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1. Introduction 

Sampling is the process of collecting, analysing, and interpreting data in order to 
test hypotheses and provide needed information for intelligent decisions. Sampling is an 
attractive alternative to complete enumeration. Instead of measuring or recording all 
members of a population of interest, one concentrates on a representative proportion, 
objectively selected, to estimate desired characteristics of the target population. 

Sampling involves a number of critical decisions which affect the reliability of 
the estimates. For example, what factors influence the sample size? Does a specific 
design meet cost and precision criteria? How does the size, shape, and allocation of 
individual sampling units affect the efficiency of estimators? Under what conditions 
does stratified random sampling, for example, yield more precise results than simple 
random sampling? These types of questions must be addressed prior to selecting the 
most appropriate sampling method for a given situation. 

Sukhatme and Sukhatme (1970) define relative efficiency (RE) between two 
procedures, A and B, as follows: 

where VA and VB are the variances that result from each one of the two procedures. If tl 
and t;? are two estimated of a population parameter, tl is more efficient than t;? if its 
mean square error (MSE) is less than that of t2. The estimator tl is more precise than 
t;? if V(tl) < V(5). Thus, the information supplied by tl is measured by the inverse of 
its MSE. For unbiased estimators, the efficiency and the precision are the same, since 
the MSE equals the variance plus the square of the bias. 
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If C(tl) and C(t;?) denote the cost of two sampling procedures that yield 
estimators tl and t;? respectively, then the cost-efficiency (CE) of tl compared to that of 
t2 is: 

This relationship determines the ratio of the amount of information per unit cost in the 
two cases (Murthy, 1967). 

A given sampling design is efficient if it provides the best possible precision for 
a fixed cost, or when it provides a fLxed level of precision at the lowest possible cost. 
Both conditions must be considered when dealing with the constraints of a particular 
survey problem. For example, if one anticipates that the cost of sampling exceeds the 
available budget, the precision of the estimate may be reduced due to the smaller sample 
size. However, the user may also explore other designs capable of providing the desired 
level of precision within a given budget. 

Although these concepts are simple and straightforward for statisticians, student 
comprehension of cost-efficiency in sampling is troublesome. This is particularly the 
case in forestry, ecology, soils, range, and other plant sciences. Part of the problem is 
the fact that the elementary sampling units in these populations have an area associated 
with them such as circles, squares, rectangles, strips, etc. Thus, for a desired precision 
or cost, the same efficiency may be achieved by a large number of combinations of the 
number of observations (sample size) and the area of the elementary sampling units. 
Alternative sampling designs capable of providing the required precision of an estimator 
without exceeding the budget, may also be explored. 

To enhance student comprehension of basic sampling concepts, the authors have 
developed a Forest Sampling Simulator (FOSS) for microcomputers (hani t is  and 
Reich, 1989). It has been well-documented by numerous studies that computer 
simulation fosters understanding of complex systems by permitting students to 
manipulate individual parts and observe the effects of their action on the rest of the 
model (Heerman, 1988). Thk system is described in Section 2 below. In Section 3 its 
possible augmentation by an expert system is described, which would automatically 
generate the most appropriate sampling strategy for a particular situation, given the 
appropriate input information. 

2. The FOSS system 

FOSS is an interactive microcomputer software program written in BASICA for 
IBIvP PCs or other fully compatible units. The program consists of three main 
components: (a) POPULATION, (b) PLOT COmGURATION, and (c) SAMPLING 
DESIGN. The first generates a realisation of a particular type of forest; the second 
selects the shape and character of the sampling unit; and the third specifies the type of 
sampling design to be used. 

2.1 Population 

Users have the option of generating three spatial patterns of trees or other objects 
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whose positions, specified by x-y rectangular coordinates, are fixed on a plane. The 
three spatial patterns are random, aggregated and regular (or uniform). For a given 
number of trees in a population, random patterns are created by a pseudo-random 
generator whose starting point is determined randomly by the internal computer clock 
Figure 1). 

FIGURE 1 
Random spatial pattern of 2000 tree centres within an area of 3.48ha. An  
example of strip sampling with replacement. Strips are approximately 7m 
in 'width. 

Aggregated patterns (Figure 2) are simulated in two sequential steps. Fi f  a 
user-specified number of cluster centres is located at random within the boundaries of the 
population. Second, the average number of trees per cluster and the size of the clusters 
are determined by a probability (P) and a scaling factor (S). 

FIGURE 2 
Aggregated spatial pattern of 2000 tree centres within an area of 3.48ha. 
Number of clusters 50; scaling factor .02; probability of aggregation 0.8. 
An example of stratified random sampling with Neyman allocation. 

2 Circular plots are approximately 51m in size. 
1 
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The parameter (P) denotes the probability that a given tree will be located within 
randomly selected clusters. For each tree in the population, a pseudo-random number is 
generated between 0 and 1. If the number is greater than P, the tree is randomly located 
within the boundaries of the forest If the number is less than P, the tree is randomly 
assigned to a cluster. Its distance from the cluster centre @) is determined as follows 
(Reich, 1980): 

where RND is a random number between 0 and 1, S is a scaling factor (.01 c S c 0.2), 
and In is the natural logarithm. 

