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STATISTICS BY SIMULATION

Arthur Engel
University of Frankfurt

You want to find the probability of an event A, but you do not know how to
compute p=P(A). Repeat the random experiment N times and count the fre-
quency F(A,N) of the occurrence A. Then

p=F(A,N)/N

is a good estimate of p, if N is large and p_is not too small. If p is not small
this is a good job for classroom simulation. But in statistics we are dealing
with small probabilities, which are difficult to estimate by simulation. You
must do a great many repetitions, far beyond individual patience and mostly
beyond the patience of a classroom. This is an ideal job for a computer. A
programmable pocket calculator (PPC) will also do. A BASIC-PPC costs
about $50, is about 3 times slower than an Apple and has a random number
generator (RNG) which is superior to that of Applesoft-BASIC.

We will study in depth the simple, but important problem of MATCHED
PAIRS, which can be treated in a new way by means of the computer.

a) The data in Table 1 are from the first controlled marijuana study. It
shows for N=9 subjects the changes X, Y in mental performance 15
minutes after smoking an ordinary cigarette and a marijuana cigarette,
respectively. (Positive X's and Y's represent improvements.) A coin
decided for each subject which type of cigarette was smoked (randomi-

zation).
Table 1
Source: SCIENCE 162, 1234-1242
X -1 -1 -3 3 -3 -3 2 4 10 z X=8
Y 1 -3 -7 -3 -9 5 -6 -7 -17 L Y=-46
D=Y-X 2 -2 -4 -6 -6 8 -8-11 -27 I D=-54
|D|=di 2 2 4 6 6 8 8 11 27 £ |D|=74

Null Hypothesis H: It is just a random fluctuation. There is no differ-
ence in the effects of the two types of cigarettes.

Alternative A: Marijuana lowers average mental performance.

Thanks to the computer we can use as test statistic the random variable

T+dqly +dalg +...+ dglg
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The Ik are spins of the spinner in Figure 1. We ob-
serve in line 3 of Table 1 that the sum of the positive
differences is T=10, or, equivalently the sum of the
negative differences T=64, which is just as surprising.
We want to find P=P(T<10)=P(T>64). But tossing a good
coin 9 times is the same as choosing a random subset of
our 9-set of positive differences with each of the 29 or
512 subsets having the same probability.

10 INPUT REP,N,LOW,HIGH: DIM D(N)

20 FOR I=1 TO N:READ D(!):NEXT

30 FOR I=1 TO REP:T=0

40 FOR J=1 TO N:T=T+D(J)*INT(2*RND(1)) :NEXT
50 IF T<=LOW OR T>=HIGH THEN C=C+1

60 NEXT 1 : '

70 PRINT C

80 DATA 2,2,4,6,6,8,8,11,27

Figure 2

The program in Figure 2 draws at random a subset of an N-set and finds
its sum T. This is repeated REP times and it counts with the variable C
how often T<LOW or T>HIGH. 20 runs with REP=1000, N=8, LOW=10,
HIGH=64 yield the C-values

81,82,83,84,86,86,88,90,93,94,97,97,98,98, 98,99, 99, 104, 105,105

with median count E=(94+97)/2=95.5 and mean count C=93.2. Thus we
get P~4.775% if we use the median and P~4.66% in using the mean.

How good is our result? What is the exact P-value? In this particular
case we can find the exact probability P=P(T<10|H). There are 29 or
512 possible and equiprobable cases. The favorable cases are simply all
subsets of the di with sum 10 or less: 8,8,8+2,8+2,8+2,8+2,6,6,6+4,
6+4,6+2,6+2,6+2,6+2,6+42+2,6+2+2,4,4+2,4+2,4+2+2,2,2,2+2,0

Thus there are 24 cases favorable for the event T<10. Hence
P(T<10|H)=_24 = 3 = 4.6875%
512 64

b) The next example we will do without simulation. It gives us more in-
sight. But it also shows that the brute force approach rapidly becomes
unfeasible.

Does maternal malnutrition retard the mental development of a child? In

particular, does the better nourished (in utero) of two identical twins
usually develop a higher 1Q than the other?
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The 1Q of 12 pairs of identical twins with different 1Q was measured
years later and compared with the weight at birth. Table 2 shows the IQ
X of the heavy twin and Y of the light twin, respectively.

Table 2 :

Source: Child development, vol. 38, »No. 3, 623-629
X 100 124 108 91 100 91 fB 80 95 104 100 119
Y 101 123 106- 97 106 84 76 70 84 92 85 104
| Y-X]=dg 1 1 2 6 6 79 10 . 11 12 15 15

H: The heavy and the light twins develop the same IQ.
A: The heavy twin usually develops a higher Q.

