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1. Introduction 

The principal aim of this paper is to demonstrate how the coordinate-free 
methods of linear statistical models may be adapted to the analysis of econometric 
models, and to explain why such methods are useful for teaching purposes. 

The application of coordinate-free methods to linear statistical models cast in 
Euclidean space was first introduced by Kruskal(1961). Later, the methodology was 
extended to multivariate analysis by Dempster (1968) and Eaton (1970). Drygas (1970) 
and Philoche (1971) give coordinate-free expositions of minimum-variance linear 
unbiased [or Gauss-Markov (GM)] estimation, and Seber (1964a,b,c and 1980) makes 
use of coordinate-free methods in a comprehensive treatment of the linear hypothesis. 

2. Coordinate-free methods 

A coordinate-free argument is an argument that does not depend on a specific set 
of coordinates. Consider, for example, the nxk real matrix X of rank k. The set of all 
linear combinations of the columns of X forms a vector subspace called the range-space 
of X; this is written at m= (8: 8 = Xh, h E IR k]. The dimension of 3% [XI is the 
rank of X, and since X has n rows, at DL] is a subspace of IRn. If Z = XM, M being a 
kxk non-singular real matrix, then Z has rank k and at DL]= at 121. Clearly there are 
many more matrices like Z which may be constructed as k linearly independent linear 
combinations of the columns of X, and each will generate the same subspace. Let this 
subspace be L; then L has dimension k and the matrices X and Z are examples of 
different bases of L in Rn. If x = Xa, then a is said to be the coordinate vector of x 
relative to the basis X of L; if x = Zh, then h is the coordinate vector of x relative to 
the basis Z of L . If a basis is not specified, then the simple notation x E L suffices, 
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indicating location without reference to a basis and hence without reference to 
coordinates: such notation is thereby coordinate h. 

The (n-k) dimensional subspace of IRn of all vectors orthogonal to E is written 
E L  and may be defined, relative to the basis X, as zL = {8: xT8 = 0,8 E En); this 
subs ace is also called the nullspace of xT, written V, [xT]. Notice that R I3lL = % niz I = -at[aL= n~li!~~. 

Turning to statistical models, let Y be a random vector which ranges over IRn 
according to Nu, &), p being the nxl mean vector of Y and & its positive-definite 
(p.d.) dispersion, $ being a positive scalar. A linear model would put p = XP for some 
suitable X, P being a k-tuple of coefficients. Equally, p = Zy for some M where 
My = P: the vector p has coordinate vector P relative to the basis X of E ,  and coordin- 
ate vector y relative to the basis Z of t. The least squares (OLS) estimator of p, based 
upon the nxl observation y of Y, is and this may be written, in coordinate form, as 

and T bein the least squares estimators corresponding to P and y. The expression 
T -1 + X(X X) X is the matrix of the linear transformation P from IRn to af; relative to the 

T -1 T basis X, and Z(Z Z) Z is the corresponding matrix of the same linear transformation 
relative to the basis Z. Generally, the matrix of the same linear transformation will be 
different relative to two different bases but, in the case of (I), x(XTx)-'xT = 
z(zTz)-lzT. This may be seen by substituting Z = XM into the last expression. What 
this demonstrates is that for every nxk matrix basis B of E ,  the nxn matrix P of the 
linear hansformation PL always takes the form P = B(B~B)-'B~. 

In coordinatePependent terms, the distribution of Y is expressed as N(XP, 9) 
or N(Zy, CG), and P = (xTx)-lxTy or T = (zTz)-lzTy are the estimated coordinate 
vectors relative to X and Z respectively. The corresponding coordinate-free expressions 
are Nu,  $1, p E E ,  ji = PLy, and any convenient basis of 2 suffices to com ute F Pap, takes any y in JRn onto E such that (y-PLy) is orthogonal to 2 ,  i.e. (y-Py) x = 0 
Vx E R rx]. For this reason, PL is called the orthogonal projection from IRn to 2 . 
Also, since &, - PL)? E E \  &, - PL) is the orthogonal projection from 8" to EL. 

