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1. Introduction 

A controversy has arisen concerning the relative merits of conceptually-oriented 
teaching versus calculation-centred teaching. Marks (1989) maintains that concepts are 
far more important than computations, and that they can be successfully taught without 
the related computations. In contrast, Khamis (1989) claims that students cannot truly 
understand statistical information until they have had experience doing calculations by 
hand. Both authors present persuasive arguments, but no empirical evidence to support 
their conclusions. The present paper outlines a study which aimed to fill this gap. 
First, however, we try to place the controversy into the context of wider cognitive 
issues. 

2. Ways of knowing 

This debate about the virtues of conceptual and computational training parallels a 
more general debate in education that has been going on for nearly a century. During the 
1920s and 1930s the debate in education focussed, as does the current debate in the 
teaching of statistics, on the prescription of optimal educational practices. That is, 
authors claimed one or the other method to be superior, and described how and why it 
should be used in classroom settings. Today the discussion of conceptual and 
computational learning in mathematics education has shifted from a focus on 
prescGption to a focus on description. Current investigations are directed at under- 
standing the antecedents, mechanisms, and consequences, of these different ways of 
knowing and learning (see Hiebert and Lefevre, 1986). 

The two contrasting "ways of knowing" have been variously referred to by 
different authors in the field of mathematics education, but their meanings are essentially 
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the same. Nesher (1986) has contrasted mathematical skills with thinking, Skemp 
(1978) uses the terms instrumental and relational understanding to describe these two 
different ways of learning and knowing, and Resnick and Omanson (1987) distinguish 
between conceptual understanding and procedural or computational skill. In each case 
the comparison is between knowing how to do something, how to execute a procedure 
or a skill, and knowing about something in an otherwise meaningful way. 

The distinction between procedural skill and conceptual understanding in the field 
of mathematics education bears some resemblance to a distinction found in the cognitive 
psychology literature. Anderson (1983) and others have contrasted procedural knowledge 
(knowing "how") with declarative or propositional knowledge (knowing "that"). 
Although these two views on ways of knowing may appear similar, they are by no 
means isomorphic (Nesher, 1986). The significant difference is that mathematics 
educators contrast procedural ability with meaningful knowledge, while the cognitive 
psychologists contrast procedural abiity with knowledge of facts and propositions. For 
the mathematics educators the issue is one of meaning rather than specific facts, and they 
believe that meaning is the result of making links or connections between various facts 
and propositions. 

In order to avoid the confusion caused by these two models that sound similar 
but are fundamentally different, it is necessary to consider a more elaborate description of 
the different ways of knowing. Baroody and Ginsburg (1986) have chosen to contrast 
meaningful knowledge with mechanical knowledge, and to further subdivide mechanical 
knowledge into knowledge of propositions and knowledge of procedures. This model, 
while providing a Nler view of the ways in which individuals learn and know, makes it 
difficult to conceptualise the ways in which relationships or connections can be made. 
We propose a model which contains facts or propostions at one level, procedures at 
another level, and in which links (the mechanisms for meaning-making) may be drawn 
among facts, among procedures, and between facts and procedures. 

This distinction among propositional knowledge, procedural knowledge, and 
meaningful knowledge can help us to think more clearly about the processes of teaching 
and learning (Hiebert and Lefevre, 1986). Research has shown that knowledge of one 
type does not guarantee knowledge of another. For example, third grade children who 
showed a strong conceptual understanding of the process of subtraction with borrowing 
could not always perform the algorithm for it. In addition, there were children who were 
successful with the algorithm (the procedure) but did not show evidence of any 
meaningful understanding of the principles underlying the algorithm (Resnick and 
Omanson, 1987). In order for procedures and facts to imply one another they must be 
linked; there must be, by definition, meaningful understanding. In a study on the 
teaching of probability, Hansen, McCann and Myers (1985) found that students who 
were taught using an explanatory approach with an emphasis on the connections 
between various pieces of information and skills were more successful at solving story 
problems. 

Despite the importance of the distinctions among declarative, procedural, and 
conceptual knowledge, it must be remembered that these categories are not mutually 
exclusive, nor are they exhaustive. In fact, it is the relationships among these different 
ways of knowing that create true meaningful understanding, and thus are very important. 
We must make these distinctions not as an end in itself, but in order to more clearly 
understand how the pieces of the.learning puzzle fit together. 
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We have partitioned the ways of knowing into three basic categories: 
calculations (an example of procedural knowledge), propositions (simple facts), and 
conceptual understandings (linking of two or more propositions). We further distinguish 
between the ability to understand and articulate propositions and concepts in symbolic 
(or notational) form and the ability to do so in words. Thus we will deal with a 
"structure" having five categories: 

Calculations Propositions Conceptllal Understandings 

A A 
Words Symbols Words Symbols 

3. An empirical study 

The purpose of the study was to investigate numerical inter-relationships of 
student performance on subsets of test items that were grouped according to the above 
five categories. That is, we were interested in addressing questions such as: How do 
students perform on calculation items relative to their performance on proposition 
items? Relative to total test performance? 

The test comprised 31 items, all of the multiple-choice variety. Ten items 
belonged to Calculations, ten to Propositions (5 Words, 5 Symbols), and 11 to 
Conceptual Understandings (6 Words, 5 Symbols). Items from the five categories were 
"scrambled to arrive at an ordering of the 31 items. In addition to responding to the 31 
items, students were requested to provide some demographic information: gender, age, 
undergraduate major, highest level of mathematics, and number of years since last 
mathematics course. 

