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Introductorv Notes 

Many of the lecturers here expressed their opinion that the primary task of statistics 
departments is to produce truly professional statisticians. However at least a part 
of the statisticians must have a serious mathematical background especially in 
probability theory, stochastic processes and mathematical statistics. The new term 
stochastics is very suitable for these three disciplines. Scientists working in the field 
of stochastics will be called stochasticians. It is obvious that the stochasticians are 
educated at the mathematics departments of universities. So, the main problem is 
how to organize the teaching process for the students in order to produce good 
statisticians and stochasticians who would be able to solve problems arising in the 
real world as well as other purely theoretical problems. 

Countermples: Meanine; and Use 

Since the curriculum of the mathematics departments includes courses in 
stochastics, and we have to teach such courses, the goal is to do this in the best 
possible way. On one hand we use the best existing textbooks, the classical books 
written by A. Kolmogorov, H. Cram&, P. Lhy ,  W. Feller, J. Doob, B. Gnedenko, 
M. Loeve, K.L. Chung, E. Lehmann, as well as many other recent textbooks and 
lecture notes. On the other hand for our lectures and seminars we can use different 
approaches, ideas and schemes. 

Let us describe one possible general scheme which we could follow in teaching 
courses in stochastics: 

THEORY EXAMPLES COUNTEREXAMPLES APPLICATIONS 

We use the term counterexample in its standard meaning as accepted in 
mathematics. The counterexample is a statement which in a sense is opposite to 
another statement. If we have proved a statement under conditions which are 
necessary and sufficient, then everything is clear: any change of the conditions 
implies a change of the statement, and any new statement, even close to the given 
one, requires new conditions. So, our attention will be focussed on statements 
involving conditions which are only necessary or only sufficient. 

The counterexamples help us to understand better the main results in stochastics as 
well as to discover the relationship between near notions and concepts. The 
systematic use of counterexamples makes the courses and seminars much more 
interesting. It is a nice and very natural way to stimulate our students to think 
deeper and to search for answers to nontrivial questions. There is no doubt that the 
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learning of stochastics can be done much more effectively if we use counterexamples. 
The role of such examples in forming the so-called stochastic thinking is essential. 

Let us mention finally that not only the so-called positive results and examples, but 
also the counterexamples define the power, the wideness, the depth, the degree of 
nontriviality, and of course, the beauty of the theory. 

List of Selected Counterexam~les 

Now we shall present a short list of specific counterexamples. They concern the 
basic probabilistic objects: random events, random variables and stochastic 
processes. We are not going to consider here counterexamples from mathematical 
statistics. 

1. Introducing a probability measure P we assume that P is either additive 
or -additive. Every a-additive measure is additive, but not conversely. 
There are probability measures which are additive but not a-additive. 

2. For random events we consider the notions of a mutual independence and a 
pairwise independence. There are sets of random events which are pairwise 
independent but not mutually independent. 

3. Suppose A, 13, C are random events satisfying the relation: 

P ( ABC) = P ( A)P(B)P (C) . 
Question: Does it follow that A, B, C are mutually independent? Answer: 
No. 

4. If R is the space of the outcomes of some experiment and P is a 
probability measure on the set of random events, then it is not always true 
that in 52 do there exist nontrivial independent events. 

5. Let X, Y, Z be random variables. Suppose X and Y are identically 
d d distributed: X = Y. Does it follow from here that X .2  = YoZ? The 

answer is negative. 

6. If F(xl,. *,xn), (xl,. .,xnl E Rn is the distribution function (d.f.) of the 
random vector (XI,. . ,Xn then the marginal d.f.s Fl(xl), . ,Fn(x,) of 
XI, . ,Xn, respectively, are determined uniquely. But not conversely. For 
given marginals F1,. . . ,F, we can find even infinitely many n--dimensional 
distributions having F1,. . . ,Fn as marginal distributions. 
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7. Let f be a unimodal probability density function and * means the 
convolution operation. Then in general f jr f need not be unimodal. 

8. One of the important properties of the expectation E is the linear property: 
E[Xl+X2] = EXl + EX2, E[Xl+X2+X3] = EX1 + EX2 + EX3, etc. 
Question: Does this linear property always hold? Answer: No. 

9. Suppose X is a random variable (r.v.) with a symmetric distribution. Then 
all odd order moments of X vanish: E[x~~+']  = 0, k = 0,1?2,. . . But not 
conversely. There are r.v.'s whose odd order moments vanish and despite 
this fact the distributions of these variables are nonsymmetric. 

