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Infectious diseases are still a major cause of morbidity and mortality. We hear 
in the media about the AIDS epidemic, but it should also be remembered that 
es such as malaria, schistosomiasis, filariasis, hookworm disease, trachoma, 

t hundreds of millions of people today. Even less 
hepatitis and influem remain of great concern 

statisticians to contribute to the understanding and 
much remains unknown about properties of the 

tious disease data presents several challenges 
stem from the lack of detail and the dependence in 

data. Infectious disease data do not result from planned experiments, but arise from 
makes it diflicult to accumulate precise data and 

n lacking in detail. Another reason for the lack 
only partially observable. The time and source 

tion are usually not determined. The dependence in the data arises from the fact 
ted cases are the cause of further infected cases. 

statistical analysis of data generally involves a family of models. The 
is family must be such that the models are both appropriate for the data and 

o we choose a model? This is an area where 
are useful guidelines available. We give a brief 
text of infectious disease data and illustrate them 

ence to applications in later sections. 
is desirable to adopt a model which reflects the mechanisms that generate the 

ch models have many advantages. Firstly, they provide reassurance to medical 
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collaborators and thereby increase the chance that our work is taken seriously. A more 
concrete advantage is that such models are usually formulated in terms of parameters 
which are epidemiologically meaningful. This makes the models well suited to the task 
of testing epidemiological hypotheses and estimating key parameters. Considerations of 
how the data are generated often lead to parametric models. Statistical inferences based 
on parametric models are generally more efficient than nonparametric methods, although 
this greater efficiency is only meaningful when a correct choice of parametric family has 
been made. This is more likely when the parametric family is arrived at from 
considerations of how the data are generated. This, in turn, provides confidence that 
there is a real gain in efficiency from the use of such parametric models. 

It is particularly important to use models which describe how the data are 
generated when the objective is to predict the future progress of the epidemic. Only for 
such models is there any basis for the hope that the model will continue to describe the 
epidemic when we project the model into the future. 

It is also essential to use models which describe how the data are generated when 
the objective is to assess proposed control programmes. In most sciences, the effects of 
changes are assessed by analysing results of repeated experiments. This is not possible 
for infectious diseases and so one overcomes this difficulty by consh-ucting a model 
which describes the essential features of an epidemic in the community and then uses the 
model to predict the consequences of introducing specific changes. More specifically, 
the use of a model to evaluate a vaccination campaign, for example, is based on the hope 
that when we make a change to the model which reflects the proposed campaign, then 
the model will respond in a way as to adequately describe the essential features of an 
epidemic in the corresponding partially vaccinated community. Only for models which 
describe how the data are generated is there any basis for this hope. 

In how much detail should we model the mechanism which is thought to 
generate the data? A rough rule is to adopt the simplest model which contains the main 
characteristics of the spread and adequately describes the available data. By including 
more details than can be supported by the data we run the risk of imposing our own 
biases on the analysis. 

Many epidemic models have been formulated, to allow for the specific character- 
istics of different diseases and types of data sets available. Many of these are described in 
the books of Bailey (1975) and Becker (1989). Here we give just two applications; one 
is concerned with measles data and the other with AIDS data. The models used in these 
applications require only familiarity with the binomial and Poisson models, and so are a 
useful source of interesting exercises for elementary statistics classes. 

3. Household data on measles 

Consider data on outbreaks of measles in households of size three. By size three 
we mean that there are initially three susceptible individuals in the household. The 
household may contain, as well, any number of individuals who are immune due to 
previous exposure to measles or vaccination. More specifically, consider the data shown 
in Table 1, which have been extracted from Tables 14.8 and 15.8 of Bailey (1975). 
These data were collected in Cirencester, UK, and in Providence, Rhode Island. Known 
characteristics of measles, specifically the fact that the rash occurs about 14 days after 
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infection (with little variation), enabled the deduction that these outbreaks were initiated 
by a single introductory case. SuPPose our concern is to compare the sizes of outbreaks 
in these two l0cati0n~. 

TABLE 1 
Frequency data for measles in households of three. 

Fitted frequencies based on independence of classifUcation 

Size of Cirencester Providence 
Outbreak Observed Fitted Observed Fitted 

1 6 6.1 3 4 33.9 
2 11 5.5 25 30.5 
3 43 48.4 275 269.6 

An immediate reaction might be to recognise Table 1 as a contingency table and 
to make the comparison accordingly. The chi-squared statistic (with 2 degrees of 
freedom) is computed to be 

which is significant at the 0.05 level. What can we deduce from this? Well, it suggests 
that the size of outbreak distributions for Cirencester and Providence differ. By compar- 
ing the observed with the (estimated) expected frequencies one sees that the apparent 
difference stems primarily from relatively fewer outbreaks of size two in Providence. 
This comparison in the present distribution-free setting is not well suited to providing a 
plausible epidemiological explanation for the apparent Werence. 

