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1. Introduction 

The study of statistical inference is a component of almost all statistics degree 
courses. In an applied statistics course, with the objective of training future professional 
statisticians, it remains proper to acquaint students with the principles on which their 
discipline is based. We have rejected formal mathematical presentations of inference 
which involve a rigorous sequence of definitions and algebraic examples. In our hands at 
least, such an approach fails to excite the practically-minded student uninterested in 
mathematics itself, while failing to convey statistical insight to those who can master 
the algebraic manipulations. 

This paper is based on our attempts to develop an inference course at Reading in 
which students learn about concepts primarily through project work. The course is 
preceded by courses on: 

(i) proba"bility and random variables; 
(ii) descriptive statistics; 
(iii) distribution theory; 
(iv) initial ideas of regression and linear models; 
(v) statistical computing. 

e distribution theory course is taught in a traditional mathematical manner and the 
ts tend not to enjoy it and consequently approach our course with (at best) 

vings. The statistical computing course introduces students to INSTAT, a PC 
sed statistical package which has been- developed in .Reading, and is rather like 

. Students continue m.use INSTAT within our inference course. 
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2. Course structure 

The course is built around a series of six problems. Each is used to motivate a 
different topic of statistical inference, showing how practical problems create the need to 
develop theory. The six topics included are: 

(i) order statistics; 
(ii) estimation theory; 
(iii) likelihood; 
(iv) confidence intewals; 
(v) hypothesis testing; 
(vi) robustness. 

Each topic is introduced by means of the problem. A summary of the essential 
theory for the topic is provided in distributed notes, making reference to a standard 
textbook (Beaumont, 1980), and amplified in one or two lecture hours per topic. Other 
class contact hours are spent in guided computer practicals and in tutorials in which 
students attempt theoretical problems and exercises under supervision. Students produce 
a report on their investigation of the problem, which will usually include the 
development of theory and the use of computer simulation. It is stressed to students that 
problems have been oversimplified in order to make them approachable by second year 
undergraduates and in the short time available. 

The assessment of the course is based on the students' reports and on a three-hour 
examination paper. In preparation for the latter, students are set additional exercises on 
each topic. 

3. Computers and simulation 

Computers are familiar to our students both for their power in calculation and 
their capacity in storage and manipulation of databases. They should also be an 
important part of statistical education because they can be used to deepen understanding 
of numerically-based concepts. 

The use of computers in teaching statistics has been discussed in Mead and Stem 
(1972) and in previous ICOTS Proceedings. Much of the previous ICOTS discussion 
has concentrated on the use of the computer for illustration. The speed of the computer 
allows numerical investigation of sampling distributions. The computer can also be 
used to provide scenarios, through simulation, of practical problems for which students 
are required to design and analyse experiments or surveys and to produce answers to the 
practical problems (Mead and Freeman, 1970; Pollock et al., 1979). 

Computers for rapid and complex calculation and for numerical illustration are 
very useful aids to teaching. However the real opportunities they offer will become 
apparent as we allow ourselves to rethink our syllabi and educational approaches in the 
context of the permanent availability of computers in education. 

In our course we use the simulation capacity of the computer extensively and it 
is therefore appropriate to consider the role of simulation in statistical theory itself. 
Three situations in which simulation is used can be distinguished as follows. 
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Exact Theory 
Available 

Theory must be 
presented (within 
the mathematical 
capacity of the 
students). 

2 3 
Approximate Theory No Theory 

Avai lable  AvailabIe 

Approximate asymptotic Theory is either 
results can be derived unknown or 

requires more 
computing than 
the simulation. 

Simulation can be Simulation enables the 
to illus- assessment of reliability 

trate and make the of the approximate 
theory intuitive. theory for specific 

purposes 

THE EXACT 
THEORY IS 
DEFINJTWE. 

THE  ON 
RESULTS ARE 
DEFTNITYE. 

Simulation 
provides the only 
available inform- 
ation on the 
properties of the 
assumed models. 

