedure 
We analyzed, classified and compared the pretest and posttest responses based on a probabilistic 
reasoning hierarchy. In addition, the mathematical objects used to solve each problem were 
analyzed with some of the OSA categories. 

Hierarchy 

Table 1 shows a description of the probabilistic reasoning hierarchy that includes the execution 
elements as well as the components to construct the sample space and the probability of a 
compound event. In order to construct it, we considered elements of the reasoning hierarchy by 
Sánchez and Landín (2014), the framework of probabilistic reasoning (Mooney et al., 2014), and 
the responses provided by the students in the sample. We analyzed the responses as the basis to 
validate and adjust the hierarchy we propose here. The names of the levels of reasoning “reflected a 
continuum from subjective to numerical reasoning” (Jones et al., 1997, p. 101). 

Probabilistic 
Reasoning Level 

Characteristics of the responses 

Subjective The sample space of the experiment is omitted. The responses are 
idiosyncratic or influenced by cognitive biases as equiprobability1. The 
responses have features from knowledge components without any coherence 
or with a great number of mistakes. 

Transitional The responses show incomplete sample spaces with or without the aid of 
tree diagrams for experiments of two or three stages as well as a tendency to 
go back to subjective probabilistic reasoning. The students use Laplace's 
definition of probability and the rule of product of probability with mistakes 
or missing calculations. 

Informal 
quantitative 

The responses show systematic sample spaces, supported by tree diagrams 
or lists of results. The subjects count and use proportions, probabilities or 
possibilities when judging probabilistic situations. The classic definition of 
probability is used in the correct responses. A random variable is identified 
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   The probability bias came to be known through Lecoutre’s work (1992, p. 557) and is 
characterized by a reasoning of the following type: “the results to compare are equiprobable 
because it’s a matter of chance; thus, random events are thought to be equiprobable by nature.”	
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although the calculation of probability is incorrect. The addition rule or the 
product rule of probabilities is used to obtain partial and correct responses.   

Numerical Sample spaces for experiments of two or more stages are systematically 
generated with or without a list of results. Sample spaces and probabilities 
are connected. Probabilities for complex situations, including non-
equiprobable ones, are determined. The addition rule, the product rule of 
probabilities or a random variable is identified and used in the correct 
responses. 

Table 1: Probabilistic reasoning hierarchy for the concepts of sample space and probability of a 
compound event. 

RESULTS AND DISCUSSION 

The following are examples of the responses for problem 1 in the posttest; the responses are 
classified by probabilistic reasoning level.  

Baby 1      !
!
    Girl                                 Probability two girls be born          

                 !
!
     Boy                                !

!
= !

!
= 0.5   posibilities of two girls be born 

Baby 2     !
!
     Girl                                 Probability of having a child of each gender exactly 

                !
!
      Boy                                !

!
= 0.25   of girl    and   !

!
= 0.25 of boy 

Figure 1: Response classified in the subjective level. 

The response in Figure 1 was classified in the subjective reasoning level because it does not show a 
sample space of compound events (boy-girl, girl-girl, etc.). It only considers simple events while the 
probabilities requested are incorrect. 

a) Girl-girl 
Girl-boy 
Boy-boy 

b) P(a)=!
!
 

c) P(a)=!
!
 

Figure 2: Response classified in the transitional level. 

The response in Figure 2 was one of the most frequent. We classified it as transitional since the 
sample set (“any set of all possible outcomes, where the elements of this set do not need to be 
equiprobable”; Chernoff & Zazkis, 2011, p. 18) includes three compound events and does not 
correspond to the sample space. In consequence, the probabilities calculated through the definition 
by Laplace are not correct. This student might have committed an equiprobability bias if he or she 
considers the event Girl-Boy equivalent to the event “exactly one child of each gender”, which can 
occur in two ways: Boy-Girl or Girl-Boy.  
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(boy-boy) (boy-girl) 

(girl-girl) (girl-boy) 

P(two girls be born)= 1  𝑑𝑒  4 = !
!
= 25% 

P(of having a child of each gender exactly) = 𝑛𝑖ñ𝑜 − 𝑛𝑖ñ𝑎    𝑛𝑖ñ𝑎 − 𝑛𝑖ñ𝑜 = !
!
= 50% 

Figure 3: Response classified in the informal quantitative level. 

The response in Figure 3 was classified in the informal quantitative reasoning level because the 
student wrote down a complete sample space, used Laplace’s definition of probability and correctly 
calculated the probabilities of the events “two girls” and “exactly a child of each gender.” 

 
Figure 4: Response classified in the numerical level. 

The response in Figure 4 was classified in the numerical reasoning level because, based on a tree 
diagram, the student wrote down a complete sample space and calculated the probabilities needed 
for the events using the product rule and the addition rule of probabilities.  