We now discuss a parametric approach which attempts to model the mechanism 
which generates the data. Let the random variable C denote the number of eventual cases 
when one of the three susceptible individuals introduces measles to the households. It is 
assumed that the risk of infection from outside the household is negligible when 
compared with infection by an infective within the household. Let p be the probability 
that a given susceptible is infected by a given infective from the same household at 
some time during the latter's infectious period. 

Consider a household of size three with one of the three being the introductory 
infective. Assuming that the two remaining susceptibles are exposed to the introductory 

2 infectives independently, we find Pr(C = 1) = q , where q = 1-p. The size of the 
outbreak will be 2 if one of the two susceptibles is infected by the introductory case, 
while the other escapes infection by both the introductory case and the secondary case. 
As either of the two susceptibles could be the one to escape infection we find 
Pr(C = 2) = 2pq2, whence Pr(C = 3) = 1 - Pr(C = 1) - Pr(C = 2) = p2(1 + 2q). This 
provides a parametric model for the data of Table 1. 

To use the parametric model as a basis for comparing the Cirencester and 
Providence data of Table 1, we must fit the model to the data from each of the two 
locations. Let ql and q2 denote the parameter q for Cirencester and Providence 
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respectively. We estimate ql and q2 by the method of maximum likelihood. The likeli- 
hood function corresponding to the dam of Table 1 is 

which leads to maximum likelihood estimates = 0.347 and G2 = 0.272. The 
associated standard emrs are s.e.(Gl) = 0.042 and s.e.(G2) = 0.018. 

One can now compare the data in Table 1 by testing the hypothesis % : ql = q2, 
a hypothesis about parameters which are directly related to the infectiousness of the 
disease. Such a test can be based on the statistic 

This is not significant, although it is a borderline decision with the .05 level of 
si&~cance and alternative H1 : ql > q2. 

When a parametric approach is used one needs to check that the model provides 
an adequate description of the data. Table 2 shows the results of fitting the parametric 
probability model to the data of Table 1. The chi-squared goodness of fit statistics give 
0.47 and 6.85, for Cirencester and Providence respectively. This reveals that while the 
model is adequate for the Cirencester data it is judged inadequate, at the 0.01 level, for 
the Providence data. This points to a difference between the two data sets, as before. 
The current model-based approach suggests a way of finding a possible explanation for 
this difference. Apparently an essential characteristic is missing fiom our description of 
the Providence measles outbreaks. 

TABLE 2 
Frequency data for measles in households of three. 

Fitted frequencies based on epidemic model. 

Size of Probability Cirencester Providence 
Outbreak of Outbreak Observed Fitted Observed Fitted 

What are some plausible modifications which might lead to an adequate model 
for the Providence data? We decide this by considering which of the underlying model 
assumptions might be violated. A first thought might be that the parameter q might not 
be the same for each susceptible/infective pair. For example, the duration of the 
infectious period might vary considerably between infected individuals. This means the 
parameter q will depend on which infective the susceptible is exposed to. Models which 
incorporate such heterogeneity are described by Becker (1989, Sections 3.1-3.3). It turns 
out that a model including this characteristic is not adequate for the Providence data. 
Perhaps this is not unexpected, because we would expect the above model to be 
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inadequate for the Cirencester data if this were the reason for the lack of fit. 
To explain the difference between the two locations we should really be looking 

for a characteristic of the community, rather than a characteristic of the disease itself. 
Perhaps the households vary more in Providence, possibly due to varying degrees of 
crowding or levels of hygiene. Models with variations between households are described 
by Bailey (1975, Section 14.4) and Becker (1989, Sections 3.4 and 3.5). It turns out 
that a model with this characteristic gives an adequate description of the Providence data 
of Table 1. We can conclude that a plausible explanation for the apparent difference in 
the size of outbreak distributions for measles in households of Cirencester and 
Providence is that there is greater variation among households in hovidence. It is 
possible that another characteristic could be found which can also explain the difference. 

To summarise, we have gained more insight by using a model which reflects the 
way the data are generated. 