A more effic~ent estimator of p than ii is the generalised least squares (GLS) 
estimator 

(2) 
T -1 -1 T -1 

j i = X ( X C X ) X I : y =  Fy. 

where F = x(X~C-~X)-~X~I ; -~  = Z ( Z ~ F ~ Z ) - ~ Z ~ X ~ .  Given I;, F is the unique matrix 
of the linear transformation, FL, taking any y in JRn onto Z, such that (y - F y) is 

T 3 orthogonal to C-l E ;  that is, in coordinate dependent terms, such that (y - Fy) C x = 0 
for all x E R m. While P is symmetric and idempotent (P = pT = p2), F is merely 
idempotent (F = F~) .  FL is an oblique projection, F bein the corresponding oblique 5 projection matrix. In Figure 1, the vector y is put in IR and E is a line. C-' 3 = 

T -1 - R [C-'x] lies below E ;  at right-angles to it is [C-' ElL = R [ C - ~ X ] ~  = 'It [X C I. 
Thus Fa; is seen to take y from IR2 to E along [z-~E]'. Of course, Fy = x?, where ? 

T -1 -1 T -1 is (X I; X) X C y, and this is the coordinate dependent expression for E; the 
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conresponding coorm-w expression is F2y and this may be calculated, for given % 
with any chosen basis of Z. 

FIGURE 1 

The simple geometry of OLS and GLS in Figure 1 makes use of the 
orthogonali conditions (OLS) xTz = 0 between two coordinate vectors x and z in IRn P and (GLS) x C'Z = 0. The expression xTz is called the natural scalar product between x 
and z and, when x and z are in coordinate-he form, this will be written (x,z) Vx, z E 
Bn. The expression xTZ-'z is a special case of the scalar product induced by Z on at [XI 
and, when x and z are in coordinate-free form, this is written (x,z)=. When C is p.d. then 
(x,z)= = (x,X1z) Vx, z E 8"; but when Z is non-negative definite (n.n.d.1 then 
O;X,CZ)~ = (x,Xz) Vx, z E IRn (philoche, 1971). When lRn is endowed with a scalar 
product, either (.,.) or (.,.)& for some appropriate am p.& or n3.d. matrix A, then Bn 
is said to constitute a Euchdean space, written e. 

In review the principal advantage of caqing through an argument in coordinate 
vectors is that the resulting formulae are directly computable. This is clearly of practical 
value. Yet there is also a real disadvantage, because coordinates ultimately clutter a 
theoretical argument and thereby help mask the uuderlying mathematical structure. One 
advantage of a coordinate-free argument is that it gives emphasis to the mathematical, 
and particularly the geomehid, structure and hence has powerfid intuitive appeal. A 
second advantage is that coordinate-& arguments are characteristically simple and 
elegant and thereby permit, didactically speaking, a rapid development of theoretical 
ideas. When translated into classroom time, these two advantages imply that a 
coordinate-free approach allows a theoretical argument to be efficiently advanced to the 
benefit of understanding, leaving time for a discussion of practical matters, like 
computing, as a side issue involving the choice of an appropriate basis. 
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3. Application in econometrics 

For a wide range of estimation methods in econometrics, choice of method may 
be cast in terms of choice of scalar product. Since the mathematical analysis may be 
carried out for any admissible scalar product, it follows that one mathematical analysis 
suffices for the whole range of scalar products, and hence for a corresponding range of 
econometric estimation techniques. 

To illustrate, consider a characteristic econometric problem, that of estimating 
and testing one equation of a linear system comprising M interdependent or endogenous 
variables and K weakly exogenous variables. The one equation will be assumed to 
contain (m+l) endogenous, k weakly exogenous variables, and a general p.d. error 
dispersion. 

Two critical problems immediately arise: how to accommodate (i) a general error 
dispersion, and (ii) interdependence into estimation and inference. Each problem will be 
tackled by considering an appropriate transformation of the model and how such 
transformations determine the scalar product with which to work. A transformation to 
accommodate a general error dispersion is called a transformation to standard form (TSF) 
and a transformation to accommodate interdependence is called a transformation for 
orthogonality o). If Q is a TSF which is applied first, and B is a TFO, which is 
applied second, their combined effect on the natural scalar product (wz) of two vectors w 
andzin8is 

(3) 
T T 

(BQw, BQz) = (w. Q B BQz) = (w, Az) 

where A = Q ~ B ~ B Q  (B and Q being treated as matrices). 
Four didactic considerations are thrown up by use of the scalar product (., A.). 

