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1. Introduction 

A volume of appreciation for Sir Ronald Fisher pienberg and Hinkley, 1980) 
was recently re-issued on the occasion of the hundredth anniversary of his birth in 1890. 
The book reviews his contributions to what may now be considered the classical 
elements of mathematical statistics, namely analysis of variance, foundations of theor- 
etical statistics, randomization and design, statistical estimation, analysis of categorical 
data and discriminant analysis. Fisher died in 1962, but his influence remained 
substantial well into the 1980s, as did also Neyman's (b.1894, d.1981) and Wald's 
(b.1902, d.1950). 

It is interesting to note that in 1990, Mathematical Reviews still uses the 
following classifications for Statistics: foundations, multivariate analysis, sufficiency, 
regression and correlation, decision theory, experimental design, sampling theory, 
sample surveys, sequential methods, distribution theory, inference from stochastic 
processes, parametric inference, non-parametric inference, engineering statistics, 
applications. There has clearly been much activity in these areas over the past 20 years; 
but excepting for inference from stochastic processes and engineering statistics, one 
might well ask if much had changed on the statistical scene since the Fisher-Neyman 
era. 

In probability, which is regarded as the basis of statistical theory, a standard text 
of the 1960s was the book by Lokve (1960). This consisted of six main parts on: 
elementary probability theory, notions of measure theory, general concepts and tools of 
probability theory, independence, dependence, and elements of random analysis. 

The 1990 classifications of Mathematical Reviews refer not only to Probability 
but also to Stochastic Processes, already indicating a change from the narrower purview 
of Lokve's text. These sections include for Probability: foundations, probability theory 
on algebraic and topological structures, combinatorial probability, stochastic geometry, 
random sets, distribution theory, limit theorems, and for Stochastic Processes: 
stochastic analysis, Markov processes, special processes. 
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There has been a distinct shift, over the past several years, towards the 

probabilistic analysis of random processes varying in time, as well as in a random 
environment. Inference from such processes has presented statisticians with a variety of 
novel and sometimes difficult problems. 

I propose to discuss two important developments which have taken place during 
the past 20 years. Both have occurred within the context of greatly increased computing 
power, and the ready availability of powerful PCs. They are robust statistical methods, 
and the use of Markov processes in probabilistic modelling. After giving simple 
examples of these, I shall suggest some possible directions of interest to statisticians in 
the 1990s. 

c 

2. Robust statistical methods 

A departure from the principles of Fisher and Neyman which gathered 
momentum during the 1970s was the concept of robustness. The idea was simplicity 
itself: it consisted of developing statistical methods which were insensitive to changes 
in the basic model. Statistical estimation, for example, is based on a set of measure- 
ments XI,X2, ..., Xn, where the underlying distribution is often assumed to be normal 
N(~,c?). The sample mean X is the maximum likelihood, best unbiased, minimax and 
asymptotically efficient estimate of p. But any small departure from the basic 
assumption of normality will lead to poor performance of the estimate of location: this 
is an undesirable property. 

Tukey (1977), Huber (1981) and Hampel et al. (1986) endeavoured during the 
1970s and 1980s to develop precise robust procedures for estimation, inspection 
sampling plans, regression, smoothing, change-point models and experimental design in 
statistics. We illustrate such robust statistical methods in the very simplest case. 

It is already assumed that measurements Xi, i = 1, ..., n, are ~ ( l r , ~ ~ ) .  We may 
think of each measurement as Xi = p + ei, where ei - N(0, 2); X would then be an 
optimal estimator of p. Suppose that measurements are now subject to a malfunction 
with probability E, independently of any error occurring in the absence of a malfunction. 
Then the distribution function (d.f.) of the e, would be 

where 0 is the standard normal d.f., and H(x) can be any other d.f. 
The tails of G are likely to be heavier than those of the normal d.f., and some of 

the ei would tend to be outliers. Thus, one could expect that W might lead to inaccurate 
estimates of p, since X could be biased if G were not symmetric, and the variance of X 
might be much higher than when no malfunctions occur. 

The lack of robustness of X as an estimate of p is well known, and is usually 
dealt with by rejecting outliers. But it is also recognised that the median and the 
trimmed mean will provide location estimates less affected by outliers. There are several 
approaches to the problem of the robust estimation of the mean; one of them is Huber's 
asymptotic minmax. If G is assumed symmetric about 0, and o2 is known, Huber has 
proposed minmax estimates which are generalisations of the maximum likelihood estim- 
ates. Huber's estimates also tufn out to satisfy Hampel's influence functions criteria. 

Session C8 

ICOTS 3, 1990: Joe Gani



Any difficulties encountered in calculating these estimates, or equivalent 
quantities in other robust procedures, are greatly reduced by computerised techniques for 
which programs are already available. Calculations which deterred statisticians in the 
1960s can now be carried out with relative ease, and 'these have encouraged the use of 
computer intensive methods not only in implementing robust statistical procedures, but 
in all other areas of statistical methodology. 