The 57 students in this investigation had taken introductory statistical methods 
in a College of Education. (The level of study may be indicated by the textbook used, 
viz, Moore and McCabe (1989).) All students were enrolled in doctoral programmes. 

Before presenting results of relationships among various student scores, some 
numerical descriptions of test performance will be presented. Eleven different sets of test 
items were considered: Total Test (31 items), Calculations (lo), Propositions (lo), 
Propositions with Words (5), Propositions with Symbols (5), Conceptual Under- 
standings (1 l), Conceptual Understandings with Words (6), Conceptual Understandings 
with Symbols (5), Words (1 I), Symbols (lo), and Noncalculations (21). The internal 
consistency of the 11 sets of test items was assessed using a Kuder-Richardson formula. 
The total 'test coefficient value of .734 is respectable, indeed. The subtests involving 
Symbols yielded three of the four lowest reliabilities (.331, .087, .327). In general, the 
items were not too difficult since about one-half of the items were correctly answered by 
at least 60% (34157) of the students. The number of correct items for the total test 
ranged from 9 to 28 with a median of 17. An examination of responses to individual 
items indicated that the Symbols items were more difficult than others. High difficulty 
and low variability are two contributors to the attenuation of the reliability of the 
Symbols subtests. 

Two groups of students were formed from student feedback on "highest level of 
mathematics": college algebra or less (32 students) versus introductory calculus or 
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beyond (23 students). Mean differences for these two groups were examined with respect 
to the 11 test scores. The 11 mean differences were assessed via the squared point- 
biserial correlation coefficient, which ranged from .007 (Conceptual Understandings in 
Symbols) to .I12 (Calculations) with a median of .022. The relatively large difference 
(5.87-4.44) in the Calculations means is, perhaps, not too surprising. But mathematics 
background (as defined here) accounting for about 11% of the variance of Calculations 
scores is not too impressive, and does not yield strong support for student concern often 
expressed. (Similar results were found when performances of students with only high 
school algebra were compared with all others.) 

Two groups of students were also formed from feedback on "number of years 
since last mathematics course": 14 or fewer years versus 15 or more years. Squared 
point-biserial correlation coefficient values ranged fiom .001 (Total Test) to .041 
(Words) with a median of .019. These data clearly do not support student concern for 
lack of recent mathematics study. (Similar results were found when performances of 
students who studied mathematics less than nine years ago were compared with those 
away from mathematics for 15 or more years.) 

It was thus decided to examine relationships among the 11 test scores utilising 
the total group of 57 students. Of the 55 correlations, 21 reflect relationships between 
scores on subtests designed to be non-overlapping in terms of knowledge or skill being 
measured. The non-overlapping character appears to have numerical support, at least to 
some extent, since the percent of shared variance ranged from only 1% (Propostions with 
Words versus Conceptual Understandings with Symbols) to 37% (Calculations versus 
Propositions) with a median of 13%. 

There is a particularly interesting trio of correlations, namely those among 
Calculations, Propositions, and Conceptual Understandings. The relationships among 
these three subtests may perhaps be understood in light of the model proposed by 
Baroody and Ginsberg (1986). The Calculation-Propositions correlation is .61, while 
the Calculations-Conceptual Understandings correlation (.40) and the Propositions- 
Conceptual Understandings correlation (.37) are at a lower (and comparable) level. This 
evidence, albeit somewhat tentative, lends support to the Baroody-Ginsberg notion that 
meaningful knowledge (what we label Conceptual Understandings) is "different" from 
mechanical knowledge (what we would label Calculations and Propositions). 

Of course, caution must be taken in making direct comparisons across correlation 
values since the number of items (i.e. test-length) is not constant for all values. The 
subtests with smaller numbers of items would have somewhat restricted score variability 
which would attenuate the correlations. The five 10- or 11-item subtests are approx- 
imately equally good discriminators. The 21-item subtest on Noncalculations is 
approximately equivalent in terms of discrimination to the 10-item subtest on 
Calculations. 

4. Discussion 

The conceptual-computational issue in learning mathematics/statistics was 
alluded to earlier in this paper. This is an issue, too, in the teaching of statistical 
methods and in the assessment of statistical knowledge acquired by students. From a 
pedagogical standpoint, it seems reasonable to the current authors that students should be 
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tested in more than one "domain". In fact, we suggest three such domains: calculations, 
propositions, and conceptual understandings. Of course, these domains are not 
independent, in any sense of the word. But, in the current preliminary study we obtained 
some empirical support for the notion that these domains overlap to a rather limited 
degree. (Heretofore, empirical evidence to the inter-relationships of such domains has 
been virtually nonexistent) That is to say, it doesn't appear that focussing student 
testing on any one domain will result in a very thorough assessment of statistical 
knowledge. 

At first glance, one might be tempted to conjecture that testing on calculations 
alone would yield a fairly basic assessment of learning (since the correlation between 
Calculations and Total Test was .85). But, looking further one sees that Noncalculation 
scores correlate to the same extent with Total Test scores (r = .93). 

It is also suggested the instructors of statistical methods classes think seriously 
about encouraging (and expecting) students to think in terms of multiple ideas and 
making connections among them; i.e. to develop conceptual understandings from their 
study. And, of course, instructors are encouraged to test for student conceptual 
understanding. 
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