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You want t o  f i n d  the  probabi l i ty  o f  an event A, b u t  you do not know how t o  
compute p=P(A). Repeat the random experiment N times and count the  f r e -  
quency F(A,N) o f  the  occurrence A. Then 

is a good estimate o f  p, if N is large and p is  not  too small. If p is not  small 
th is  is a good job f o r  classroom simulation. B u t  i n  statistics we are dealing 
wi th  small probabil it ies, which are di f f icul t  t o  estimate by simulation. You 
must do a great  many repetit ions, f a r  beyond indiv idual  patience and mostly 
beyond the  patience of  a classroom. Th is  is  an ideal job f o r  a computer. A 
programmable pocket calculator (PPC) wi l l  also do. A BASIC-PPC costs 
about $50, is about 3 times slower than an Apple and has a random number 
generator (RNG) which is  superior t o  t ha t  o f  Applesoft-BASIC. 

We wi l l  s tudy  i n  depth the simple, b u t  important problem of  MATCHED 
PAIRS, which can be treated i n  a new way by means o f  the computer. 

a) The data i n  Table 1 are from the f i r s t  controlled marijuana study.  It 
shows f o r  N=9 subjects the changes X, Y i n  mental performance 15 
minutes a f ter  smoking an ord inary  cigarette and a marijuana cigarette, 
respectively. (Positive X's and Y's represent improvements. ) A coin 
decided f o r  each subject which t ype  of cigarette was smoked (randomi- 
zation). 

Table 1 
Source: SCIENCE 162, 1234-1242 

Nul l  Hypothesis H: It is jus t  a random fluctuation. There is no d i f f e r -  
ence i n  the effects o f  the two types o f  cigarettes. 

Al ternat ive A: Marijuana lowers average mental performance. 

Thanks t o  the computer we can use as tes t  stat ist ic the random variable 

T+d l  lZ +d212 +. . .+ dglg 
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The Ik are spins of  the spinner i n  Figure 1. We ob- 
serve i n  l ine 3 of  Table 1 tha t  the sum of the positive 
differences is T=10, or, equivalently the sum of the 
negative differences T=64, which is jus t  as surprising. 
We want t o  f i nd  P=P(T(lO)=P(T34). Bu t  tossing a good 
coin 9 times is the same as choosing a random subset of 
our  9-set of positive differences with each of the 29 o r  
512 subsets having the same probabil i ty. Figure 1 

10 INPUT REP,N,LOW,HIGH: DIM D(N) 
20 FOR I=1 TO N:READ D(1):NEXT 
30 FOR 1=1 TO REP:T=O 
40 FOR J=1 TO N: T=T+D(J)*I NT(2*RND(1)) : NEXT 
50 I F  T<=LOW OR T>=HIGH THEN C=C+1 
60 NEXT I 
70 PRINT C 
80 DATA 2,2,4,6,6,8,8,11,27 

Figure 2 

The program i n  Figure 2 draws a t  random a subset of an N-set and f inds 
i ts sum T. This i s  repeated REP times and it counts wi th the variable C 
how often TILOW o r  TLHIGH. 20 runs with REP=1000, N=9, LOW=10, 
HIGH=64 yield the C-values 

with median count c=(94+97)/2=95.5 and mean count c=93.2. Thus we 
get P-4.775% if we use the median and P=4.66% in  using the mean. 

How good is our result? What is the exact P-value? I n  th is part icular 
case we can f i nd  the exact probabil i ty P=P(T510IH). There are Z9 o r  
512 possible and equiprobable cases. The favorable cases are simply a l l  
subsets o f  the d k  with sum 10 o r  less: 8,8,8+2,8+2,8+2,8+2,6,6,6+4, 
6+4,6+2,6+2,6+2,6+2,6+2+2,6+2+2,4,4+2,4+2I4+2+2,2r2,2+210 

Thus there are 24 cases favorable f o r  the event 7510. Hence 

b) The next example we wil l  do without simulation. It gives us more i n -  
sight. B u t  it also shows that the b ru te  force approach rapidly becomes 
unfeasible. 

Does maternal malnutrit ion retard the mental development of a child? I n  
particular, does the better nourished ( in utero) of  two identical twins 
usually develop a higher 1Q than the other? 
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The IQ o f  12 pairs o f  identical twins w i th  d i f fe ren t  IQ  was measured 
years later and compared wi th the weight  a t  birth. Table 2 shows the  I Q  
X o f  the heavy tw in  and Y o f  the light twin, respectively. 

Table 2 
Source: Child development, vol. 38, No. 3, 623-629 

H: The heavy and the l ight  twins develop the  same IQ. 

A: The heavy tw in  usually develops a higher IQ. 