10. If X and Y are independent r.v.'s and gl(x), g2(x), x E R1 are arbitrary 
(Borel) functions, then gl(X) and g2(Y) are r.v.s which are independent. 
However the converse statement is not always true. In particular, X2 and 
Y2 can be independent even if X and Y are dependent. 

11. Let X be a r.v. with characteristic function (ch.f.) $(t), t E R1. If 
E 1 X 1 < m, then fJ(0) exists. But not conversely. The derivative 4' (0) 
can exist even if E XI = m. 

12. If (Xi,. ,Xn) is a random vector with n-dimensional normal distribution 
then each of XI,. . ,Xn and any subset of them has a normal distribution. 
However the converse statement is not true. We can present an example of 
non-normal vector (XI,. . ,X,) such that any k of its components, 
Xi , . . ,Xik, k = 1,2, ,n-1 are mutually independent and each Xj is 

I 
normally distributed. 

13. Let F be a d.f. and {al, a2,. a }  be the set of its moments: 

If F is the only d.f. with these moments, we say that the moment problem 
for F is determined. Otherwise the moment problem is undetermined. It 
can be shown that there are absolutely continuous distributions and discrete 
distributions which are not uniquely determined by their moments. 

14. Usually we introduce and study the following kinds of convergence of 
sequences of r.v.s: 

P convergence in distribution ( 1) , convergence in probability (----4) , 
L' 

convergence in Lr-sense (------+), and almost sure convergence ( a.S' 1). 
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P L' P P Then 1 implies -+; - implies -; - implies d ,  
It can be shown that all these implications are strong. 

15. For sequences of r.v.s {X,, n 2 1) we consider two laws of large numbers, 
the weak law (WLLN) and the strong law (SLLN). If {X, satisfies the 
SLLN then it satisfies also the WLLN. But not converse y. There are 
sequences {X,) obeying the WLLN but not the SLLN. 

I! 

16. It is well-known how important is the central limit theorem (CLT) for 
sequences of r.v.'s {X,, n 2 1). It can be shown that {X,) can obey the 
CLT without validity of the Feller condition, or without the uniform 
asymptotic negligibility condition. Further, it can happen that {X,) 
satisfies the integral CLT but not the local CLT (for densities). 

17. For stochastic processes X = (Xt, t 2 0) we consider several important 
properties such as measurability, separability, continuity, integrability. 
There are interestin counterexamples illustrating these properties. In 
particular, let X = kt, 0 5 t 5 1) be a process with covariance function 
I'(s,t) = E[Xs,Xt], s, t E [0,1]. Then there is a classical result: The integral 

1 

1; Xt dt exists in L2-sense if and only if the Riemann integral 

exists. However, this classical result is not correct. There is a process X 
whose covariance function I' is not Riemann integrable but nevertheless the 

I 
integral (L2)lo Xt dt exists. 

18. If X is a Markov process, then its transition probabilities satisfies the 
Chapman-Kolmogorov equation. But not conversely. There are random 
sequences (X,, n = 0,1,2, . a )  whose transition probabilities satisfy the 
Chapman-Kolmogorov equation, and despite this fact, these sequences do 
not form Markov processes. 

19. Every strictly stationary 2 2  process is also weakly stationary. However a 
process can be weakly stationary without being strictly stationary. 

20. If X is a point process such that the number of the points in any interval 
has a Poisson distribution and any two (or N) increments are independent, 
it does not imply that X is a Poisson process. 
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Detailed DescriDtion of a Few Counterexam~les 

Now we shall describe in details some specific examples. A part of them is given 
specially in a form which is suitable even for students of the secondary schools. 

Exam~le A (S. Bernstein, 1928 Suppose a box contains four tickets labelled by 
112, 121, 211 and 222. Let us c k oose one ticket at random and consider the random 
events: A1 = (1 occurs at the first place , A2 = (1 occurs at the second place and 
A3 = {l occurs at the third place}. 0 b viously we have: P(AJJ = $, P(A21= $, 
P(A3)=3. Further,since A1A2= {112),A1A3- 121) and 2A3= {211}, we 
find easily that P(A1A2) = f ,  P(A1A3) = f ,  P(A~A$ = +. SO we conclude that the 
three events A1, A2, A3 are pairwise independent. However AlA2A3 = 4 the 
empty set, and hence P(A1A2A3) = 0 # (3)3 = P(A1)P(A2)P(A3). Therefore these 
three events are not mutually independent. Thus, the general conclusion is that the 
pairwise independence of a given set of random events does not imply that these 
events are mutually independent. 