(i) It happens that A is characteristically n.n.d. and hence singular. Thus (., A.) is 
not a proper inner product. Such singularity leads to a consideration of the scalar 
product induced by A on R [A] mentioned in Section 2.3 above: (., A.) = (., .)A when 
A is singular. If the regression subspace is X, then to ensure unique estimation it is 
necessary and sufficient that X n %[A] = @ w L' + R [A] = 8 * (K - k) 2 m, a 
necessary condition for identifiability of the equation. If m = 0, leaving only one 
endogenous variable, then B = h. If, then, C is n.n.d., there is no guarantee that the 
regression subspace X will be a proper subspace of 33, [I;], which is the subspace over 
which the endogenous variable ranges. In this case it is necessary to redefine the GLS 
estimator (2) and, in particular, to define the orthogonal projection from 33, [C] to 
X n IR [C] . 
(ii) A second question arising from the use of (., A.) is: When is estimation 
governed by (., A.) different from estimation governed by (., .)? When m = 0, B = I, 
and C is p.d., this amounts to asking when are the OLS estimators in (1) and the 
estimators in (2) the same? The answer to this question is an invariance condition 
whicfi is stated below in a general form of Kruskal's (1968) Theorem. 
(iii) When considering a model comprising variables classified as endogenous and 
exogenous with a general error dispersion structure, it is clearly very important to give 
consideration to specification testing. This is especially true if variables classified as 
endogenous could conceivably be treated as exogenous, since there are potential gains in 
efficiency by such a change. Such specification tests are referred to as Hausman (1978) 
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efficiency by such a change. Such specification tests are referred to as Hausman (1978) 
tests and it is natural to ask: How are classical significance tests and Hausman tests 
related? A general result which has a simple geometric interpretation can be established 
in answer to this question; and once the result has been stated for one scalar product, it 
is straightforward to extend it to another. 
(iv) Finally, having established a general understanding of estimation and inference 
under TSFs and TFOs, it is useful to consider how the methods developed may be 
extended to more general situations. Here the notion of choosing estimators by 
minimisation of a squared length defined by a chosen scalar product is crucial in 
providing a natural intuition for extension into, for example, non-linear methods, M- 
and analogue estimators. 

4. A logical course outline 

4.1 Linear estimation . 

The course begins with classical linear theory and then moves to adaptations of 
linear theory in econometrics. The linear theory is based upon y - N(p, 2 ; ~ ~ )  with 
p E E .  The main theorems are outlined below, without proofs. The symbol IL 
denotes the set of linear transformations on 8. 

Definition 1.  Let Q E IL be n.n.d The scalar product induced by Q on R[Ql is 
(.I .IQ, Ckfined by 

When Q is p.d., R[Ql = 8 and (., JQ is determined entirely on R[Ql by 

-1 
(x. z ) ~  = (x. Q Z) VX, E e . o 

On R[Q], (x, Qx) = 0 only when x = 0 and (x, Qz) = (x, z) Vx E R[Ql and vz E 8. 

Definition 2. Let E c 8 be a subspace and Q E IL be n.n.d. P(E)  is the set of 
all projections on E , that is if P E P(Z)  

Equation (4) implies P = p2 and defines the set of projections from 8 on E ;  (4)-(6) 
defines the set of orthogonal projections, relative to (., .)Q from R [Ql on C n [QI, 
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save when Q is p.d. whereupon the set is from e to X. 

Theorem I .  (Philoche 1971) Let L c e be a subspace, Q E IL be n.n.d. and 
let Po E PQ(L). Then PQP' - p o ~ p O T  is n.n.d. VP E P(X). 

a 
Consider now the random vector Y which ranges over e according to the family 

of probability measures (n : x E II). E,M = p and D,[(Y, x), (Y, z)] = (x, COz), 
Co = 9, c being scalar or D M  = &. 