Summary of responses to problem 1  

From the data in Table 2, we have that:  

i. In the pretest, 71% of the responses are classified in the subjective or transitional level. Only 
29% of the responses are classified in the informal quantitative or numerical level. 

ii.  In the posttest, 43% of the responses were classified in the subjective or transitional level 
while 54% of the responses were classified in the informal quantitative or numerical level. 

 Time of application 

Probabilistic reasoning level Pretest Posttest 

Subjective   8   1 

Transitional 12 11 

Informal quantitative   8   8 

Numerical   0   7 

No response   0   1 

TOTAL 28 28 

Table 2: Responses to problem 1 by probabilistic reasoning level and time of application. 
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Mathematical objects brought into play when solving problem 1  

The Table 3 shows that the majority of the students who answered the pretest and the posttest used 
the concept of sample space. In both instruments, nearly a third of them used Laplace’s concept of 
probability and obtained the correct value of probability. In the posttest, another third used the 
addition rule or the product rule of probability to answer b) and c). With respect to the procedures 
employed, the enumeration strategy (Batanero, Godino & Navarro-Pelayo, 1996, p. 75) stands out 
in the pretest through lists or tables to obtain the sample space and calculate the probability. In the 
posttest, we can highlight the use of the tree diagram to enumerate the elements of the sample 
space, the calculation of probabilities with Laplace’s definition, and the use of the addition rule or 
the product rule of probability. The most used representations by the students were: lists and tables 
in the pretest, and lists and diagrams in the posttest.  

Mathematical objet  Problem 1 Problem 2 

Definitions or properties Pretest Posttest Pretest Posttest 

Sample space 21 26 12 17 

Laplace’s concept of probability 10 8 11 7 
Adittion rule  or product rule of probability.  9  9  

Function of binomial probability  2   

Strategies or procedures     

Enumeration of sample espace elements 21 26 12                                                                                                                                                                                                                                                                     17 
a) With tree diagram 1 13  12 

b) Without tree diagram 20 13 12 5 
Arithmetic operations and mistaken probabilities 15 11 18 9 

Use of Laplace’s concept of probability 10 8 11 7 
a) With tree diagram  4  3 

b) Without tree diagram 10 4 11 4 
Use of adittion rule or product rule of probability.  9  9 

a) With tree diagram  8  8 
b) Without tree diagram  1  1 

Use of function of binomial probability  2   

Language or representations     

Verbal expressions 6 2   
Lists o tables 27 14 12 5 

Graphs 1 12  12 
Algebraic notation  2  6 

Table 3: Mathematical objects brought into play when solving problems 1, 2 
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Summary of responses to problem 2  

From the data in Table 4, we have that: 

i. In the pretest, 68% of the responses are classified in the subjective or transitional level. Only 
18% of the responses are classified in the informal quantitative or numerical level. 

ii. In the posttest, 43% of the responses are classified in the subjective or transitional level and 
46% of the responses are classified in the informal quantitative or numerical level. 

 Time of application 

Probabilistic reasoning level Pretest Posttest 

Subjective 10   6 

Transitional   9   6 

Informal quantitative   5   6 

Numerical   0   7 

No answer   4   3 

TOTAL 28 28 

Table 4: Responses to problem 2 by probabilistic reasoning level and time of application. 

As expected, in the responses to problems 1 and 2 of the posttest, we see an improvement in the 
probabilistic reasoning levels with respect to the responses to the same problems of the pretest. The 
problem 2 was more difficult for the students than the problem 1 since the level of reasoning in the 
responses to problem 1 was highter than the level in the responses to problem 2 and there were 
several students who did not answer the problem 2 in either application. 

Mathematical objects brought into play when solving problem 2  

The Table 3 shows that nearly half of the students who answered the pretest used the concept of 
sample space. In the posttest, around 60% of the students used such concept. In both tests, nearly a 
third of the students used Laplace’s definition of probability and obtained the values of probability 
requested. In the posttest, another third of the students used the addition rule or the product rule of 
probability to correctly calculate the probabilities. With respect to the procedures shown: in the 
pretest, 43% of the students employed enumeration through lists or tables to construct the sample 
space and calculate the probabilities; in the posttest, 43% used the tree diagram to enumerate the 
elements in the sample space or calculate probabilities (29% through the addition rule or the 
product rule of probabilities and 11% with Laplace’s definition). The most used representations by 
the students were lists and tables in the pretest, and tree diagrams and lists in the posttest. Six of the 
students (21%) represented the random variable through algebraic notation. 

 CONCLUSION 

We propose a hierarchy of probabilistic reasoning for the concepts of sample space and probability 
of a compound event as a tool to describe the performance of high school students when they solve 
problems that involve such concepts.  
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The tree diagram seems to be an instrument that, in the adequate contexts, makes it easy for 
students to represent the stages of a compound experiment and to understand the concepts of sample 
space, probability of a compound event, addition rule and product rule of probability.  

One of the difficulties observed among the students is that the three-stage problem was more 
difficult for them than the two-stage problem. Furthermore, few of the students were able to identify 
and represent the random variable through algebraic notation. 
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