Note that the Bernstein's example can be generalized. namely, we can describe an 
experiment and define n random events A1, A2, . , An such that any n-1 of 
them are mutually independent but all n are not. 

Exam~le B. Suppose A1, A2, A3 are random events such that 

The question is whether these events are mutually independent. The answer will 
follow from a simple and instructive example. Indeed, let us consider the following 
experiment. Toss two different standard dice, white and black, and let the space IR 
of the outcomes consist of all ordered pairs ij, i, j = 1, . , 6 and each point of SZ 
has probability 1/36. Consider the events: 

Al = {first die = 1, 2 or 31, A2 = {first die = 3, 4 or 51, A3 = {sum of faces is 9). 

Clearly we have 

A1A2 = {31,32,33,34,35,36), A1A3 = (361, A2A3 = {36,45,54}, A1A2A3 = (36). 

Then P(A1) = 1/2, P(A2) = 1/2, P(A3) = 1/9 and 

Nevertheless the events A1, A2, A3 are not mutually independent. This follows 
from the relations: 
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Exam~le C. Let X and Y be r.v.s whose joint distribution is absolutely 
continuous with density 

Direct calculation shows that each of X and Y has a standard normal 
distribution, X ~ J ( 0 , l )  and Y ~ J ( 0 , l ) .  Further we easily find that E[X-Y] = 0 
which implies that the variables X and Y are uncorrelated. So, we have two r.v.s 
which are normally distributed and are uncorrelated. Question: Are X and Y 
independent? 

Note that this question is followed sometimes by a wrong answer. The correct 
answer is negative, i.e. X and Y are not inde endent. Being uncorrelated they 
would be independent only if their joint density f&,.y) is a bivariate normal density 
function. The explicit form of f(x,y) shows that t h s  is not the case. 

Note additionally that if X and Y are independent r.v.'s (with finite variances), 
then they are uncorrelated. The above example shows that in general the converse 
statement is not true (even if X and Y are normally distributed). 

Example D. Let as usual @ and cp denote the standard normal d.f. and its 
density, respectively. Consider another function 

where E is any number in the interval [-1,1]. It is easy to verify that H(x,y) is a 
two-dimensional d.f. with marginal distributions @(x) and @(y), respectively. 
Clearly, if E. # 0 then H is non-normal. So, we have obtained infinitely many 
non-normal distributions such that all their marginals coincide with the standard 
normal distribution. If we take h(x,y) = cp x)p(y)[l + ~.(2@(x)-1)(2@(y)-I)] we 
get iinfinitely many non-normal densities ( ! or E # 0) such that all marginal 
densities coincide with the standard normal density function. 

Example E. Let X be a r.v. with distribution X(a, 02) and let f be its density. 
Take n copies of X, say Xi,. . . ,Xn, n >_ 3 and define their joint density gn as 
follows: 

n 
gn(x1,. . . ,xn) = [.fi 1.1 f (xi)] [l + J .n = I  (xj-a)f (xj)]. 

Obviously, g, is not a n-dimensional normal density. Let us choose k of the 
given n variables where k = 2, 3,- . ,n-1. If our choice is Xi , . . ., Xik and gk 

1 
denotes the density of (Xi , - . . ,Xik)  we find easily that gk(xl,.+-,xk) = f(x1) ... 

1 
f(xk). Therefore the variables Xi. are jointly normally distributed and moreover 

1 

they are mutually independent.  kca all that this holds for 2 5 k 5 n-1 despite the 
fact that the random vector (Xi, . ,Xn) is non-normally distributed. 
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a) In the literature we can find many other interesting counterexamples. Those 20 
given above are chosen from my much bigger collection of more than 500 
counterexamples. The best ones are prepared as a book which according to the plan 
will be published in 1987 by "John Wiley & Sons" (Chichester . The variety of the 
counterexamples makes then suitable for a wide circle of rea d ers: students in the 
high schools and their teachers, but mainly for university students and even for 
professional stochasticians. 

b) Clearly there are a lot of problems in statistics and stochastics and they must be 
solved joint1 by the statisticians and the stochasticians. The ICOTS I1 (Victoria, 
August 1986 3 is an example, not a counterexample, of good collaboration between 
representatives of many countries. 
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