The azimuth of an individual tree from the vertex of the cluster centre is deter- 
mined by a random angle between 0 and 360 degrees. Tree distances extending beyond 
the population boundaries are continued along the same azimuth on the opposite side of 
the forest 

Regular or plantation-type forests or other plant populations are simulated by 
defining the distance between individual trees within and between rows (Figure 3). 

FIGURE 3 
Plantation-type spatial pattern of 2000 tree centres in a forest of 3.48ha. 
Distances between rows 12 units; distance between trees in a row 6 units. 

2 Twenty random pps point samples (basal area factor l.lm ). Lines 
radiating out from centre of points indicate distances to trees included in 
the sample. 

Gradient: On command, FOSS generates an East-West and/or North-South 
gradient of plant locations (Figure 4) by transforming the original x-y coordinates using 
an exponential function. 
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FIGURE 4 
Spatial pattern of 2000 tree centres within an area of 3.48ha An East- 
West gradient of value 1 is present. Eight rectangular plots of approx- 

2 imately 405m each are systematically arranged. 

With all these options which can be handled by FOSS, an infinitely large 
number of forests or other plant populations can be generated to depict very closely 
real-world settings and test the efficiency of various sampling designs. For each 
simulated forest, the user has the flexibility of selecting either the normal or the Weibull 
distribution for the population variable of interest 

2 3  Plot configuration 

FOSS handles six different shapes of elementary sampling units: square, 
rectangle, circle, point, line, and strip. With the exception of point sampling, once a 
specific shape is selected, the user has the option of choosing different sizes of 
elementary sampling units. This applies also to lines (trans~ts) where different lengths 
may be user-specified. Transect sampling is very popular among foresters, wildlife 
specialists, geologists, ecologists, soil specialists, and other scientists. 

2 3  Sampling Designs 

FOSS handles nine sampling designs: simple random with replacement 
(Figure I), stratified random (Figure 2), systematic (Figure 4), list bps), 3-P (sampling 
with probability proportional to prediction), double sampling, two-stage, quadrats, and 
distance sampling (Figure 5). 

The students can select any of the populations, plot configurations and sampling 
designs described above. Each trial yields summary tables with sample statistics and 
true popuIation parameters. Comparison of standard errors and confidence intervals are 
easy to perform in order to compute relative efficiencies among sampling designs. 
Students may repeat the process as many times as deemed appropriate to acquire a fm 
grasp of sampling variability. 
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FIGURE 5 
Aggregated spatial pattern of 2000 tree centres within an area of 3.48ha. 
Number of cluster 100; scaling factor .01; probability of aggregation 
0.9. An example of distance sampling using 150 point-to-tree and 
tree-to-tree distances. Lines denote distances from points and tree centres 
included in the sample. 

3. A conceptual expert simulation system for sampling designs 

FOSS has been very successful in stimulating students to think independently 
and evaluate the outcome of their decisions. If one accepts the notion that the primary 
responsibility of a teacher is to assist students in advancing from memorising to 
independent thinking, then programs like FOSS provide a valuable contribution to the 
learning process. Through FOSS, users with relatively weak quantitative backgrounds 
begin to comprehend basic concepts of statistics and sampling. A logical extension of 
FOSS would be an intelligent procedure, a knowledge base reasoning system, to assist 
students in deciding which one of the many designs available to them is the best to 
apply in a specific case. Such a system should take into consideration the characteristics 
of the population, the available resources, and other constraints such as time, trained 
personnel, and priorities. To accomplish this task effectively without an intelligent 
computer-aided system would be cumbersome. 

3.1 Knowledge base system 

A knowledge base system would assist students in selecting a particular 
sampling design from among a number of alternatives, which would balance the cost and 
precision requirements in each specific case. As a result, students' comprehension of 
sampling efficiency and their ability to implement cost-effective inventories when 
elements are fured in space (trees, lesser plants, and other items of interest). 

During the past decade, a new decision-making tool, referred to as artificial 
intelligence (AJJ, has emerged. This new science involves programming computers to 

Session B3 196 

ICOTS 3, 1990: Robin Reich and Loukas Arvanitis



imitate human behaviour that requires intelligence to make rational decisions. One 
remarkable and promising technology within AI involves knowledge base systems, often 
referred to as expert systems (ES). An ES is a logical program that enables a computer 
to mimic an expert in helping humans diagnose problems and select among alternative 
actions (I3arrett and Jones, 1989). ES are developed using other computer programs, 
capable of manipulating symbols and numbers, thus enabling the computer to represent 
knowledge and logic symbolically. An ES can be used to teach non-experts the 
problem-solving approaches of experts (Holt, 1989). 

