
The Central Role of the PC in Teaching
Statistics at School

Arthur Engel - Frankfurt, Germany

1. Introduction

Usually the PC is used in statistics to do quickly and conveniently what we have
always been doing. This is a misuse of the PC since it has the potential to change
statistical practice fundamentally. Historically, statistics was developed when comput-
ation was hard and expensive. To avoid massive computation a lot of sophisticated
theory based on asymptotics was developed. Now computation is cheap and easy. The
PC should replace sophisticated theory by simple computations, and make statistics
more comprehensible.

We should strive for understanding. Sophisticated statistical software is peda-
gogically harmful. We do not want to solve a dozen problems a day by using recipes.
We want to solve a few paradigmatic examples in a few weeks. School statistics should
solve a small number of fundamental problems, not quickly, but leisurely. We should
derive programs for the solutions, which are general enough, so that they solve a whole
class of problems. I do not advocate much deep programming, which is quite difficult.
On the other hand, statistical software is for professionals. To learn its use requires an
effort comparable to the effort of learning a new programming language. Design of a
program is an important part of the learning process. A problem is solved if you have
an efficient algorithm for its solution, which you understand.

2. What does statistics do? The two sample problem

In the words of Bradley Efron, statistics compares sets of numbers - with eat

other, with theoretical models, and with past experience (Efron, 1979). Here is a prot
typical statistical question: Is MethodA better than Method B?

Example #I: I can reach my office via two routes, A or B. By stopwatching th
time (in deciminutes) I get, for A: 65, 69, 72, 75, 76, 80, 82, 85, 85, 94, and for
B: 74, 79, 79, 81, 86, 88, 95, 97, 99.

Session A3

ICOTS 3, 1990: Arthur Engel

Let us subtract the minimum 65 from these numbers. Then we get two sets of
hers A = {0,4,7,10,11,15,17,20,20,29) and B = {9,14,14,16,21,23,30,32,34).

Is the set A in some sense smaller than the set B? To answer this question we
the elements in A and B getting CA = 133 and CB = 193. Let us combine the

sets A,B into one set C with 19 elements. Now consider all 19cg = 92 378
[ions of the set C into sets X and Y of 10 and 9 elements, respectively. Find the

r, s, of all partitions with CX I 133. Then P = ~192378 is the probability of
such an extreme value or even a more extreme one by pure chance if A-roads are

t faster than B-roads.
The problem reduces to counting the number q(n,k,t) of k-subsets of the n-set of
ative integers (dl, ..., dn) with sum I t. Obviously

with boundary conditions

q(&k,t)=lfark=Oandt20 and q(n,k,t)=Oforn<kort<O.

This recursion can be immediately translated into the Pascal program below:

program Twosample;
const &array[1..191 of byte.(0,4,7,9,10,11,14,14,15,16,17.20,20,21,23,29,30,3~34);
var n,k,t,s:integer;
function q(n,k,t:integer):integer;
begin

if (k<O) or (t<O) then q:=O
else if k=O then q=l
else q:=q(n-l,k,t)eq(n-1,k-l.td[nJ)

end;
begin write ('&kt='); readln(n,k,t); s:=q(n,k,t);

writeln('s=',s,' P='.s/92378.0)
end.

I With (n,k,t) = (19,10,133) we get in two seconds s = 2991, P = 3.24%.

Example #2: Should hospitals allow parents of sick children to stay with them
to shorten the stay in the clinic (rooming-in model)? To find out, 50 children were
selected and partitioned at random into two 25-subsets. For one subset the parents
stayed with the children. This subset produced the set A = (6,6,7,7,7,7,8,8,8,8,8,8,8,
10,12,12,14,15,16,17,17,19,21,29,32) of days in the clinic. The other set, B =
(7,7,7,7,8,10,11,11,11,12,12,14,15,15,16,18,18,22,23,28,29,29,31,44) of days, was
for the children without rooming-in. Let us subtract 6 from each member of the two
sets. We get A = (0,0,1,1,1,1,2,2,2,2,2,2,2,4,6,6,8,9,10,11,11,13,15,23,26) with CA
= 160 and B = (l,l,l,l,2,4, 5,5,5,6,6,8,9,9,9,10,12,12,16,17,22,23,23,25,38) with CB
= 270. Now we combine A and B into one set C and consider all 5 0 ~ 2 5 = 12641 06064
37752 partitions of the set C into sets X and Y of 25 elements each. Find the number,
s, of all partitions with CX I 160. Then P = s I 50~25 .