Theorem 2. (Philoche, 1971) Let L c e be a subspace and, Vn E II, let 
p E X and C E IL be n.n.d. Let Po E Px(L). Then 

(ii) ifPo, PI E PZ(X), then POY and PIY are almost everywhere equal, Vn E II. 
a 

Theorem 2 is a general version of the GM theorem on least squares. Thus POY 
is the minimum variance linear unbiased estimator of p E X, Po being the generalised 
least squares (GLS) projector on X, namely the orthogonal projection on X relative to 
(., .)=. This may be shown using (1) and (2). 

The next theorem answers the question: When is the OLS estimator of p also 
the GM estimator? 

Theorem 3. (Kruskal, 1968; Philoche, 1971) Let P CE IL satisfy (z - Pz, x) = 0 
Vz E e and Vx E X. P E IPZ(L) ifand only ifZX c Z. 

a 
If x E X and Cx E ;Pi, Vx E L ,  then CX c L and X is invariant under C. 

Theorem 3 may be illustrated using Z = &,(I-p) + eeTp], lpl < 1, where e is the equi- 
angular line in 6 ,  i.e. the (nxl) vector each of whose elements is unity. 

A useful theorem for corroborating invariance is: 
Theorem 4. (Halmos, 1958) I f  W c C: is a subspace which is invariant under 

A E IL, then PAP = AP for every projection P on W. Conversely, if PAP = AP for 
some projection P on W ,  then W is invariant under A. 

From Theorem 4 a number of computable conditions for checking invariance 
follow. Theorem 4 may be illustrated with various simple examples from econometrics, 
for example seemingly unrelated regressions. 

4.2 Linear hypothesis 

When the scalar product is (., .), llxll = d(x,x) denotes the length of x; when the 
scalar product is (., .IZ, length of x is IlxllZ = ~ ( X , X ) ~  If W is a subspace of R(C), 
V# = (x: (x ,z )~  = 0, x E R [el, z'c V ) .  

Let H : p E L n R[u be the maintained hypothesis when it is desired to test 
HO : p E W ,  W being determined by r c dim(% n R [I;]) = k linearly independent 
restrictions ( a ; , ~ ) ~  = 0, i = 1,2 ,..., r. Now 
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and dim W = (k-r), dim [v# n L] = r and, setting dim a t [ q  = n, dim L#  = (n-k). 

where Pk-,, P, and Po are the orthogonal rejections, relative to (., .)C, on W , 
[W# n L] and L n a t [ q  respectively and $= { l l ~  - ~ g ) ~ l l ~ ~  (n-k)). 

If Xp = Xlpl + X2P2, X1 having kl and X2 having k2 columns such that 
X = m1:X2] has rank kl + $ = k, and if Z = h, consider testing Hg : P2 = 0 w p E 

X1, w F2p = 0, p E L where Li = at 1, Pi and the orthogonal projections on Pi 1 T L i  and Z: respectively, and Fi = Xi(Xi M.Xi)- Xi M., i t j, i ,j = 1,2. A correspond- 
ing hypothesis is H1 : (PI -_Fl)p = 0, p E I! where p1:= xl Pl, the OLS estimate of 
X I P l p  Q, and Fly = X1 PI, the corresponding estimate on H. Hg = H1 if and only 
if 2 n L2 = t$ and kl 2 $. When these conditions are satisfied 

Bl.1 denoting estimated dispersion on H. This is the basis of Durbin (1954) and 
Hausman (1978) specification testing.-In all cases Pl and P1 are consistent on % but 
PI is more efficient; on Ha : P2 + 0, P1 is consistent but not P1. 
4 3  Interdependent models 

The principal difference between the methods of Sections 4.1 and 4.2 and 
econometric methods is that in a linear model like y = XP + E the former requires X to 
be fixed or E[&IX] = 0, whereas in econometrics X is bedevilled by interdependence with 
E .  This implies inter alia that asymptotic methods become necessary. The problem of 
interdependence is generally tackled by the use of instrumental variables (IVs). Let Z 
represent the nxK matrix of IVs, Z = m1 : Z2 : $1 the blocks having respectively kl, 
K2 and K3 columns such that Z has rank (kl + K2 + K3) = K and K2 2 $. The 
principal property of Z is that each element 2.. is uncorrelated with the 

9 
"contemporaneous" element of E, ei. Two approaches to making use of Z are consider- 
ed: the first, called the GM approach, is due to Fisher (1966, 1972) and Dhrymes 
(1968), and the second, due to Sargan (1958,1959,1961), is called the GMM approach. 