In addition, simulation models like FOSS can provide critical input to ES to 
improve decisions when an expert's knowledge is limited (Beck and Jones, 1989). For 
example, in selecting the optimal plot area and shape, one has to have prior information 
on the structure of the population such as spatial distribution, number of elements, and 
amount of understory vegetation. Also, information is needed on the relationship 
between sampling variability and plot area. Thus, it seems reasonable to link 
simulation models with ES to provide reliable estimates of the above relationships 
essential to the decision-making process. 

If information is available from a previous survey or pre-sampling, FOSS could 
be employed to simulate the relationship between plot sue and sampling variability. 
This information may be subsequently used by the ES to identify the'optirnal plot area 
and sample size that minimises total survey time (measurement plus travel time) for a 
pre-determined level of precision. Because of the flexibility of FOSS, one can also 
approximate how this relationship changes with different plot configurations (square, 
rectangle, circle, strip, etc.) and spatial patterns such as random, aggregated, or uniform 
(Reich, 1980). 

If one is contemplating whether to use, say, double sampling with regression 
instead of simple random sampling, it is important that a strong linear relationship 
exists between the auxiliary variable (x) and the variable of interest (y). The absence of 
such a relationship may affect the precision of the survey. Thus, if computers can 
identify feasible solutions under such conditions, human intelligence is being imitated 
and enhanced 

A characteristic of most ES is that incomplete and uncertain information can be 
used. These programs often pursue an alternative line of reasoning when information is 
unknown or suggest less confidence in the answer provided. To overcome this problem, 
uncertainty on the part of the user may be represented in the form of numerical certainty 
factors (Spiegelhalter, 1986). Such factors commonly range from -1 to 1, where -1 
represents complete confidence that the information is false, and 1 implies complete 
confidence that it is true. Numerical certainty factors are measures of confidence, not 
statistical probabilities. 

If the user is not confident that a strong linear relationship exists between, say, 
the auxiliary variable (x) and the variable of interest (y), one would be better off using 
simple random sampling. Thus, this type of information may be used to rank 
alternative sampling designs, based on the level of certainty of the information being 
provided to the ES. 

3.2 Brief description of the expert simulation system 

An expert simulation system usually has six main counterparts (Hayes-Roth et 
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al., 1983): language processor, input, knowledg base, design storage, design evaluation, 
and design refinement. 

Language processor: An ES is usually based on a problem-oriented language, 
such as Level Fivem (Level Five, 1988), which relies on a user-friendly and fixed 
vocabulary to, (a) conveniently input and display information for the user, and (b) select 
and apply appropriate design-based rules using input from the user. 

Input: The ES needs specific information before it can identify an appropriate 
sampling design. Such information falls into three categories: (a) characteristics of the 
population (i-e. spatial distribution of trees, number of trees per unit are., dimension of 
individual trees, density and height of the understory vegetation, etc.); (b) objectives and 
constraints (precision, costs, time) associated with the sampling design; and (c) know- 
ledge gained from the previous surveys that may aid in selecting the most appropriate 
sampling design. 

A major problem frequently encountered in designing an efficient survey is the 
lack of reliable information on the structure and variability of the population of interest. 
In this case, the system may use default stored in the knowledge base, or information 
obtained from a simulation model, such as FOSS (Arvanitis and Reich, 1989). This 
approach will approximate missing information, which may subsequently be improved 
as needed in the design phase. 

Knowledge base: The knowledge base is the heart of the system. It uses rule- 
based formulae to capture human expert knowledge and experience which is stored for 
retrieval. Knowledge base rules are divided into two groups: design default rules and 
design change rules. The design default rules are used to develop the initial survey. The 
design change rules are used to modify the sampling method to ensure that it satisfies 
the stated objectives. 

Design storage: Design specifications can be stored to the user would be able to 
modify or refine the sampling method at a later time. 

Design evaluation: The initial sampling procedure may not satisfy all the 
constraints (precision, costs, and time) imposed by the user. In this phase, the ES 
would evaluate and rank applicable sampling designs to determine their conformity with 
objectives. If a sampling design does not meet the specifications, the system can make 
appropriate modXcations using the design change rules stored in the knowledge base. 

Design refinement: Using the knowledge base design rules, one will be able to 
modify the sampling method. In addition, changes would be possible on some of the 
constraints, previously imposed on the design, if this is deemed appropriate. 

3 3  Advantages of an expert simulation system 

The main value of an expert simulation system, such as Figure 6,  is that 
students will learn to play an active role in designing efficient forest and other related 
surveys. Such a system also allows students to explore a wide variety of alternative 
solutions that would otherwise be impossible to accomplish in the real world. Other 
advantages include: (a) linking theoretical understanding with practical applications; 
(b) discovering new functional relationships among variables of interest; (c) building 
student-controlled simulations that employ theoretical concepts taught in a course in 
natural resource sampling; and (d) develop computer skills that will be applicable to 
their professional careers. It is anticipated that an expert system will foster critical 
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thinking and enhance problem-solving ability of students. 
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FIGURE 6 
Flow chart of design base rules for selecting the ' k t "  sampling design 
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