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1. Introduction 

A year ago, a doctoral student in communications engineering came to see me 
and asked me for the solution to the following problem in the excellent book by 
Kleinrock (1975, Vol 1, p.80) on the theory and applications of queues: 

"Consider a Markov chain with states Eo, El. E2. ... and with transition 
probabilities 

(a) Is this chain irreducible? Periodic? Explain. 

(b) We wish to find ni = equilibrium probability of Ei. 
Write xi in terms of p-. and n. for j = 0.1.2 ,... 

?1 
(c) From (b) find an expression refating P(z) to PI1 + p(z-1)], where 

(d) Recursively (i.e. repeatedly) apply the result in (c) to itself and 
show that the nth recursion gives 

(e) From (d) find P(z) and then recognize xi." 
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The student showed me a sheaf of papers covered with lengthy calculations in 
which he had started the solution by calculating the generating functions 

for i 2 0. An error in a summation index apparently accounted for the fact that he could 
not evaluate the sum in a closed form. 

As is often my lot, I was pressed for time and told the student that I preferably 
avoided calculations. We would therefore guess at a practical application which could 
have led to consideration of that Markov chain to gain insight into the needed mathe- 
matical analysis. By entering the factor exp(-h) into the summation, we saw that for 
each i, the sequence (pi.] is the convolution of a binomial probability density with 
parameters i and p and a doisson density with parameter h. That observation immediate- 
ly yields that 

P(i;z) = (pz + q)' exp[-l(l - z)], 

so that the steady-state equations 
w 

n. = 2 nrp 
J r=o 'j 

lead to 

w w 

(1) p(z) = Z 2 2 qpij  = P[pz + 1 - p] exp [-&(I - z)]. 
j = O  r=O 

With these results in place, the remaining parts of the problem lead the student 
through the essential steps of the mathematical argument. One ultimately recognises 
the ni as the terms of a Poisson density with parameter (1 - p)-lh. 

After doing that problem, I felt that it would be preferable to introduce those 
mathematical questions as part of a modelling problem, rather than as an exercise in 
formal manipulations. In my own teaching, I frequently use that approach with success, 
particularly in postgraduate instruction. In reading research papers, even on formal and 
abstract results, I am always grateful when the author feels sufficiently free to share 
some of the intuitive process of discovery, prior to or after rigorous, technical proofs. 
Such a sharing of imagination has not been fashionable in mathematical presentations 
during much of this century, but particularly since the 1950s. I believe that this 
accounts in part for the decline in the general ability of mathematics students to handle 
complexity and to solve problems that draw on methodologies from several specialities. 

My participation in ICOTS 3 provided the final incentive to write an article on 
the development of imagination, so essential to successful mathematical modelling. I 
have selected the stated problem which may also be found in Takrics (1960, p.21) with a 
brief reference to statistical mechanics, for several reasons; its source is an important 
text used by many engineering students; the problem lends itself well to illustrate the 
ideas on imagination presented in this paper and, with imagination unfettered, it can 
serve to generate quite exciting purely mathematical questions. 
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Not being a psychologist, I find it too difficult to discuss imagination in general. 
Moreover, the creative processes of the human mind are so much more easily (and 
pleasurably) demonstrated than analysed, that I shall rather proceed by example; 
successively donning the hats of a communications engineer, an applied mathematician, 
and an algorithmic probabilist. However, the hats of these various guilds are only 
metaphors for different modes of mathematical imagination and not for separate profess- 
ional communities. One of the important features of a fertile mathematical imagination 
is the ability to recognise structural and methodological similarities across subjects and 
disciplines. I fmly  believe that mathematical education needs a period of reintegration 
in which the student learns to think of mathematics as a living language, the tool par 
excellence for systematic and precise discourse on problems of scientific or technological 
interest. Presentations of calculus as a bag of isolated tricks or of probability as an 
obsessive study of balls in urns are therefore mostly educational disasters. Even the 
"successful" student is deprived of the delights of imaginative discovery. Mathematics, 
which should be anything but that, is often perceived as a sterile and formal activity. 