I
I Session A3 169

ICOTS 3, 1990: Arthur Engel

The recursive program becomes unsuitable, and we must translate it into an
iterative program, even a sophisticated one, which saves space. The straightforward
program which computes the matrix q(y,x,z), requires = n*k*s = 50*25*160 = 200000
memory locations for real numbers. So much space is usually not available on a PC.
The sophisticated approach consists in reducing the number of dimensions to two by
considering a fixed y-layer, finding the q(x,z)-values for this layer with the recursion
q(x,z) = q(x,z) + q(x-1,z-d(y)). If we go downward with x and z we can store the
new-found q(x,z)-values in the preceding layer. The resulting program, TwoSamIt
below, for n = 50, k = 25, t = 160 takes nine seconds to give P = 3.4%. We need
(k+t)(t+l) + n = 26* 161 + 50 = 4236 real memory locations, which is available on any
PC.

program TwoSamIt;
const &array[l..50] of byte=(0.0.1,1.1.1.1,1,1.1.2,2,~~2,2,2.2,4,4,5.5.5,6,6,6,6.8,8.

9.9.9,9,10.10.11.11.121~13,15,16.17,22,23,23,23,25,26,38);
var min,n,k,t,xg,z5nteger; s:re& q:array[0..25,0..160] of re&
begin write('n,k,t='); readln(n,k.t);

for z 4 to t do q[O,z]:=l;
for x:=l to k do
for z :4 to t do q[x,z]:=O;
for y:=l ton do
begin if kcy then m h = k else mk=y;

for x:=min downto 1 do
for z:=t downto d[y] do q[x,z]q[x-1,z-d[y]]

end;
s:=q[k.t];
writeln('q='.s:O:O,' P=',s/126410606437752.0*100:0:2,'%')

end.

In reality the children were matched in pairs, each pair having the same age,
disease, intensity, etc. For each pair it was decided by a coin, which child gets hisher
parents into the hospital. The 25 pairs (xk,yk) with xk = number of days in the clinic
without R-I and yk = number of days with R-I for the kth pair were (29,29), (7,7),
(12,121, (7,719 (7,719 (10,10), (15,141, (7761, (18,161, (11,8), (11,819 (11981, (12,7)7
(14,19), (22,17), (15,8), (15,8), (29,21), (23,15), (8,17), (18,8), (16,613 (44,321,
(28,12), (31,s). For the differences dk = xk - yk we get (0,0,0,0,0,0,1,1,2,3,3,3,5,-53,
7,7,8,8,-9,10,10,12,16,23). See Femandez-Jung (1983) for details. As test statistic we
use

25 ' = c $I%''
k==l

with the random variable Ik beiig the kth toss of a good coin with faces 0 and 1.

Null hypothesis H: It is just a random fluctuation. There is no differ-
ence between rooming-in children and other children.
Alternative A: Rooming-in helps to shorten stay in the hospital.

Session A3 170

ICOTS 3, 1990: Arthur Engel

If H is true the two negative differences with sum 14 are just due to the coin. So
we find P = P(T I 14 IH). This we generalise to get a problem, which solves all prob-
lems with matched pairs. We want to count the number q(n,t) of subsets of the n-set
(dl, ..., dn) of nonnegative integers with sum T I t. We get immediately

with the boundary conditions

q(qt) = 0 for t c 0 and q(0,t) = q(n,O) = 1.

The resulting simple and very efficient program Rematch is set out below. Let
us pause for a moment to appreciate the progress due to the PC. Formerly the problem
of matched pairs was solved by going from the differences to the ranks and applying
Wilcoxon's Signed-Rank Test. One looked into a table for small values of n and into
the table of the normal distribution for large n. In addition, one had to face the terrible
problem of ties and the minor but annoying problem of interpolation. Now we need no
tables at all. Each time we compute exactly the P-value. Ties do not play any role.
For differences we cannot have tables, because we would have to compute a table for
each set of differences, clearly an impossible task. Even more convincing is the
program Twosample, which solved exactly a more difficult problem.

program rematch;
const d:array[l..l9] of byte=(l,1,2,3,3,3,5,5,5,7,7,8,8,9,10,10,12,16,23);
function q(t,n:integer):integer;
begin

if tcO then q:=O
else if (t=O) or (n=O) then q:=l
else q:=q(t,n-l>tq(td[n],n-1)

end;
begin

writeln('P=',q(14.19)/1024/5 12)
end.

