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The reduction of uncertainty enhances knowledge. 
Probability is a measure of uncertainty 

Statistics provides the logic and a r t  for  combining the two. 

Most students know that probabil i ty is a quantitative measure of uncertain- 
ty, a number ly ing between zero and one. I n  repeated tr ials they recog- 
nize that  the number of "successes" divided b y  the total number of t r ia ls 
estimates the probability of a success on the next t r ia l .  Further, most are 
wil l ing t o  estimate the probability that Mr. G will win the next election, al- 
though repeated tr ials are not here appropriate. And many will be wil l ing 
t o  guess the weight of the teacher b y  providing a set of limits within which 
the student is confident that  the t rue  answer will lie. 

Less common is the knowledge that  other metrics exist for  measuring un-  
certainty. For example, odds: 

Odds = (Probability)/(l - Probability) 

and log-odds. Thus, if the probability a horse wil l  win a race is 0.05, the 
odds it will win the race are "one t o  nineteen" o r  simply 0.0526, and the 
loglo - odds equals -1.2788. We note that: 

0 5 Probability 5 1, 

0 5 Odds 5 , 

,m 5 log-odds 5 +" 

Al l  are measures of uncertainty. 

Log-odds can be particularly useful. Many students will readily equate "im- 
possible" and "certain" to  the log-odds equivalents of 2 . Log-odds have 
been called "evidence": if the log-odds are to  the base ten one has so 
many "bets" of evidence in  favour of an hypothesis, to the base e so many 
"napiers", and t o  the base two so many "bits". Log-odds are part icularly 
useful i n  i l lustrating Bayesian methods, that is, for  demonstrating how a 
rational person reduces or  increases his personal uncertainty (belief) in  an 
hypothesis. Postponing the theory, the concept is best i l lustrated b y  an 
example. 

Consider two urns: Urn A consisting of 70% green items and 30% blue, while 
Urn  B has 50% of each. The student is presented with one of these urns. 
What is the probability it is Urn  A? I n  the absence of any information the 
student, who may not peek into the urn, will usually state that the proba- 
b i l i t y  it is Urn A is: Pr(A) = 0.5. The Odds it is Urn A are then: 
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Odds(A)=l .O and the evidence it is u r n  A is Ev(A)=log-odds=log(l.O)=O. 
A t  th is  stage of the student's knowledge, there is zero evidence that  it is 
U r n  A. 

To learn something about the u r n  the teacher withdraws one item. It is 
green. What is the probability it is U rn  A now? Most would agree that since 
it is easier t o  get a green from Urn  A then from Urn B the probabil i ty 
should now be somewhat larger than 0.5 i n  favor of Urn A. This probabil i ty 
can be exactly computed using Bayes' postulate. (Further details of the 
Postulate are given i n  the Appendix.) Symbolically we have: (the .vertical 
slash stands for  the word "given"): 

Pr(A given Green) = [(0.5)(0.7)]/[(0.5)(0.7) + (0.5)(0.5)] = 0.5833 

The Odds are: 0 d d s ( ~ l g )  = P ~ ( A  Ig)/[l - P ~ ( A  Ig ) ]  = 1.40. 

The evidence is: EV(A IG )  = loglO(l .40) = 0.1461 bels. 

A second item i s  now drawn. It is also green. What is the probability of U rn  
A now? (We assume an inf inite number of items in  each urn. If not infinite, 
then our computations will have to  be sl ightly adjusted. The point here i s  to  
demonstrate the learning process i n  as simply a context as practicable.) 
Substitut ing in  (1) gives: 

Newest P ~ ( A  l g )  = [(.5833)(0.7)]/[(0.5833)(0.7)+(0.4167)(05)] = 0.6621. 

The new odds are (0.6621)/(0.2279) = 1.9597, and the new log-odds equal 
0.2922. 

It i s  important now to  note that the second green added 0.1461 bels of ev i -  
dence. I n  fact, each successive green adds 0.1461 bels in  favor of Urn A. 
I n  dealing with uncertainty, evidence adds. A l i t t l e  arithmetic will show 
tha t  a single blue item will contribute -0.2218 bels of evidence in  favor of 
A since: 

An image of Dame Justice emerges, blindfolded and holding aloft a two-pan 
balance. Each green item, placed in  one pan, adding evidence for  A while 
each blue item, placed in  the second pan, subtracting (adding negative 
evidence on behalf of A. The pans tilt and eventually one may learn enough 
t o  take a decision. 

A practical application i n  industry concerns the problem of acceptance 
sampling. A large batch of items appears at the receiving wharf and an 
engineer is asked to  determine whether the batch i s  acceptable. How does 
one proceed? 
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The process manufacturing the batches of items is considered to  have two 
states: A and B. Let Process A be the OK process identified as producing 
matches with only 8 = 1% bad items and let  Process B be the undesirable 
process with 8 = 3% bad items. Let the init ial probabil i ty the items were 
produced b y  Process A be Pro(A) = 0.5, that  is, let there be zero p r io r  
evidence as to  whether the engineer is dealing with batches from A o r  B. 

The engineer now takes an item from the batch and discovers it is good. 
How much evidence has been generated on behalf of the hypothesis tha t  the 
unknown process is actually process A? Evoking Bayes Postulate we get: 

o r  equivalently, EV(Ag) = 0.00886 bels. If the item is bad then: 

o r  Ev(A 1 b) = -0.47712 bels. With each successive item the engineer learns 
more about the process, the evidence i n  favor of A grows or  declines i n  a 
simple additive fashion. 

The engineer now adopts the following two rules. 

1) If the probabil i ty the process is A ever gets t o  Pr(A) > 0.95 he wi l l  
decide it is A. He thus requires 1.27875 bels fo r  A, and since evidence 
adds, he will require a t  least (1.27875)/(0.00886) = 145 good items in  
succession. 

2 )  If the probabil i ty it is process A ever falls t o  Pr(A) < 0.20 he wi l l  de- 
cide it is not a batch manufactured b y  process A and reject the batch. 
He thus needs -0.60206 bels t o  reject the batch. 

Note, in  th is example it wi l l  take more than one bad item t o  reject. 

The engineer may now construct the graphical sequential acceptance 
sampling scheme as i l lustrated i n  the following f igure. As each good item i s  
identified he adds 0.00886 bels t o  his total evidence and subtracts 0.47712 
fo r  every bad item. The accumulation of evidence is displayed i n  the 
Figure. 
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Appendix 

I n  the metric of probabil i ty Bayes Postulate is: 

I n i t i a l  P r o b a b i l i t y  P robab i l i t y  of e  
New Probab i l i t y  iven H i s  t r u e  
o f  H given e  

{ 0 f . H  }'{g ) 
{Probab i l i t y  o f  e )  

where H stands for  the hypothesis i n  question and e for  some observed 
event. I n  more terse notation we have: 

where the vertical slash I stands fo r  the word "given", where Pro(H) is 
the probabil i ty on the hypothesis before the event e, and where Pro(h) = 
[I  - Pro(H)]. 

I n  the metric of log-odds Bayes Postulate becomes: 

l og -~dds )  = {old l o g - ~ d d s )  { ~ r  (e I H ) )  
on H given e  on H + log ~ r ( e  lh) 

or  simply: 

evidence Or ig ina l  evidence Evidence provided 
on H given e  } = {  o n H  by t h e  event e  
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