2. Some communications models 

We imagine a number of situations that are quite representative of modelling 
problems encountered in communications engineering. I shall give these situations 
some suggestive names. These should not limit the scope of application or of our 
imagination. I would urge the reader to search for other tales by which to introduce 
mathematical problems of a similar nature. It is likely that different perspectives shall 
lead to other questions than those discussed here. 

My e-mail buffer: Every day, I receive a number of messages by electronic mail. 
These are stored in a list of files for review at the end of the day. A message may be 
kept in the file for one more day, or deleted. Assume that the numbers of new messages 
received each day are independent, identically distributed random variables with 
(common) probability density {a.) on the nonnegative integers, and that at each review, 

J the retention or removal of messages in the file corresponds to independent Bernoulli 
trials. A message is retained for one more day with probability p or is removed with 
probability 1 - p. I wish to study the stochastic process describing the number of 
messages in my e-mail file at the beginning of each day. In particular, I shall need the 
"stationary probability density" of the length of my list to assess, for various values of 
K, the fraction of time that there will be more than K stored messages. 

A discrete telephone trunk model: Consider a time-slotted communications link 
and suppose that the numbers of new calls starting at the beginning of every time slot 
are independent, identically distributed random variables with probability density (aj), 
j 2 0. A call remains active for a number of time slots which has a geometric 
probability density, that is, the probability that a call starting at time t ends at time 
t + k is pk-l(l - p) for k 2 1. We are interested in the number of calls active at the be- 
ginning of each time slot, in particular the stationary probability density of that number. 

A packet stream: We again consider a time-slotted communications link and let 
the numbers of new calls starting at the beginning of every time slot be independent, 
identically distributed random variables with probability density {a.). As in the 

J preceding situation, calls have independent, geometrically distributed durations and, for 
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as many time slots as a call is active, it submits one packet per time slot to the system. 
We are interested in simulating the stream of packets submitted during successive 

slots, but wish to avoid "initialisation effects" in our simulation runs. We would like 
to choose the initial number of active calls according to an appropriate probability law, 
so as to mimic a packet stream which has been flowing for a very long time. That is, 
of course, accomplished by choosing the initial number of active calls according to the 
stationary density of an appropriate Markov chain. 

All three "applied" questions lead to the same problem in Markov chains, which 
is a generalisation of the problem selected from Kleinrock (1975). As we shall see, 
concrete models provide us with mental constructs leading naturally to new 
mathematical questions. Questions uninteresting for one model often become important 
in other settings. For example, for the buffer model we may want to consider the time 
required to reach an empty b e e r ,  starting from a given positive initial buffer content. 
For the telephone trunk model, we may enquire into the probability distribution of the 
maximum number of active calls during a given time period. Such questions, which do 
not lend themselves well to analytic solution, are nevertheless computationally tractable 
over a useful range of parameters. They are therefore not only stimulating to the 
imagination, but lead to the exploration of other methods of solution. For a different 
probability model, some examples are discussed in Neuts (1980). Before embarking 
upon discussions of technical matters, we address some modelling issues. 

Discrete time: It is often natural and mathematically convenient to model certain 
processes in discrete time. In doing so, it is important to spell out carefully how the 
accounting will be done during a unit time slot. In our case, we first count the items 
remaining after the Bernoulli trials and next add new additions to the count. We can 
write this formally as 

which says that the count Xn+l at time n+l consists of the successes in Xn Bernoulli 
trials with probability p of success, augmented by the number v, of new arrivals during 
the n-th time slot. The independence assumption on the numbers of new arrivals 
implies that the sequence (X,) is a Markov chain. 

General distributions: I have not required the probability density {%) to be 
Poisson for the following reasons. (a) The Poisson assumption leads to an explicit 
solution, but at the cost of a severe restriction on the model and therefore on its practical 
applicability. As we shall see, the same mathematical-analysis yields the solution to 
the general version. For many practical problems, explicit analytic solutions are rare, 
while feasibly computable solutions are much more common. I believe that textbooks 
place too high a premium on analytic tractability. (b) With a general probability density 
{a,), the answer to the first question in Kleinrock's problem is no longer obvious. 
Some w e  is now needed to see that irreducibility of the Markov chain requires that 
0 < ag < 1. When that does not hold, there exists some N > 0, such that each day there 
arrive at least N new messages. States below N will then not be attainable. With that 
mild restriction on ag, aperiodicity of the chain is assured by the Bernoulli trials. 

