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TEACHING STATISTICS THROUGH PARADOXES

G J. Szekely
Ectves University
Budap’est, vHUngary.

Not to write satire, at least in Juvenalis' opinion, is hard, but not to find
paradoxes in mathematical statistics is. even harder. Bayesianism and anti-
Bayesianism is one of the evergreen fields of controversies.. Several recent
paradoxes of statistics are due to H. Robbins, Ch. Stein, A. Stuart, D.
Basu R.R. Bahadur, D.F. Friedman, D.V. Lindley, J.W. Tukey, L.
LeCam, J. Sethuraman, V. Barnett, etc. Most of the classical and several
recent paradoxes are contalned in the forthcoming book Székely (1986) As
the teaching experience of "Budapest Semesters in Mathematics" shows,
these paradoxes help the students to perceive new ideas if the courses fol-
low the style of Socrates' dialogues. The earliest paradox of the book
comes from the Bible where the story of Jacob and Laban is elucidated from
a new, mathematical angle. The following paradoxes have been crystallized
during the past years, some of them are results of discussions and debate
with-my colleague, T.F. -Mori.

1 Why do buses run more frequently in the oppOS|te direction in the sense
- that the expected number of buses passmg in the opposite direction
~while we are waiting for the one we take is bigger than 1/27 -

2. M-estimates and L-estimates for location parameters are "almost" incom-
patlble (except some trivial cases as the arithmetic mean of observations
in the normal distribution case and the median estimator in the Laplace
distribution case).

3. For normal distribution the usual unbiased estimators of the mean and
the variance (X and s2) are independent (in fact this is a char-
acteristic property of normal distributions) and thus their correlation is
0. This correlation remains 0 if the normal distribution is replaced by
any other symmetric distribution having finite variance. Surprisingly,
if symmetry is replaced by unimodality then the upper limit of the cor-
relation of X and s2 is /15/16 ! If not even unimodality is suppos-
ed then the upper limit is 1 (which is never attained).

4. Uncorrelatedness of the random variables X and Y does not imply their
independence. But (!)

(i) if X and Y are uncorrelated under restrictions x7 < X < x3
and yq{ < Y < vy, whatever the numbers x7 < x3 and
y1 < y2 be, then X and Y are independent,

(ii) if the regression of Y on X and on the regression of X on Y is
linear (as in the case of two-dimensional normal distributions) then
correlation is the same as maximal correlation thus uncorrelatedness
implies independence.
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This regression property holds, for example, in the case of two-dimen-
sional beta dlstrlbutnon whose probability density function is propor-
tional to xa-lyb-T(1-x-y)c-1 for x,y,1-x-y > 0, and 0
otherwise (a,b,c, > 0). A simple consequence of this property of beta
distribution is the following theorem: the correlation of elements of an
ordered sample is maximal if the sample comes from a uniform distribu-
tion.

5. Several paradoxical situations occur when the maximum likelihood equa-
tion has more than one root. An example is the following: the sample
elements are normally distributed with expectation x4 and variance
proportional to |u|.

6. Using the analogy of "testing normality" if we want to test "Poissonity"
then first we should construct a function g of the sample elements Xj,
X2, ... Xp such that the distribution of g(Xq7,X2, ..., Xp)
does not depend on the parameter of the supposed Poisson distribution.
Such a function, however, does not exist (except the trivial, constant
function)!

7. When apply a two-sided F test, textbooks frequently say that the inter-
val (a,b) where we accept the hypothesis can be calculated from the
equations:

a -

[ dF(x) = €/2 and IbdF(x)=e/2

- O

where F is the distribution function of the underlying F-distribution and
e is the probability of the error of the first kind. However, if both
tails of the F-distribution have probabilities /2 then the test, in gen-
eral, is not unbiased. If we prefer unbiased tests then we should re-
quire the following conditions:

b b : 4
J dF(x) = 1-¢ [ ®xdF(x) = (1-¢) [ xdF(x)
a a -0

Thus we must not use equal probabilities in the tails "for simplicity".

8. Several statistical inferences are based on the limit theory of relative
frequencies stating that this frequency k/n tends to the probability p of
the observed event. Suppose that after ng trials the relative frequency
is 0 < p < 1, and from this trial on the probability of events varies after
each observation, namely the probability of the next event is just the
relative frequency of all previous observations. One can prove that even
in this case the relative frequency converges with probability one as the
number of the observations n tends to infinity. The distribution of the
limit is beta with parameters (p,1-p).

9. Suppose X has an exponential distribution whose parameter has an ex-

ponential apriori distribution, too. The parameters of this a priori dis-
tribution is also exponentially distributed etc. If we stop after n steps
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and the resulting random variable is X, then the limit dlstrlbutmn of
2|og Xy, is normal with expectation 0 and variance 1 761

10. In the last paradox of the talk we discuss the idea of giving statistical
solutions for non-statistical problems in number theory, graph theory,
etc. On the other hand we can give non-statistical, non-probabilistic
solutions for statistical-probabilistic problems using topological alge-
braic arguments.

This is the topic of our book Ruzsa-Székely (1987).
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