The  sum o f  the positive differences Y-X is T=1+6+6=13. Under H al l  
212 o r  4096 subsets o f  the differences have the same probabi l i ty .  
The favorable cases are those subsets o f  the d k  wi th  the sum TL13. 
We f i n d  these subsets by bru te  force. Students enjoy th is  k i nd  o f  work.  
Sor t  the subsets b y  the maximum element. B y  teamwork we qu ick ly  ge t  
al l  solutions: 12,12+1,12+1,11,11+1,11+1,11+2,11+1+1,10,10+2,10+1,10+1, 
10+2+1,10+2+1,10+1+1,9,9+2,9+1,9+1,9+2+1,9+2+1,9+1+1,9+2+1+1,7,7+6, 
7+6,7+2,7+1,7+1,7+2+1,7+2+1,7+1+1,7+2+1+1,6,6,6+6,6+2,6+2,6+1,6+1, 
6+1,6+1,6+6+1,6+6+1,6+2+1,6+2+1,6+2+1,6+2+1,6+1 +I,  6+1 +I, 6+2+1 + I  , 
6+2+1+1, 2, 2+1,2+1,2+1+1,1,1,1+1,0 

There are 4096 possible cases, and those 60 cases l isted above are 
favorable f o r  1-513. Thus 

Th is  is  st rong evidence f o r  the alternative A t ha t  the bet ter  nourished 
tw in  develops the higher IQ. Bu t  we had t o  pay a s t i f f  computational 
pr ice  f o r  the answer. 

) Next  we consider a famous experiment by Charles Darwin. He took 15 
pairs of  seeds of the same plant and planted them into 15 pots. One seed 
o f  each p a i r  was produced by cross ferti l ization, the other b y  self f e r -  
t i l izat ion. For pot  #i he measured the height x i  of the  cross fer t i l ized 
plant  and the height yi of  the self fer t i l ized plant. For the dif ference 
zi=xi-Yi he got  ( in 1/8ths of  an inch): 

6,8,14,16,23,24,28,29,41,-48,49,56,60,-67,75 

H: There is  no difference between the two k inds o f  seed. 

A: Cross fer t i l ized seeds develop stronger plants. 
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With the program in Figure 2 we simulate the experiment using 
REP=1000, LOW=115, HIGH=429, N=15 and a new DATA line. Ten repeti- 
tions yield: 43,43,43,45,52,52,53,56,59,65. The median count is C=52 
with the estimate P=2.6%. How good is this result? Can we f i nd  the 
exact P-value? 

We have a set D=(dl,d2,. . . ,dn) of  positive differences. What i s  the 
number q(t,n) of subsets with sum T5 t?  

A subset either contains dn o r  it does not. There are q(t-dn,n-1) 
subsets of the f i r s t  k ind  and q(t,n-1) of the second kind. Thus 

with the obvious boundary conditions 

q(t,n)=O for t<O and q(O,n)=q(t,O)=l 

We will write the most efficient program for  computing q(t,n), which will 
r u n  on the cheapest PPC. We compute q(t,n) rowwise, and we denote 
the current row R(O),R(1), . . . R(T) . To f ind the next row we use the 
recurrence 

R l  (t)=R(t)+R(t-d), .d of the, current row 

If we start  at the end, then we can store R l ( t )  into R(t) and so we 
need just  one array R(t) . Figure 3 shows the details of the computation 
and Figure 4 shows the corresponding BASIC program. 

3 ... J-D ... 

Figure 3 
) = R(J) + R(J-D) is stored into R(J) 
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10 INPUT T,N: DIM R(T) 
20 FOR I=0 TO T: R(I)=l :  NEXT 
30 FOR I=1 TO N: READ D 
40 FOR J=T TO D STEP -1 
50 R(J)=R(J)+R(J-D) 
60 NEXT J 
70 NEXT I 
80 PRINT R(T) 
90 DATA 6,8,14,16,23,24,28,29,41,48,49,56,60,67,75 

Figure 4 
Program MATCHED PAIRS 

For T=115, N=15 the program MATCHED PAIRS gives R(t)=Q(t, N)=863. 
Thus P=P ( T L ~  15 1 ~)=863/215=2.63% 

This program solves quickly any problem about matched pairs that could 
arise in  practice, even with a PPC. 

d) The Bootstrap Method 

Let us now go back to  the Marijuana example. By  plott ing Y versus X we 
observe that  there seems to  be one "outlier" present, the point 
(10,-17). With so few data at hand we cannot afford to  throw away a 
single point. So we decide to keep it. 

I n  addition we observe that Y does not seemed to  depend on X. That is, 
instead of 9 pairs we have 18 independent data 

To these data we apply the BOOTSTRAP METHOD, a new and powerful 
computer-intensive method. 