3. Markov processes in modelling 

A lively development in probability and its applications since the publication of 
Wve's text has been the analysis of various Markov processes and their use in modell- 
ing natural phenomena. For a random rainfall process Xt varying in time, one may fit a 
model having a somewhat loose correlation structure; such is the Markov process 

X,, = p X t + E t ,  t=0 ,1 ,2  ,..., 

where -1 L p 5 1, and et - N(o,$), say. Such a process will give a reasonable approx- 
imation to the time series of recorded daily rainfall in a city, from which p and a can be 
estimated. The structure of the process may not provide a causal explanation of the 
phenomenon, but it is sufficiently precise to allow some predictions to be made about 
future rainfall. 

For other random processes, such as spatial epidemics, a greater degree of 
structure may need to be built into the model. Consider trees planted in an orchard on a 
lattice, where an infection may be transmitted from a diseased tree I to its nearest 
susceptible neighbour S (see Figure I), where each lattice point has 8 nearest neigh- 
bours. Some diseased trees I may also recove-r from the infeition and become immunes 
R. We may assume that during time (t, t+l), the following transition probabilities will 
obtain for any susceptible S, or infective I: 

P(S -+ I I k infective neighbours) = k$, k = 0.1, ..., 8; P(I + R] = y. 

F T G W  1 
Transmitting infection from 3 (i = 1,2,3,4) to S 
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We are now faced with a Markov field (cf. Adler, 1981) for which it is rather 
difficult to derive too many analytic results, as Durrett (1988) has indicated. However, 
we may use computer methods to obtain a wide range of simulated answers to questions 
of infectious spread. 

For example, it can be shown that a concentrated block of n infective trees is 
likely to infect fewer susceptibles than a randomly spread set of n infectives distributed 
over the lattice. Further, by ringing a set of infectives by a large enough proportion of 
immunes, one can effectively control the spread of infection. Here, computer intensive 
methods guide one's intuition, and allow one to draw both practical and theoretical 
conclusions which were simply not possible before the current generation of powerful 
computers and PCs. 

4. Directions for the 1990s 

Can we make some informed guesses about likely developments in statistics and 
probability during the next decade? Whatever the research thrusts may turn out to be, we 
can be fairly certain that they will rely heavily on computers and PCs, whose power and 
versatility will continue to increase enormously in the 1990s. PCs in particular have 
now become flexible and efficient instruments, small enough to be portable, and cheap 
enough to be affordable by any serious researcher. This means that heavy statistical 
analysis and complex calculations can now be carried out with relative ease, often using 
available programs; algorithmic methods and simulation have come into regular use, 
and frequently provide answers to problems, or at least directions in which to search. 
Empirical distributions may be used instead of the classical normal,or the negative 
exponential, for example. There is already a large literature on the "bootstrap", a method 
developed by Efron (1982), using observed data to generate further simulated data, as 
often required in adaptive procedures. Here, the data itself determines the model, rather 
than being forced to fit a particular theoretical structure; for further details see Hall 
(1990). 

If one were to suggest an area of continuing growth in statistics, one would 
probably select inference on stochastic processes, including time series and Markov 
fields. The principles of inference on time-dependent processes X(t) in continuous time 
are complex, the more so as one rarely knows for certain whether a process is stationary 
or not. Problems in multiple time series z(t) and in Markov fields will prove .even 
more challenging: the effects of non-stationarity, the variation due to a random environ- 
ment and the estimation of change points, will pose sets of important problems. We 
have already encountered such a process with a change point threshold in the 
"Greenhouse Effect"; how can one be certain that such an effect exists, and determine at 
what point in time global warming has begun? The amount of data to be analysed is 
enormous, and the techniques highly sophisticated. 

A possible area of growth in probability could well be the analysis of Markov 
fields, and the development of limit theorems applicable to them. Much progress has 
already been made on Ising type models in physics, and on percolation processes (see 
Kesten, 1982) in recent years. The field remains a very active one, not only in its 
theoretical, but also its applied aspects, such as image processing, spatial epidemic 
spread, and genetic trees. 
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While several of the directions outlined may seem somewhat theoretical, they are 
in fact all applicable, and in some cases very practical. The 1990s will be a decade in 
which government, commerce and industry will place increasing emphasis on the 
collection, analysis and evaluation of large sets of data - social, economic and scientific. 
Economic and environmental sweys are already commonplace and likely to become 
more so. It is not too difficult to foresee the social pressures which will dictate the 
general orientation of statisticians, nor to estimate the influence of computers and PCs 
on how data will be analysed and evaluated. 

What appears much more difficult to predict is where the statistical manpower is 
likely to come fiom. It seems fairly likely that by the year 2000, there will be a chronic 
shortage of well-trained statisticians and probabilistic modellers, not only in colleges and 
universities, but also in every walk of government, commerce and industry. It is already 
clear that we are not training an adequate number of statisticians to replace those of us 
currently at work; if we do not respond to this serious challenge, and plan a massive 
statistical training programme, we may fail the most crucial of all our tests in the 
1990s. 
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