" The sum of the positive differences Y-X is T=1+6+6=13. Under H all
212 or 4096 subsets of the differences have the same probability.
The favorable cases are those subsets of the di with the sum T<13.
We find these subsets by brute force. Students enjoy this kind of work.
Sort the subsets by the maximum element. By teamwork we quickly get
all solutions: 12,12+1,12+1,11,11+1,11+1,11+2,11+1+1,10,10+2, 10+1, 10+1,
10+2+1,10+2+1,10+1+1,9,9+2,9+1,9+1,9+2+1,9+2+1,9+1+1,9+2+1+1,7,7+6,
1+6,7+2,7+1,7+1,7+2+1,7+2+1,7+1+1,7+2+1+1,6,6,6+6,6+2,6+2,6+1,6+1,
6+1,6+1,6+6+1,6+6+1,6+2+1,6+2+1,6+2+1,6+2+1,6+1+1,6+7+7,6+2+1+1,
6+2+1+1, 2, 2+1,2+1,2+1+1,1,1,1+1,0

There are 4096 possible cases, and those 60 cases listed above are
favorable for T<13. Thus

P=P(T<13|H)=60/4096=14/1024=1.465%
This is strong evidence:for the alternative A that the better nourished

twin develops the higher 1Q. But we had to pay a stiff computational
price for the answer.

c) Next we consider a famous experiment by Charles Darwin. He took 15
pairs of seeds of the same plant and planted them into 15 pots. One seed
of each pair was produced by cross fertilization, the other by self fer-
tilization. For pot #i he measured the height xj of the cross fertilized
plant and the height y; of the self fertilized plant. For the difference
zj=xj-Yyj he got (in 1/8ths of an inch):

6,8,14,16,23,24,28,29,41,—48,49,56,60,-67,75
H: There is no difference between the two kihds of seed.

A: Cross fertilized seeds develop stronger plants.
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With the program in Figure 2 we simulate the experiment using
REP=1000, LOW=115, HIGH=429, N=15 and a new DATA line. Ten repeti-
tions yield: 43,43,43,45,52,52,53,56,59,65. The median count is C=52
with the estimate P=2.6%. How good is this result? Can we find the
exact P-value?

We have a set D={d1,d2,...,dn} of positive differences. What is the
number q(t,n) of subsets with sum T<t?

A subset either contains dp, or it does not. There are q(t-dp,n-1)
subsets of the first kind and q(t,n-1) of the second kind. Thus

q(t,n) = q(t,n-1) + q(t-dp,,n-1)

with the obvious boundary conditions

q(t,n)=0 for t<0 and q(0,n)=q(t,0)=1
We will write the most efficient program for computing q(t‘,n), which will
run on the cheapest PPC. We compute q(t,n) rowwise, and we denote
the current row R(0),R(1),...R(T). To find the next row we use the
recurrence.

R1(t)=R(t)+R(t-d), d of the current row

If we start at the end, then we can store R1(t) into R(t) and so we

need just one array R(t). Figure 3 shows the details of the computation
and Figure 4 shows the corresponding BASIC program.

D l J o 1 2 3 ...JD ... J T

0 1 1 1 1 1 1 1

6 1 ¥ 1 1
8 2 ] 1] ]
14 3 ! ! !
D 1-1 | - - - - R(J-D) R(J) B
| N T T S R1(J) '

N ] == = = = = = = = = = = = = - - - R(T)

Figure 3

R1(J) = R(J) + R(J-D) is stored into R(J)
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d)

10 INPUT T,N: DIM R(T)
20 FOR 1=0 TO T: R(I)=1: NEXT
30 FOR I=1 TO N: READ D
40 FOR J=T TO D STEP -1
50 - R@J)=RJ)+R(J-D)
60 NEXT J
70 NEXT |
80 PRINT R(T)

90 DATA 6,8,14,16,23,24,28,29,41,48,49,56,60,67,75

T
0
1

Figure 4
Program MATCHED PAIRS

For T=115, N=15 the program MATCHED PAIRS gives R(t)=Q(t,N)=863.
Thus P=P(T<115|H)=863/219=2.63%

This program solves quickly any problem about matched pairs that could
arise in practice, even with a PPC.

The Bootstrap Method

Let us now go back to the Marijuana example. By plotting Y versus X we
observe that there seems to be one "outlier" present, the point
(10,-17). With so few data at hand we cannot afford to throw away a
single point. So we decide to keep it.

In addition we observe that Y does not seemed to depend on X. That is,
instead of 9 pairs we have 18 independent data

(-3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1,1,-1,-3)

To these data we apply the BOOTSTRAP METHOD, a new and powerful
computer-intensive method.

Figure 5

221



ICOTS 2, 1986: Arthur Engel

e)

The bootstrap method uses the idea that every sample carries its own
internal yardstick of variability that can be extracted by drawing say
1000 artificial samples from the given sample of 18 data.