1 4. Moving from measles to AIDS 

Measles is one example of a classic infectious disease. Books have been written 
about models and methods of analysis for data on such diseases. Now new methods are 
being developed for data arising from the AIDS epidemic. Why is it necessary to 
develop new methods? Why not just use the models and methods of analysis already 
available? The reason is that AIDS, or infection with HIV, has some different 
characteristics to those of previously studied infectious diseases. One such characteristic 

the long duration of the incubation period, which is the time from infection with HIV 
is now thought to be about ten years, 

sequence of this long incubation period 
during the course of the epidemic and 

s makes it difficult to place reliance 
specific model assumptions. 

consider the data on monthly AIDS 
e objective is to predict the future 

S cases, for the purpose of planning future health needs. 

t any additional knowledge one might simply plot the counts on a graph, 
matically convenient curve to the 

late the curve to arrive at predictions. This was indeed done in 
demic; see Curran et al. (1985) and McEvoy and Tillett (1985). 

owledge about the way the data are generated. 
d there is little basis for the hope 
future data. A related concern is 

infection with this approach. 
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TABLE 3 
Australian AIDS incidence data 

Year 
Months 1982 1983 1984 1985 1986 1987 1988 1989 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Total 1 6 43 118 221 370 497 422 1678 

It seems appropriate to adopt a model which takes account of our knowledge of 
the possible modes of transmission of HIV and our knowledge of the symptom-free 
period of the disease. See Isham (1988) for a review of transmission models which have 
been proposed to describe the dynamics of HIV infection. Some recent attempts at 
modelling the HIV epidemic have been extremely ambitious by including dozens of 
variables and parameters. It could well be that eventually something useful will come 
out of studying these elaborate models, but for the immediate problem of predicting 
future AIDS incidence their use seems rather limited. The reason for this is that the 
models typically involve quantities such as number of IV drug users, number of 
homosexual men, rate of needle sharing, and rate of change of sexual partners. Reliable 
information about these quantities is very limited at this time. In short, the trans- 
mission models tend to be overspecified relative to the available data. 

The favoured method by which predictions are currently made is the method of 
back-projection or back-calculation. This method uses the fact that an AIDS case is the 
result of infection with HIV followed by an incubation period. The method of back- 
projection does not require us to keep track of different risk groups or different modes of 
transmission. 

5.2 The method of back-projection 

A time which is clearly before the introduction of the disease is chosen as the 
time origin. AIDS counts are usually reported on a monthly basis, as in Table 3. We 
therefore present our discussion in discrete time and refer to the time unit as a month. 
Let Ht denote the number of individuals infected with HIV in month t. The process 
{H1,H2 ....) is typically assumed to be a discrete non-homogeneous Poisson process. 
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m e  number of AIDS cases diagnosed in month t, is denoted by A,, t = 1,2, ..., T, where 
T is the month beyond which no reliable AIDS incidence data are available. Let fd be 
the probability that the duration of the incubation period is d months, d = 0,1,2,... 

In this notation we have the relationship 

between the monthly number of AIDS cases and the monthly number of infections. 
Taking the expectation of both sides gives 

where y: = El41 and hi = ERI.  
m e  incubation period distribution is assumed known in the method of back- 

projection. In practice the distribution has been estimated from data on transfusion 
associated AIDS cases and from cohort studies of specific risk groups, such as 
haemophiliacs. 

Consider now why the amount of detail in the model (1) is well suited to the 
task of making predictions. One reason is that one only needs the AIDS incidence data 
and knowledge of the incubation period distribution. The AIDS counts are clearly 
available. Also, much data has been collected on the incubation period, although most 
of these data provide information primarily about the left hand half of the incubation 
period distribution. Relatively little is known, at this time, about the values of 
parameters contained in more detailed transmission models. In short, the degree of detail 
in the model (1) seems appropriate for the data currently available. A second reason is 
that the quantities in equation (1) are precisely the quantities which are affected by 
intervention. Thus treatment offered to asymptomatic patients since 1987 will directly 
affect the incubation period distribution, i.e. the f s, while education programmes on safe 
sex and clean needle programmes for drug users wiU directly affect the Xs. 

The statistical nature of the problem is that we have observations on random 
variables A1,A2, ..., AT, whose means are given by (I), in which the f s  are assumed 
known. The aim is to estimate the h,. This is an example of an ill-posed inverse 
problem; see O'Sdivan (1986) for an overview of such problems. The estimates of 
the A, tend to be unstable unless some way of smoothing is introduced. In the present 
context it is common to introduce this smoothing with the use of a parametric form 
h, = g(t;B) and then obtain an estimate of 8; see Brookmeyer and Gail (1988), Day et 
al. (1989) and Taylor (1989). An alternative is to fit a parametric form in p, to the 
AIDS incidence data, substituting the fitted fit into (1) and solving for the h,, as Isham 
(1989) has done. A drawback of the latter approach is that the solution tends to include 
some negative h, 