In this program we have dropped the six zero's because they do not matter, but
this does speed up the program considerably. In a fraction of a second we get
P = 1.024*10-~. This is considerably more evidence for the alternative that rooming-in
helps to shorten stay in the clinic. This program, or its iterative version, solves exactly
any matchedpairs problem that occurs in practice.

3. The troublesome binomial distribution

Figure 1 shows a spinner. Let p and q = 1-p be the probabilities of the outcomes
1 (success) and 0 (failure), respectively. Any binary word like 100110 ... 01 with x ones
and n-x zeros has the same probability pxqn-x. There are altogether "Cx such words,
and so the probability of exactly x successes in n spins (trials) is ,--

-
Session A3

ICOTS 3, 1990: Arthur Engel

It shows that we are dealing with a function of three variables, n, x, p, and so tabulation
is hopeless. In the form (I), b(n,p,x) is difficult to evaluate, even with a PC. So we
change (1) into a recursion.

With (2) there is another difficulty. We must first evaluate b(0). For n = 126 we get
correctly to 11 significant di 'ts O S n = 1.1754943508E - 38, but for n = 127 we get a
run time enor because 0.5126es outside the permissible range of Turbo Pascal, which

127 is 2-lZ7 c x ~ 2 .
If x < 2-lZ7 we have underflow, for x > 2127 we have overflow. Both are

run-time erram because they are discovered during the mning of the program. Further,
we need an individual probability b(n,p,x) only quite rarely and then only for small n.
What we really need is a sum

s = b(c) -I- b(c+l) + ... + b(d-1) + b(d)
.-

To avoid undefflow we must take logarithms in (2):

FIGURE 1

c d

FIGURE 2

Then we can find the sum s in Figure 2 by means of the program below, in
which we have set m = n+l. To avoid a run-time error we have introduced in line 8
another precaution. It turns out that exp(-88) = 2-127, So for L < -88 we must set
expQ = 0. Thus we arrive at our final program, BIN, which is very robust.

program BIN;
var m,n,c,d,x:mteger;

p,qJ;l,sxea1;
begin write(h;p.c,d='); readh4n.p.c.d);

m=n+l; q=l-p; c=In(p/q); L:=n*ln(q);
for x:=l to c do L:=L+r+In(m/x-1);
if Lc-88 then s:=O else s:=exp(L);
for x:=c+l to d do
begin L:=L+ln(m/x-1); if L > -88 then s:=s+exp(L,)

Session A3

ICOTS 3, 1990: Arthur Engel

With this program you can forget the table of the normal distribution as a limit
of the binomial distribution. You can find exact P-values instead of dubious approxim-
ations. Even more than that: With the program BIN you can find exact confidence
intervals for the binomial parameter p, as will be shown in the next paragraph.

A random process is controlled by the spinner in Figure 1 with unknown
parameter p. I make n spins and get X successes. Then

is a so-called point estimate for p. We show now how one can find bounds such that we
can say with a specified level of confidence that p lies within those bounds.

Suppose we get x = 80 successes in n = 200 trials. Then 801200 = 0.4 is a point
estimate for p. Of course we can get 80 or fewer successes even if p is larger than 0.4,
but the larger the value of p is the less likely this is. Let us find the value of p for
which P(X 5 80) = 2.5% exactly. The equation for p we must solve is

We do this by intelligent search with the program BIN. The inputs n = 200, c = 0,
d = 80 and different p-values give i j2 = 0.47147. The trial steps are given in the table
below.

So if p 2 0.47147 the probability of getting only 80 successes in 200 trials is 2.5% or
less. We say we can assert with 97.5% confidence that p < 0.47147. This means that if
we repeatedly make assertions to which a confidence level of 97.5% can be attached in
this way, we shall be right, in the long run, a least 97.5% of the time.