We draw from the sample AT RANDOM WITH REPLACEMENT 9 numbers X
and 9 numbers Y, and we find their sums S and T. This is repeated
1000 times and we count with the variable C, how often |S-T|>54, as in
Table 1. The BASIC program can be found in Figure 6.

10 READ N,D: DIM X(N): DEF FN R(X)=1+INT(N*RND(X))
20 FOR I=1 TO N: READ X(I): NEXT

30 FOR J=1 TO 1000:S=0:T=0

40 FOR 1=1 TO N/2

50 S=S+X(FNR(1)): T=T+X(FNR(1))
60 NEXT 1 :

70 IF ABS(S-T)>=D THEN C=C+1

80 NEXT J '

80 PRINT C

95 DATA 18,54,-3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1, 1‘,-1 ,—3

Figure 6

. 32 runs of this program resulted in the C-values: 22,26,26,27,28,28,29,

29,29,30,30,30,31,31,32,32,33,34,35,%5,35,36,36,36,37,38,39,39,40,41,
41,42. The median of these values is C=(32+33)/2=32.5. Thus

- P(|T-S|>54)~3.25% and
P(T-S<-54)~1.6%
The bootstrap method makes far better use of the data contained in the
sample than the classical methods which only compute the mean m and
the standard deviation s of the sample and throw away the rest of the

information. Use of m and s is optimal only for normally distributed
data.

Permutation Test

With the computer we walk through all (18)=48620 9-subsets of the data
(-3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1,1,-1,-3)

It turns out that exactly 766 subsets have the sum > 8, as in Table 1.
Thus we have again P=766/48620=1.5755%. This P-value is comparable to
the bootstrap value. We would always prefer the permutation test but it
is NP-hard, and there will be no good algorithm for the test. The pro-
gram in Figure 7 walks through the 9-subsets in lexicographic order
and counts those with sum >8. It is not comprehensible without extensive
commentary. For the Marijuana example the Apple requires with BASIC
90 minutes. With Turbo Pascal the same machine requires only 2
minutes.
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10 INPUT N,K,D: DIM C(K+1), D(N): C(0O)=-1
20 FOR I=1 TO N: READ D(I): NEXT I

30 FOR I=1 TO K: C(l)=I: NEXT I

40 REPEAT

50 FOR I=1 TO K: S= S+D(C(l)) NEXT 1

60 IF S>=D THEN C=C+1

70  J=K: S=0

75  WHILE C(J)=N-K+J DO J=J-1

80 C(J)=C(J)+1

85 FOR I=J+1 TO K: C(1)=C(I- 'l)+1 NEXT |
90 UNTIL J=0

95 PRINT C

100DATA -3,5,10,-17,-3,-7,3,-3,4,-7,-3,-9,2,-6,-1,1,-1,-3

Figure 7
Permutation Test

f) Kendall's Rank  Correlation

The two variables in Table 3 are
X=Index of exposure to radiation of 9 Oregon districts

Y=Cancer mortality per 100,000 man years for these districts

X l 1.25 1.62 2.49 2.57 3.41 3.83 6.41 8.34 11.64

Y |113.5 137.5 147.5 130.1 129.9 162.3 177.8 210.3 207.5

Table 3
Source: Journal of Environmental Health v. 27, 1965, 883-897

Replace each cancer mortality by its rank. You get the permutation
p=145326798. Is this a "random" permutation? There are 36 pairs al-
together, of which 30 are rising and 6 are falling (inversions). By sym-
‘metry we expect in a random 9-permutation 18 rising and 18 falling
pairs.

Let us generate 1000 random 9-permutations, count the inversions with

the variable INV and test if INV<6 or INV>30. For each occurrence of

this event a counter T is increased by 1. The T-values of 20 simulation

runs of the program in Figure 8 are:
8,9,9,9,10,10,11,11,12,13,14,14,15,15,15,16,16,16,18,19

The average of these values is T=13. Thus

P(INV<6 or INV>30)~0.013,
P(INV<6)~0.0065.
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10 FOR M=1 TO 1000: INV=0

20 FOR I=1 TO 9: X(I)=1: NEXT |
30 FOR I=9 TO 2 STEP -1

40 K*1+INT(I*RND(1)) C=X(1):X(1) X(K) X(K) Cc
50 NEXT |

60 FOR I=1 TO 8
65 FOR J=1+1 TO 9

70 IF X(1)>X(J) THEN INV= lNV+1
75  NEXT J
80 NEXT 1

85 IF INV<=6 OR INV>=30 THEN T=T+1
90 NEXT M
95 PRINT T -
Figure 8
Counting inversions
It can be shown that the exact P-value is

P=P(INV<6)=2298/9! = 0.0063
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