Figure 5 
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The bootstrap method uses the idea that  every sample carries i ts  own 
internal yardstick of  var iabi l i ty that  can be extracted by drawing say 
1000 art i f icial samples from the given sample of 18 data. 

We draw from the sample AT  RANDOM WITH REPLACEMENT 9 numbers X 
and 9 numbers Y, and we f i n d  their  sums S and T. This is repeated 
1000 times and we count wi th the variable C, how often I S - T / ~ 5 4 ,  as i n  
Table 1. The BASIC program can be found i n  Figure 6. 

10 READ N,D: DIM X(N): DEF FN R(X)=l+INT(N*RND(X)) 
20 FOR I=1 TO N: READ X(1): NEXT 
30 FOR J=l TO 1000: S=O:T=O 
40 FOR I=1 TO N/2 
50 S=S+X(FNR(l)): T=T+X(FNR(l)) 
60 NEXT I 
70 IF  ABSCS-T)>=D THEN C=C+1 
80 NEXT J 
90 PRINT C 
95 DATA 18,54,-3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1,1,-1,-3 

Figure 6 

32 runs of th is program resulted in  the C-values: 22,26,26,27,28,28,29, 
29,29,30,30,30,31,31,32,32,33,34,35,35,35,36,36,36,37,38,39,39,40,41, 
41,42. The median of these values is c=(32+33)/2=32.5. Thus 

P( IT-s I,54)~3.25% and 

The bootstrap method makes far better use of the data contained i n  the 
sample than the classical methods which only compute the mean m and 
the standard deviation s of the sample and throw away the rest  of the 
information. Use of m and s is optimal only for  normally distr ibuted 
data. 

e) Permutation Test 

With the computer we walk through all ('8)=48620 9-subsets of the data 

It tu rns  out  that  e x a ~ t l y  766 subsets have the sum 8, as i n  Table 1. 
Thus we have again P=766/48620=1.5755%. This P-value is comparable to  
the bootstrap value. We would always prefer the permutation test  b u t  it 
is NP-hard, and there will be no good algorithm fo r  the test. The pro-  
gram in  Figure 7 walks through the 9-subsets in  lexicographic order 
and counts those with sumA8. It is not comprehensible without extensive 
commentary. For the Marijuana example the Apple requires with BASIC 
90 minutes. With Turbo Pascal the same machine requires only 2 
minutes. 
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10 INPUT N,K,D: DIM C(K+1), D(N): C(O)=-1 
20 FOR I=1 TO N: READ D(1): NEXT I 
30 FOR I=1 TO K: C(I)=l: NEXT 1 
40 REPEAT 
50 FOR 1=1 TO K: S=S+D(C(I)): NEXT I 
60 I F  S>=D THEN C=C+1 
70 J=K: S=O 
75 WHILE C(J)=N-K+J DO J=J-1 
80 C (J) =C (J) +1 
85 FOR I=J+1 TO K: C(I)=C(I-1)+1: NEXT I 
90 UNTIL J=O 
95 PRINT C 
100DATA -3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1,1,-1,-3 

Figure 7 
Permutation Test  

f) Kendall's Rank Correlation 

The two variables in  Table 3 are 

X=lndex of exposure to  radiation of 9 Oregon distr icts 

Y=Cancer mortality per 100,000 man years fo r  these distr icts 

Table 3 
Source: Journal o f  Environmental Health v. 27, 1965, 883-897 

Replace each cancer mortality b y  i t s  rank. You get the permutation 
p=145326798. Is this a "random" permutation? There are 36 p a i r s  a l -  
together, of which 30 are r is ing and 6 are fall ing (inversions). By sym- 
-metry we expect i n  a random 9-permutation 18 r is ing and 18 fall ing 
pairs. 

Let us generate 1000 random 9-permutations, count the inversions with 
the variable INV and test if 1NV56 or  INVz3O. For each occurrence of 
th is event a counter T is increased b y  1. The T-values of 20 simuiation 
runs of the program in Figure 8 are: 

The average of these values is f=13. Thus 
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10 FOR M = l  TO 1000: INV=O 
20 FOR I=1 TO 9: X(I)=I: NEXT I 
30 FOR 1=9 TO 2 STEP -1 
40 K=l+INT(I*RND(l)):C=X(I) :X(I)=X(K):X(K)=C 
50 NEXT I 

60 FOR l=1 TO 8 
65 FOR J=1+1 TO 9 
70 IF X(I)>X(J) THEN INV=INV+l 
75 NEXT J 
80 NEXT I 

85 IF INV<=6 OR 1NVk30 THEN T=T+1 

90 NEXT M 

95 PRINT T 

Figure 8 
Counting inversions 

It can be shown t h a t  t h e  exact  P-value is 

P= P ( I NV(6) =2298/9 ! = 0.0063 
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