Geometric holding times: Particularly in the second and third situations, the 
assumption of geometric holding times is a severe restriction. It should be made clear to 
the student that, without that restriction, analysis of the problem becomes much more 
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difficult. It we insisted that calls have a general holding time distribution, the analysis 
by Markov processes would require keeping track of the remaining holding times of all 
active calls. Insight into this point will give the student an understanding of the 
evolution of the literature, say, on the theory of queues. Many models have analytically 
tractable solutions under the assumption of exponential distributions and a significant 
portion of the literature is devoted to relaxing that very stringent assumption. The 
model which we are discussing here, has a continuous-time analogue in the GUM/- 
queue with group arrivals (see T W s ,  1962). Efforts to remove the assumption of 
exponential holding times in that model have not yet been very successful. Discrete 
models in which the holding time of calls or the generation of packets during a call is 
described by Markovian mechanisms, are the subject of recent research relevant to 
packetised communication flows. See, for example, Ramaswami and Latouche (1988). 

Mixed geometric holding times: After perusal of this paper, the reader may wish 
to consider the following first attempt to remove the assumption of geometric holding 
times. There are two categories of messages, with geometric holding times with 
retention probabilities pl and p2 respectively. The arrival of new messages occurs as 
before, but a new message is now of the first type with probability 8 or of the second 
with probability 1 - 8 according to Bernoulli trials. The holding time distribution is 
now a mixture of two geometric densities. The numbers of customers of both types 
now form a Markov chain on the set of pairs (il,i2) of nonnegative integers. We 
suggest exploring how far the analysis in Section 2 can be extended to this model. 

3. Analytic issues 

The analysis sketched in Section 1 essentially carries over to the general case, 
but some minor technical issues not present in the Poisson case need to be addressed. In 
the interest of brevity, only the essential points of proofs are discussed. We denote by 
A(z), the probability generating function of the sequence (%I. The generating functions 
P(i;z) are given by P(i;z) = (pz + q)' A(z), and the steady-state equations lead to 

Successively replacing z by pnz + 1 - pn in equation (3) and forming the 
products of the left and right hand sides of the resulting equations, we obtain the formal 
solution 

whenever the infinite product converges. Since IP(z)l I P(lzl), it suffices to establish 
convergence for z in [0,1] and, since each factor is then positive and increases in z to 1 
on that interval, convergence at z = Oguarantees convergence for all z with Izi 5 1. The 
necessary and sufficient condition for positive recurrence of the Markov chain is therefore 
the convergence of the infinite product 
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1 BY the classical convergence criterion that convergence is @sued if and only if the series 

converges. Henceforth we concentrate attention on the cases where condition (6) holds. 
If the mean pt1 of the probability density (%) is finite, it follows from (5) that 

the mean ytl = P'(1-) of the steady-state density (nil is given by ytl = (1 - p)-lpll. If 
we are only concerned with the stationary mean length of our list of messages, that 
quantity is easily computed and depends only on the mean of the density [%). That is an 
example of an insensitivity theorem, of which a number have been established in 
queueing theory. Such a result is both appealing (because of its mathematical 
simplicity) and potentially deceptive, as it says that the mean yI1 is not affected by the 
variability of the numbers of incoming messages. y t l  is therefore, in general, not an 
informative descriptor of the Markov chain. 

The terms of the series in (6) are increasing positive functions of p and the series 
trivially converges at p = 0, and diverges at p = 1. This suggests that there exists a 
constant p*, which depends on the generating function A(z), such that the Markov chain 
is positive recurrent if and only if p < p*. For the Poisson case, it is clear that p* = 1, 
and that expression for ytl suggests that this may also be the case for all densities (+), 
withfinite mean. We now prove that this is so. 

Theorem 1:  Provided the mean ptl  exists, p* = 1,  or equivalently, the 
equilibrium condition (6) holds for all p with 0 c p < 1. 

