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BAYESIAN APPROACHES TO TEACHING ENGINEERING STATISTICS

. Siguart Hunteb
Princeton, N.J., Uk.S.A.

The reduction of'uncertainty enhances knowledge.
Probability is a measure of uncertainty
Statistics provides the logic and art for combining the two.

Most students know that probability is a quantitative measure of uncertain-
ty, a number lying between zero and one. In repeated trials they recog-
nize that the number of "successes" divided by the total number of trials
estimates the probability of a success on the next trial. Further, most are
willing to estimate the probability that Mr. G will win the next election, al-
though repeated trials are not here appropriate. And many will be willing
to guess the weight of the teacher by providing a set of limits within which
the student is confident that the true answer will lie.

Less common is the i(noWledge that other metrics exist for measuring un-
certainty. For example, odds:

- Odds = (Probability)/(1 - Probability)

and log-odds. Thus, if the probability a horse will win a race is 0.05, the
odds it will win the race are "one to nineteen" or simply 0.0526, and the
log1g - odds equals -1.2788. We note that:

0 < Probability < 1,
0 <0dds £ =,
-® < log-odds < +°
All are measures of uncertainty.

Log-odds can be particularly useful. Many students will readily equate "im-
possible” and "certain" to the log-odds equivalents of ¥ ® . Log-odds have
been called "evidence": if the log-odds are to the base ten one has so
many "bels" of evidence in favour of an hypothesis, to the base e so many
"napiers”, and to the base two so many "bits". Log-odds are particularly
useful in illustrating Bayesian methods, that is, for demonstrating how a
rational person reduces or increases his personal uncertainty (belief) in an
hypothesis. Postponing the theory, the concept is best illustrated by an
example.

Consider two urns: Urn A consisting of 70% green items and 30% blue, while
Urn B has 50% of each. The student is presented with one of these urns.
What is the probability it is Urn A? In the absence of any information the
student, who may not peek into the urn, will usually state that the proba-
bility it is Urn A is: Pr(A) = 0.5. The Odds it is Urn A are then:
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Odds(A)=1.0 and the evidence it is urn A is Ev(A)=log-odds=log(1.0)=0.
At this stage of the student's knowledge, there is zero evidence that it is
Urn A.

To learn something about the urn the teacher withdraws one item. It is
green. What is the probability it is Urn A now? Most would agree that since
it is easier to get a green from Urn A then from Urn B the probability
should now be somewhat larger than 0.5 in favor of Urn A. This probability
can be exactly computed using Bayes' postulate. (Further details of the
Postulate are given in the Appendix.) Symbolically we have: (the.vertical
slash stands for the word "given"):

Pr(Alg) = [Pro(A) Pr(g|A)]/[Pro(A) Pr(g|A) + Pro(B) Pr(g|B)]. (1)
Pr(A given Green) = [(0.5)(0.7)]/[(0.5)(0.7) + (0.5)(0.5)] = 0.5833

The Odds are: Odds(A]g) = Pr(A|g)/[1 - Pr(A]g)] = 1.40.

The evidence is: EvV(A|G) = log1g(1.40) = 0.1461 bels.

A second item is now drawn. It is also green. What is the probability of Urn
A now? (We assume an infinite number of items in each urn. If not infinite,
then our computations will have to be slightly adjusted. The point here is to
demonstrate the learning process in as simply a context as practicable.)
Substituting in (1) gives:

Newest Pr(A|g) = [(.5833)(0.7)]/[(0.5833)(0.7)+(0.4167)(05)] = 0.6621.

The new odds are (0.6621)/(0.2279) = 1.9597, and the new log-odds equal
0.2922.

It is important now to note that the second green added 0.1461 bels of evi-
dence. In fact, each successive green adds 0.1461 bels in favor of Urn A.
In dealing with uncertainty, evidence adds. A little arithmetic will show
that a single blue item will contribute -0.2218 bels of evidence in favor of
A since:

Pr(A|b) = Pro(A) Pr(b]A)/[Pro(A) Pr(b|A) + Pry(B) Pr(b|B)].

An image of Dame Justice emerges, blindfolded and holding aloft a two-pan
balance. Each green item, placed in one pan, adding evidence for A while
each blue item, placed in the second pan, subtracting (adding negative
evidence on behalf of A. The pans tilt and eventually one may learn enough
to take a decision.

A practical application in industry concerns the problem of acceptance
sampling. A large batch of items appears at the receiving wharf and an
engineer is asked to determine whether the batch is acceptable. How does
one proceed?
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The process manufacturing the batches of items is considered to have two
states: A and B. lLet Process A be the OK process identified as producing
matches with only 8 = 1% bad items and let Process B be the undesirable
process with 8 = 3% bad items. Let the initial probability the items were
‘produced by Process A be Pro(A) = 0.5, that is, let there be zero prior
evidence as to whether the engineer is dealing with batches from A or B.

The engineer now takes an item from the batch and discovers it is good.
How much evidence has been generated on behalf of the hypothesis that the
unknown process is actually process A? Evoking Bayes Postulate we get:

Pr(Alg)) = (0.5)(.99)/[(0.5)(0.99) + (0.5) (0.97)] = 0.50510
or equivalently, EV(Ag) = 0.00886 bels. If the item is bad then:
Pr(A|b) = (0.5)(0.01)/[(0.5)(0.01) + (0.5)(0.03)] = 0.25000

or Ev(A|b) = -0.47712 bels. With each successive item the engineer learns
more about the process, the evidence in favor of A grows or declines in a
simple additive fashion.

- The engineer now adopts the following two rules.

1) If -the probability the process is A ever gets to Pr(A) > 0.95 he will
decide it is A. He thus requires 1.27875 bels for A, and since evidence
adds, he will require at least (1.27875)/(0.00886) = 145 good items in
succession.

2) If the probability it is process A ever falls to Pr(A) < 0.20 he will de-
cide it is not a batch manufactured by process A and reject the batch.
He thus needs -0.60206 bels to reject the batch.

Note, in this example it will take more than one bad item to reject.

The engineer may now construct the graphical sequential acceptance
sampling scheme as illustrated in the following figure. As each good item is
identified he adds 0.00886 bels to his total evidence and subtracts 0.47712
for every bad item. The accumulation of evidence is displayed in the
Figure.
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Appendix

In the metric of probability Bayes Postulate is:

Initial Probability| Probability of e}
New Probabilityl _ of H given H is true
of H given e '

{Probability of e}

where H stands for the hypothesis in question and e for some observed
event. In more terse notation we have:

Pr(H|e) = Prg(h) Pr(e|H)/[Pro(h) Pr(e|h) + Prg(h) Pr(e|h)]

where the vertical slash | stands for the word "given", where Pro(H) is
the probability on the hypothesis before the event e, and where Pry(h) =
[1 - Pro(H)] .

In the metric of log-odds Bayes Postulate becomes:

{New log—odds}= {Old log—odds} . 1Og{Pr(eIH)}

on H given e on H Pr(elh)
or simply:

fTotal evidencel _ jOriginal evidence . Evidence provided
on H given e on H by the event e
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