ONLY SIMUL,- 
ATION RESULTS 
ARE AVAILABLE. 

4. Topics and problems 

4.1 Accident datn (estimation) 

Students are provided with an INSTAT worksheet containing 65 observations. 
These are the numbers of accidents attended to in a small casualty department on each of 
65 consecutive days. The problem is to estimate the probability p of an accident-free 
day. Three estimators are suggested: 

where D = number of accident-free days and T = total number of accidents. The data give 
the values pl = 0.154, p2 = 0.092 and p3 = 0.090. Which is the most appropriate? . 

Exploration of the data shows @t a Poisson model fits the daily accident counts. 
The accident rate h is estimated by h = TI65 = 2.385. Students then simulate 25 
samples, each of 65 Poisson observations with parameter 2.385. The corresponding 25 
values of pl, p2 and p3 are derived Histograms and summary statistics are prepared. 

Students usually claim that p2 and p3 are better estimators than pl. Discussion 
reveals that closeness of the mean to the true answer (p = exp(-h) = 0.092) and the 
concentration of the distribution about that value are the criteria which influence them. 
They have discovered unbiiedness and relative efficiency! 

That guided and practical start now leads to a more mathematical investigation of 
these estimators. In two formal lectures the concepts of sufficiency, unbiasedness, 
relative and absolute efficiency, the Cmer-Rao lower bound and Rao-Blackwellisation 
are introduced. In answering the problem, students establish which estimators are 
unbiased, and which is more efficient than the others. Usually they need help in seeing 

Session B 1 33 

ICOTS 3, 1990: Roger Mead and John Whitehead



that p3 is the minimum variance unbiased estimate, and that p2 and p3 depend for their 
advantages on the Poisson assumption, whereas pl does not. However, the introductory 
computing exercise, and the concrete situation of this example, do help the concepts of 
estimation to be meaningful in a way which lectures alone fail to do. 

4 2  Disease incidence (likelihood) 

Data are provided on the number of cases of a disease in a sample of households 
for household sizes between 2 and 11. Data are available only for those households with 
at least one case of the disease and the zero-truncated Binomial distribution (probability 
of case = p) is a sensible simple model for the number of cases per household. Students 
are provided with the likelihood function, maximum likelihood estimating equations, 
and asymptotic variance ( 2 )  for the zero-truncated Binomial distribution. 

They are asked to investigate the likelihood function, with particular reference to 
shape, maximum and change with asymptotic standard deviation, for each household size 
and for the data combined over household sizes. It is also suggested that they simulate 
additional data and examine the equivalent behaviour of the likelihood for the simulated 
Clara. 

Students have to work out how to construct an INSTAT program to find the ML 
estimator when the ML equations cannot be solved directly. Those who immediately 
type in the sample values for each household soon find that they need only the sufficient 
statistic, B, for each household size. 

Examining the change in the log likelihood function as p is changed in steps of 
o leads to discussion of how consistent the change of log likelihood should be for 
different household sizes. The variation of I7 (between 0.19 and 0.47) for different 
household sizes produces varying responses from students, some assuming intuitively 
that such a range is large, others that it is small, and yet others that it is about right 
relative to the values of 2. 

This project provides the students with a "feel" for likelihood information and 
persuades most of them that they need to check the algebraic derivation of the theoretical 
results they are given. In the discussions the students themselves suggest the questions 
about the interpretation of estimates which lead naturally to the next two topics 
(confidence intervals and hypothesis testing). 