By solving the equation (3) below for p we find in a similar way that
0.33155 I p is also a 97.5% interval for p. Therefore the intersection of the two
intervals, 0.33155 I p 10.47147, is a 95% confidence interval. Note that picking equal
probabilities for the upper and lower bounds is somewhat arbitrary and it usually does
not give the shortest possible confidence interval.

This computer method is the only one which gives exact confidence intervals for p.

Session A3 173

ICOTS 3, 1990: Arthur Engel

4. Hypergeometric distribution. Fisher's Exact Test

For the novel Quiet Don, M Sholokhov received in 1965 the Nobel Prize for
literature. Since 1928 there were rumours both in the Soviet Union and abroad that the
novel is not his work. In an anonymous study by a Soviet critic the novel is attributed
to the Cossak writer F Krydcov, who died of typhoid in 1920. (See Kjetsaa for details.)

1000 words were chosen at random from each of Marking Time (Kryukov), The
Way and the Road (Sholokhov) and Quiet Don (?). Each time the number of lexemes
(different words) was counted. A lexeme is a dictionary entry. For instance: write,
writes, wrote, written, writing are the same lexeme. The following table shows the
result.

Text Wards Lexemes (different words)

Marking Time (JCryukov) 1000 589
The Way and the Road (Sholokhov) 1000 65 6
The Quiet Don (?) 1000 646

Since there is almost no difference between Sholokhov and the author of the Quiet Don,
we test Kryukov versus the author of the Quiet Don, based on the 2x2 table below.

Text 1000-L Lexernes L Sum

Quiet Don 354 646 1000
Kryukov 41 1 589 1000

Sum 765 1235 2000

H: Kryukov could have written the Quiet Don.
A. Kryukov did not write the Quiet Don.

If H is true the probability of getting any particular table

X 1000-x 1000

765-x 235-x 1000

765 1235 2000

is given by h(x) = lmOc x 'Om c ~ ~ ~ - ~ / ~ ~ ~ c ~ ~ ~ . The probability of such an extreme
or even more extreme result is

Session A3

ICOTS 3, 1990: Arthur Engel

This P-value was computed with the program Left-Tail, which calculates the probability
htx).

(n-r) ." (n-r-s+l)
h(0) = ""c, /"c, =

n ... (n-s+l) '

and the recursion

program le f t -a
var i,n,r,s,x:integer; L,p:real,
begin write('n,r,s.x='); readln(n,r,s,x); L:=O, p:=O;

for i:=l to s do L:=L+ln((n-r-i+l)/(n-i+l));
if b = - 8 8 then p:=exp(L);
for i:=l to x do
begin

L:=L+ln((r-i+l)/i*(s-i+l)/(n-r-s+i));
if b = - 8 8 then p:=ptexp(L)

end;
writeln('P=', P)

end.

For the Quiet Don the input was n = 2000, r = 1000, s = 765, x = 354.
Running time was 4 seconds on a 12 MHZ AT. Note that we have used logarithms to
avoid underflow, as in program BIN.

5. The permutation test and correlation

I have shown (Engel, 1985) how to treat Kendall's z in a computer oriented way.
Let us take the same example which I will treat differently. The vector X = (1.25,1.62,
2.49, 2.57, 3.41, 3.83,6.41, 8.34, 11.64) gives, for nine Oregon counties, the index of
exposure to radioactivity and Y = (113.5, 137.5, 147.5, 130.1, 129.9, 162.3, 177.9,
210.3, 207.5) is the corresponding cancer mortality (per 100000 man years for
1959-1964). The components of X are sorted increasingly. This seems to cause the
Y-components also to increase in general.

We want to find out if this could be due to chance. With the computer we can
take a test statistic of our own invention. For instance, let us take the dot product T of
X and Y, i.e.

T = XY = XX[i]Y [i] .