Proof.- We recall the formula 

and the fact that if ptl exists, is also given by the sum 

Setting z = 1 - pn, we obtain 

and convergence in (6) follows by comparison. 0 

Theorem 1 adequately settles the existence of steady-state probabilities for most 
applications. It raises, however, a few questions laden with purely mathematical delight, 
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such as: How can one characterise p* when (%) has an infinite mean? Is there an 
example of a sequence (%) with infinite mean for which p* = I? Such questions are 
problems in analysis, yet they are not without probabilistic interest For (%) to have an 
infinite mean, the numbers of new arrivals per time slot must exhibit strong variability. 
We are therefore asking whether a Bernoulli deletion process can "cope" with such =tic 
inputs in keeping the buffer size from increasing beyond all bounds. 

The special case of Poisson input gives an instance of a closure theorem. If (aJ 
is a Poisson density, so is the density (xi). As in other areas of mathematics, we can 
ask just how "special" that result is. This leads to questions such as: If {xi) is a 
Poisson density, what can we say about (%)? Are there other special classes C of 
probability densities on the nonnegative integers, such that if [%) E C so does [xi)? 
There is also the inverse problem: For which (positive) densities (xi) is it possible to 
find a probability density (%) such that their probability generating functions satisfy the 
equation (4) for some constant p with 0 c p c l? The answer to the first question is 
easy; it is given in Theorem 2. For the other questions, we can only offer suggestions 
and refer to literature that may be relevant to their investigation. 

Theorem 2: If (xi) is a Poisson density, so is the density {%I. 
Proof: This follows immediately from equation (3). If P(z) = exp[-a(l - z)], then 
clearly A(z) = exp[-a(l - p)(l - z)]. 0 

The second question has not yet been answered to any degree of generality, but 
the following result shows that there are sets C, other than the Poisson densities that are 
closed, in the sense that they contain both sequences ($1 and (xi). 

Theorem 3: If the density (%) has the generating function 

A(z) = exp (-b[l - ($2 + $'z2)]]. 

where b > 0, and 0 I I) = 1 - I)' I 1, the probability generating function P(z) of (xi) is 
given by 

P(z) = exp (-a[l - (Bz + 8'z2)]]. 
where 

a = b(1- p2j1(1 + 21, - H), and 9 = 1 - 9' = (2p - p$ + $)(2p - p@ + l j la .  

Pro08 This is shown by substituting the proposed forms of A(z) and P(z) into 
equation (4) and equating coefficients in the quadratic expressions .which are the 
exponents in both sides of the resulting equation. 

CI 

The densities corresponding to A(z) and P(z) are each the convolution of an 
ordinary Poisson density with a Poisson density on the even nonnegative integers. 
Theorem 3 suggests considering densities with probability generating functions A(z) of 
the form exp[-a[l - B(z)]), where B(z) is a probability generating function on the 
positive integers. We leave that potential generalisation to the initiative of the reader. 
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The third question is related to the decomposability (or divisibility) properties of 
discrete distributions with respect to the convolution product. There is a developing 
literame on this subject. We refer to Steutel and van Ham (1979) and van Ham, Steutel 
and Vervaat (1982) for examples and further references. The analysis draws on the theory 
of functional equations and is quite arduous. Equation (2) is an example of a (simple) 
stochastic difference equation. This suggests yet another mathematical perspective from 
which the models discussed here may be considered. 

An entirely different class of generalisations is obtained by enlarging the class of 
probability models so as to incorporate fluctuations in the input process. By analogy 
with investigations in the theory of queues, discussed in detail in Neuts (1981,1989), 
we may assume that the input process is modulated by an irreducible finite Markov 
chain with m states and the transition probability matrix C. We shall not dwell on that 

I generalisation, except to note that discussion of the convergence of the infinite product 
I 

(5), which are elementary in the scalar case, draws on mathematical properties which 
have received much less attention. 

We conclude this section by drawing attention to the third motivating example 
presented in Section 2. The numbers of packets generated at successive time slots could 
be modelled here as a Markov chain and we discussed the issue of determining the initial 
conditions which yield the stationary version of the packet stream. It is clear that, for 
genuine and important problems of communications engineering, there are much more 
weighty questions to be answered. These deal with issues of statistical analysis and 
model fitting, with spectral analysis to assess the fluctuations in the packet stream and 
with the response of queues subject to such arrival processes. Generalisations of the 
present model lead to the study of stationary integer-valued stochastic processes with a 
discrete parameter. These subjects are matters of current investigations, which are far 
from complete. It is remarkable that, starting from a textbook problem, there is a short 
fkead of mathematical imagination leading to issues of current research interest. 