If all the IVs are used, three important examples of the GM approach are the 
generalised two-stage least squares (G2SLS) method (Theil, 1958), Madansky's 
generalised IV estimation (M-GM) method (Madansky, 1964) and Sargan's generalised 
IV estimation (S-GIVE) method (Sargan, 1958,1959,1961; Arnemiya, 1966). 

Session B5 

ICOTS 3, 1990: Gordon Fisher



T T T T  T - 1  T 
G2SLS: TSF = Q: QCQ = &; TFO = B, = CZ Q : C(Z C Z)C =IK 

T -1 -1 T -1 
A,, = ilz(z P Z) z P =9 use (., .)&. 

T T 
M-GIVEk TSF = Q: QPQ = &; TFO = B,, = CZ~Q-': C(ZTZZ)cT = k 

T -1 T 
An = Z(Z CZ) Z =9 use (., .)&. 

T T T 
S - G m  TSF = Q: QPQ = &; 'IF0 = B, = czT C(Z z)CT = 

T - l T T  
A,, = QZ(Z Z) Z Q + use (.. .)&. 

In the GMM approach, the absence of correlation between the IVs and the 
equation errors suggests that such a property should hold in the corresponding sample 
moment n-lzT(y - XP). The basis of the method is to find an estimate P which 
minimises the quadratic length from the origin of zT(y - XP) or some transformation of 
it or (y - XP). Thus in M-GIVE I I C Z ~ ( ~  - xP)ll2 is minimised, where cTc = (zTX2)-l, 
and in S-GIVE llczT~(y - xj3)112 is minimised where cTc = (zTz)-'. GMM estim- 
ation may be looked at as applying a TFQ before a TSF, not the other way round as in 
GM estimation. 

The adequacy of IV specifications may be tested by applic;tion of (8). Suppose, 
for example, that if is the IV estimator using all the z's, while P is the IV estimator 
using the subset DL1 : Z2]. There may be some doubt that the columns of Z are 
genuine IVs, whereas no such doubt is held for the subset. LetP = z(zTz)"zT and ro 
@ the corresponding projection matrix for the subzt. Then if PX = 2 and POX = X, 
P and P would be the orthogonal projections on R [ W  and ~ 1 % ;  let = (In - & and 
G= (I, - 4. Then, corresponding to (8) with I: = In 

A T  A T A  
{dn @ - P) [(x x/njl - @TkT/njl]- (B - b d n )  / 2 

A AT- A 

= y T ~ x ( x ~ ~ ) - ~ ~ y T / ~ 2  

= Y ~ ( P ~ - B Y I C ; L .  

where Pq is the orthogonal projection on e( = R 1% : and (3- denotes any generalised 
inverse. Usin o2 itself or o2 replaced by azonsistent estimate of it, the test-statistic 9 has a central x -distribution on Hg : plim(B - P) = 0 with degrees of M o m  determined 
by rank (Pa - 6). On Ho, then, the "extra" IVs are valid. The test-statistic may be 
calculated by testing for the exclusion of X in the regression y = + 22, + v, in the 
same way as in Durbin's (1954) test noted above. ' 

Extensions to non-linear regressions of the kind y = f(X;P) + E may be obtained, 
when Z is p.d. and E - (O,Z), by considering 

- 

where % is a scalar product matrix of the kind given in this section. 
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Finally, G2SLS, M-GIVE and S-GIVE are examples of choosing a method of 
estimation by choosing a scalar product. Various results are also possible concerning 
applications of Theorem 3. 

5. Summary 

The aim of the paper has been to demonstrate five qualities of a coordinate-free 
presentation of econometric theory. First, the structure is clarified, thereby simplifying 
the mathematics and reducing tedium. Second, relations between methods are exposed 
and given coherence. Third, the geometrical structure provides a powerful intuition. 
Fourth, extension to non-linear methods and GMM is straightforward. Fifth, a 
coordinate-& exposition allows a speedy development of theory, permitting more time 
for practical applications. 
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