Session A3 175

ICOTS 3, 1990: Arthur Engel

Note that the components of X are sorted increasingly. T is a maximum if also the
components of Y are sorted increasingly. Because of some inversions the observed value
Cor of T is smaller than the maximum. We first find Cor = 7440.3660. Now we
permute the components of Y at random and call the permuted vector Z. This is repeated
10000 times, and each time dot(X,Z) 2 Cor we set count t count+l. Since it is
difficult to estimate very small probabilities, we have repeated the program ten times
getting the count-values 5,2,3,4,2,3,5,2,3,5 and the estimate f3 = 0.00034.

program cancerl; const n=9; type vector=array[l..n] of real;
const X:vector=(l.25, 1.62,2.49,2.57,3.41,3.83,6.41,8.34, 11.64);

Y:vector=(113.5, 137.5, 147.5,130.1,129.9,162.3, 177.9,210.3,207.5);
var count,i,j,xinteger; Cor,copy:real; Z:vector;

function dot(S.T:vectm):real;
var ?integer; sum:real,
begin sum:=0.0;

for ?=l ton do sum:=sum+S[i]*T[i];
doc=sum

end;

begin Cor:==dot(X,Y); writeln(Cor:0:4); count:=0;
for j:=l to 1OOOO do
begin Z:=Y,

for i:=n downto 2 do
begin c=l+random(i); copy:=Z[i];Z[i]:=Z[r];Z[r]:=copy end;
if dot(XjS)>=Cor then count=mt+l

end;
writeln(count)

end.

If we use Pearson's Correlation Coefficient as test statistic, the program will be
much more complicated. Ten repetitions of the corresponding program yielded the count
numbers 5, 2, 5, 6, 3, 5, 3, 0, 4, 2. The observed significance level 0.00035 is
practically the same. It would be possible to step through all 9! = 362880 permutations
of the components of Y at the expense of a more complicated program. Instead, we have
settled for a random subset of these permutations. For large n complete enumeration is
not feasible anyway.

6. Conclusions

In summary we can state that statistical tables are no longer needed. The teacher
may cling to the excuse: "But the PC is not available to everyone!". Most of this Can
be done with a programmable pocket calculator, which costs no more than an expensive
book. Anyway, in 2 or 5 or 10 years the pocket calculator will have the power of a PC-
The only thing that stops a PC are the intractable problems. For these simulation gives
results. Most of the permutation tests are NP-hard. This is only a small disadvantage-

Session A3

ICOTS 3, 1990: Arthur Engel

,, all, statistical numbers are small, and for small numbers the algorithms are
udo-polynomial, as was shown for the programs Twosample and Rematch, two
ous NP-hard problems.

More details on the computer oriented approach to statistics can be found in Engel
990) and Engel (in press). Engel (1990) has just been published. About one-third of it
devoted to probabilistic and statistical problems. The remainder is devoted to problems
pure mathematics. Engel (in press) is an improved English version of Engel (1990). It

appear in 1991. All examples in my paper are from the "in press" version. Most of
them YOU can also find in the 1990 version. When I decided to revise my textbook
(Engel, 1972) I had to relearn some classical statistics. The result was Engel (1987). I
missed an opportunity to write a textbook on statistics with a PC. But I thought the time
was not yet ripe for such a venture.

Efron, B (1979) Computers and the theory of statistics : thinking the unthinkable. SIAM
Review 21(4).

Engel, A (1972) Wahrscheinlichkeitsrechnung und Statistik, Band I . Ernst Klett Verlag.
Stuttgart.

Engel, A (1985) Statistics and computer science : an integrated high school course. In:
L Rade and T Speed (eds) Teaching Statistics in the Computer Age. Chartwell-
Bratt Ltd.

Engel, A (1987) Stochastik. Ernst Klett Verlag, Stuttgart.
Engel, A (1990) Mathematisches Experimentieren und Statistisches Simulieren mit Einem

PC. Ernst Klett Verlag, Stuttgart.
Engel, A (in press) Mathematical Experimentation and Statistical Simulation on a PC.

New Mathematical Library, Mathematical Association of America.
Fernandez-Jung, F (1983) Auswirkung elterlicher Mitaufnahme (rooming-in model) auf das

Verhalten stationiirehandelter Kinder. Diss. FU Berlin.
Hayman, R (1985) The Ganzfeld experiment : a critical appraisal. Journal of Para-

psychology 49, March. 3-49.
Kjetsaa, G The battle of the Quiet Don : another pilot study. Computers and Humanities

11, 341-346.

Session A3

ICOTS 3, 1990: Arthur Engel