Recently Becker et al. (1990) have left the h, in nonparametric form and have 
smoothed the estimates via a weighted moving average applied at each iteration of the 
EM algorithm used to maximise the likelihood. This is an application of a method 
proposed by Silverman et al. (1990) in a different context. In the same spirit, 
Rosenberg and Gail (1990) suggest weakly parametric approaches, one of which achieves 
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smoothing by the use of splines. 
One advantage of the nonparametric method of back-projection with smoothing 

is that it lets the data speak for themselves in determining which configuration best 
explains the observed AIDS counts. Another reassuring feature of the method is its 
additive property. To explain this property suppose we wish to apply the method of 
back-projection to AIDS counts from the states of Victoria and New South Wales in 
Australia. If one parametric family of models for the h, is appropriate for Victoria and 
another for New South Wales, then a third parametric family will be appropriate for the 
combined data. This means that the search for an appropriate parametric family of 
models gets very tedious when we wish to apply the method to each of a number of risk 
groups and geographic regions, as well as various combiiations of these. The non- 
parametric approach does not share this difficulty, because the sum of two or more non- 
homogeneous Poisson processes is again a non-homogeneous Poisson process. 

Statisticians who, for some reason, prefer to use the method of back-projection 
with a parametric model can use the smoothed nonparametric estimates of the h, as a 
way of guiding them to a suitable parametric model. 

5 3  Making predictions 

How is the model formulation (1) used to make predictions of AIDS incidence? 
By estimating the ht we are essentially determining which configurations {hl,%,..., ?! could plausibly have generated the observed AIDS incidence data. Estimates of the , 
indicate how many individuals were infected during the various months since the start of 
the epidemic. One can then use equation (1) to project these numbers forward to indicate 
when we might expect these HIV infected individuals to be diagnosed with AIDS. More 
specifically, the expected number of AIDS cases during month T+T is given by 

Note that it is not enough to substitute the estimates (fil,&, ...,&.). We also need to 
specify values for hl,...,h,. There are no data to estimate these values and so we 
need to substitute a variety of plausible values for them. Fortunately, short-term 
predictions are not sensitive to the values of hT+l,...,h+7, because of the long 
incubation period. Note also that the estimates for the h,, with t near T, are quite 
imprecise. Again the long incubation period ensures that short-term predictions are not 
sensitive to this imprecision. Our predictions are much more sensitive to lack of know- 
ledge about the right hand tail of the incubation period distribution. The incubation 
period is primarily a property of the disease and so we can estimate the incubation period 
distribution using data from the USA, where the epidemic has a longer history. 

5.4 Application to Australian data 

Consider now an application of the nonparametric method of back-projection to 
the Australian data of Table 3. For the incubation period distribution we assume the 
Weibull distribution, as estimated by Brookmeyer and Goedert (1989), given by the 
distribution function 
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See Becker et al. (1990) for details of the method of estimating the ht via the smoothed A 

EM approach. Figure 1 shows the estimated configuration ( X ,XZ ,..., ) 
on the graph of the AIDS data of Table 3. The area under this 

configuration is about 10,000 and this is the estimated number of HIV infected 
individuals up to October 1989. D'his estimate is actually too low because no 
allowance has been made for the fact that treatment became available in October 1987.1 
Our estimate of the infection intensity suggests that the infection intensity has peaked. 
However, it must be remembered that estimates of the 1, are not precise for t near T 
(October 1989) and so the estimated near-zero infection intensity near T must not be 
taken too seriously. Figure 1 clearly depicts the fact that there are very many infected 
individuals who do not yet have clinical AIDS. The expected number of AIDS cases is 
still increasing, as can be seen h m  the two c w e s  of predictions shown in Figure 1. 
The lower curve is the overoptimistic prediction under the assumption that there are no 
further infections after October 1989. The upper curve is based on the, seemingly 
pessimistic, assumption that there has been a continuing rate of infection of 100 cases 
per month since the beginning of 1986. 

Observed A D S  

----- Estimated HIV 

1 Calendar Year 

FIGURE 1 
Observed monthly AIDS counts, estimated numbers of HIV infected 

individuals, and prediction of AIDS incidence 

5 5  Further considerations 

A number of considerations have not been discussed here. 7Ve mention just two 
very important ones. The first is that we need to indicate the precision of our 
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predictions. This can be done, and has been done, by simulation studies. The second is 
that the incubation period needs to be changed after 1987 to reflect the fact that there was 
a change in the definition of AIDS at that time and treatment with zidovudine (AZT) was 
introduced at about the same time. Solomon and Wilson (1990) and Bmkrneyer and 
Liao (1990) have given two ways of incorporating the effect of treatment with AZT into 
the method of back-projection. 
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