4. Algorithmic issues 

As I have repeatedly discussed, the consideration of algorithmic aspects of mathe- 
matical models is of the greatest educational interest. While traditional methods of 
analysis emphasise formal manipulations and asymptotic behaviour, the examination of 
algorithmic procedures invariably requires the student carefully to consider the structural 
features of the problem. Correct algorithmic analysis draws on talents of abstraction 
that generally are still inadequately developed by standard undergraduate courses. We 
note with dismay, that few if any textbooks on probability or stochastic models discuss 
algorithmic issues or list problems of sufficient complexity to offer algorithmic 
challenge. We shall limit our discussion to the elementary algorithmic aspects of the 
model in Section 2. The reader can find additional examples or further discussions of 
education aspects of algorithmic analysis in Carson and Neuts (1975) and Neuts (1973, 
1974, 1980, 1981, 1984a,b and 1986). 

To evaluate the probability density (xi] of equation (4), for a given density (%I, 
we need two basic modules. The first is an algorithm to evaluate the convolution of 
two discrete (lattice) densities; the second an algorithm to evaluate the density with 
generating function B[az + 1 - a] for a given density (b,} with generating function B(z). 
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For sequences of modest length, convolution can be coded directly from its definition. 
In order to construct the second module, we note that 

The desired density is a mixture with mixing density (b,] of the successive convolutions 
of the probability density with masses 1 - a at 0 and a at 1. The problem of evaluating 
a density of the form 

where c(*) is the r-th convolution of a density c, often arises in applied probability. An 
educationally important insight is to recognise that the sum is a polynomial with 
respect to the convolution product. There is major computational efficiency in evalu- 
ating the density corresponding to B(m + 1 - a)  by the same formal procedure, Horner's 
algorithm, used for ordinary polynomials, but adapted to convolution. A detailed 
discussion, with several applications, is given in Neuts (1980). The first module for 
convolution can be repeatedly used in Homer's algorithm. However, in the present case, 
the implementation of the algorithm is particularly easy as the convolution of an 
arbitrary density with the probability density with masses 1 - a at 0 and a at 1, can be 
coded in direct, simple manner. 

Remaining issues deal with error control, stopping criteria, and internal accmcy 
checks. If the probability density {aJ must itself be computed (and has unbounded or 
very large support), as in the particular cases in our discussion, we suggest computing a 
sufficiently large number N of terms so that 

where E is a small positive number, say We see that the probability mass in the 
densities with generating functions A[P% + 1 - $1 progressively "drifts" towards 0, so 
that for large values of n, additional convolutions with such densities will not 
significantly affect the computed density. That insight can be formalised in various 
ways. We have analytic expressions for the mean (and variance) of the density xi and we 
can continue successive convolutions until the computed density has (computed) 
moments sufficiently close to those theoretical values. Our approach is to use some 
properties of the desired probability densities to encode our stopping criterion and to save 
others as internal accuracy checks. These are quantities for which we have explicit 
formulas or simpler algorithms and which can be used to check on the accuracy of the 
results computed by our algorithm. 

Finally, the occasional analytically explicit solutions acquire a new interest not 
apparent to the student who has become conditioned to derive only these. Such special 
cases can, of course, be directly computed by straightforward codes. We use them 
almost exclusively as powerful tests of algorithms for problems of greater generality. 
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My colleagues Joseph Gani, Julia Higle, Bernard Lamond, V Ramaswami and 
Sidney Yakowitz have read drafts of the manuscript of this paper and have offered 
constructive suggestions on its contents or presentation. Jeffrey Hunter brought the 
reference to Takacs (1960) to my attention. Their interest and help is appreciated. This 
research was supported in part by Grants Nos. ECS-8803061 from the National Science 
Foundation and AFOSR-88-0076 from the Air Force Office of Scientific Research. 
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