4 3  Other topics and problems 

The Order Statistics project is based on the idea of machines which include five 
identical "special connectors". Information on failure times of a sample of individual 
connectors is provided and students are asked to investigate the distribution of times to 
breakdown for a machine assuming either that the machine will operate only if all five 
connectors remain good, or alternatively, if only four remain good 

The project for Asymptotic Confidence Intervals is based on initial data of 
numbers of defects in lenses, one sample being of 150 values with a mean defect number 
about 1.5 and the other sample of 20 values with a mean defect number over 2.0. The 
data do not include any zeros, because only defective lenses are collected, and so the 
relevant distribution is the zero-truncated Poisson. Students are asked to calculate 90% 
confidence intervals for the true defect rate in all lenses and to then investigate the 
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v&dity of the confidence level for these estimated intervals. 
The Hypothesis Testing problem is entitled "The Giddiness Trial" and concerns 

the evaluation of a new drug in a clinical trial. The observed variable is the number of 
attacks suffered by the patient in the month following the administration of the drug. 
Students determine their hypothesis testing procedure for specified conditions, using 
power curves. They then work in pairs, each generating data for parameter values 
unknown to the partner who makes the test decision. 

The last part of the course addresses robustness. This topic is neglected in many 
conventional textbooks and courses on inference, but we feel that it is an essential part 
of an inference course within applied statistics. Through theory and simulation, students 
investigate the properties of "optimal" procedures when the model assumptions under 
which they have been derived are violated. The principal problem is a reconsideration of 
the accident data (Section 4.1), with an exploration of the properties of the estimators 
pl, pZ. pg when the 65 accident counts are not Poisson or not independent or not of 
constant rate. 

Students do find this section of the course to be the most difficult However, for 
those who understand it, the strengths and limitations of parametric inference are 
clarified. One important message which is conveyed is that for samples of reasonable 
sue model violations which do not manifest themselves in simple goodness-of-fit 
checks seldom seriously compromise the model-based inference. 

5. Discussion 

As statisticians, we should at this point produce data demonstrating the 
(significant?) benefits of our approach when compared to a control group of students 
educated traditionally. We have no such data, nor any claims of a dramatic improvement 
of examination or assessment results. However, we do believe that our computer-project 
based statistical inference course has been more effective in persuading students to think 
about, and ask questions about the concepts that we have been trying to teach. This 
conclusion codd be expected of lecturers developing and enthusiastically implementing a 
different approach to a subject. We are certain that students who put the necessary effort 
into the course derive much more enjoyment, as well as knowledge, from the 
experiential form of learning. Of course it is not possible for students simply to sit in 
lectures hoping that the ideas will seep in; but is that a loss? 

In our form of course, the lecturer has less direct control over the direction in 
which students' learning proceeds. In general this seems to us to be no bad thing. 
Lecturers are not always the best judges of the order in which ideas should be assimilated 
and students may be more receptive to concepts introduced in response to their own 
questioning. For example, sufficiency is discussed in the estimation topic. However, in 
the likelihood topic students discover for themselves the clear dependence of the 
maximum likelihood estimate on only the sum of the set of values. The time they have 
spent laboriously simulating individual values is then both irritating and, later, 
enlightening. For some lecturers the serendipity factor in learning may be frustrating, 
but we should not undervalue the benefits of learning, disorganisedly, by experience. 

We are also prompted by what we regard as the success of our approach to ask 
whether this approach to teaching could be applied to other topics. Developments in 
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teaching the design of experiments and sample surveys have already been referred to. We 
believe that there are possible developments in courses on distribution theory, where 
there is traditionally a substantial amount of mathematical theory. Such theory might 
be better relegated to support notes for projects based on Poisson processes, derived 
variabs, independence and joint distributions. 

It is arguable that the syllabus content of our inference course, and of many 
others, is the result of the relative chronology of the development of classical statistical 
inference and modem computing. If modem computing facilities had been available 
eighty years ago then resampling techniques, such as jack-knifing, boot-strapping and 
randomisation tests, might occupy a more central position in statistical inference than 
they do today. And if these methods could have been developed earlier, at the expense of 
some of the more mathematical distribution theory, perhaps the statistical inference we 
teach should represent the body of basic knowledge which would have arisen. On the 
other hand, students' findings on robusmess tend to increase faith in traditional 
parametric inference. 

We hope that our approach will generate discussion and some reassessment of 
present teaching methods. If the teaching of any one of us ever becomes routine and 
lacking in originality then we shall have forfeited any right to expect our students' 
interest. 
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