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USING BAYESIAN STRENGTH OF BELIEF
TO TEACH CLASSICAL STATISTICS

Milo Schield, Augsburg College, USA

Previous papers by the author have argued that the Bayesian strength of belief can be
used in interpreting classical hypothesis tests and classical confidence intervals.  In
hypothesis tests, one’s strength of belief in the truth of the alternate upon rejecting the
null was argued to be equal to (1 - p) under certain conditions.  In confidence intervals,
being 95% confident was argued as being operationally equivalent to a willingness to bet
on a 95% chance.  These interpretations were taught in an introductory class of non-
majors.  Students found this approach to be extremely natural for confidence intervals.
But in hypothesis testing, students had difficulty relating the quality of the test (p-value) to
the quality of the decision.  The underlying problem is student difficulty with related
conditionals.  To overcome this problem, we should teach more about conditionality --
not less.   

INTRODUCTION

Students often treat classical probabilities as though they measured the Bayesian

strength of belief in the truth of a claim.  For a particular confidence interval, students

may treat being 95% confident as a strength of belief that is somehow related to a 95%

classical probability.  In hypothesis tests, students often assess the truth of either

hypothesis using strength of belief.  In rejecting the null, they presume that the strength of

belief in the null being true is related to the p-value.

To address these intuitions, business majors in introductory statistics were taught

classical statistics with three differences.  Type I error and alpha were defined differently.

The classical p-value was used to calculate the Bayesian strength of belief that the null

hypothesis is true when rejecting the null.  The classical confidence level was interpreted

as a Bayesian strength of belief.

REDEFINITION OF ALPHA AND TYPE I ERROR

Alpha is traditionally defined as “the probability of Type I error.”  Type I error is

traditionally defined as “the rejection of the null when the null hypothesis is true.”  Yet,

Type I error is often illustrated by means of Table 1.

In this 2x2 table, Type I error is shown as a single cell.  This gives students reason

to conclude that Type I error is a simple intersection of two co-equal conditions.  And if

alpha is the probability of Type I error, then alpha should be the probability of having a
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random outcome in that cell.  Thus, students may think alpha is just a table percentage or

a row percentage.  They have little reason to think that alpha is a column percentage.

Table 1. Description of Outcomes in Classical Hypothesis Testing

CELLS -----  STATE OF NATURE ----
DECISION null is true null is false
Fail to reject null OK outcome Type II error
Reject null Type I error OK outcome

Schield (1996) recommended that the definitions of Type I error and alpha be

refined.  Type I error was defined as “the null being rejected and being true” or as

“rejecting a true null.”  This refinement makes the single-cell illustration of Type I error

(Table 1) completely accurate.  Alpha was defined as “the probability of Type I error

when sampling from the null distribution.”  This refinement explicitly references both the

whole and the part rather than having the whole buried inside the traditional definition of

Type I error.

HYPOTHESIS TESTING

In Schield (1996), the relation between classical statistics (α and p-value) and the

Baysian strength of belief in the truth of the alternate was investigated.  Consider a fixed

level hypothesis test using alpha with a null (µ ≤ µo) and a separated alternate (µ > µ1)

where µ1 > µo.  By varying the separation (µ1 - µo) or the sample size (n) one can obtain

β = α for any value of α.  Under certain assumptions (including β = α),

δ  =  αγ′ / (αγ′ + α′γ) α  =  δγ  / (γ′δ′ + δγ)

where γ is the prior strength of belief in the truth of the alternate, where δ is the

probability of a Type I error given one has rejected the null, and where α′  = 1 - α and

γ′ = 1 - γ.  If γ = 0.5 = γ′, then δ  =  α.  And if γ = α, then γ′ = α′  and δ = 0.5.  When using

a p-value to reject the null (a test of significance), simply use the p-value in place of

alpha.

Figure 1 shows how one’s strength of belief in the truth of the null (δ) increases as

γ decreases given a rejection of the null.  Recall that γ is one’s strength of belief in the

truth of the alternate prior to the test.  If α << 1 and γ <<1, then δ ≅  α / (α + γ).  Thus,
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when rejecting the null, the posterior strength of belief in the truth of the alternate is given

by

δ′ = 1 - δ  ≅   γ / (α + γ).  As one’s prior strength of belief in the truth of the

alternate (γ) decreases, so does one’s posterior strength of belief (δ′) for a given level of α

(or p-value). Remember that these formulas assume that α is always equal to β.

Figure 2 shows how to select α in order to have a 95% posterior strength of belief in the

truth of the alternate given one has rejected the null. If α << 1 and γ <<1, then α ≅  γ(δ/δ′)

and α95 ≅  γ/19.  As γ decreases (as one’s prior strength of belief in the truth of the

alternate decreases), one must decrease α to maintain a 95% “confidence” (δ′) in the truth

of the alternate given a rejection of the null.  The more unlikely the condition (γ) the more

powerful the test must be (the smaller α) for a given level of posterior “confidence” (δ′).

Figure 1 Figure 2
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To avoid burying the influence of a subjective prior inside the posterior, one

should calculate what prior strength of belief in the alternate would be necessary to

achieve a specified posterior strength of belief.  For α << 1, γ ≅  α(δ′/δ), so γ95 ≅  19α.  If

the p-value for a test of ESP is 10-6 and one rejects the null, one needs a prior strength of

belief in ESP of at least 1.9 x 10-5 in order to obtain a 95% posterior “confidence” in ESP.

CONFIDENCE LEVEL

In Schield (1997) confidence was viewed as measuring an objectively calibrated

strength of belief.  This viewpoint agrees with the Bayesians that confidence is

psychological (a measure of one’s strength of belief in the truth of a claim) and that

psychological confidence is usually subjective.  It agrees with the traditionalists that fixed
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parameters are not random variables and that statistical confidence should be objective.

This viewpoint unites the Bayesian strength of belief (typically subjective) with the

classical (traditional) approach to probability (“objective”).  Table 2 illustrates the

argument.

The first row shows probability from a classical perspective.  The second row

illustrates confidence as a strength of belief.  The three columns indicate different

situations.  The first column is prior to sampling; the second column is after a particular

sample is obtained but prior to knowing the statistic; the third column is after the statistic

is known.  The difference between the first two columns is metaphysical: potential versus

actual.  The difference between the last two columns is epistemic: unknown versus

known.

The three numbered steps form a sequential argument whereby the circled 95%

confidence after step 3 is based on the circled 95% probability at the beginning of Step 1.

Step 1 relies on the Principal Principle (Howson and Urbach, 1993, p. 240).  “The

principle states that if the objective, physical probability of a random event (in the sense

of its limiting relative frequency in an infinite sequence of trials) were known to be r, and

if no other relevant information were available, then the appropriate subjective degree of

belief that the event will occur on any particular trial would also be r.”  The Principal

Principle is normative.  Prior to sampling, one should be 95% confident that the

population parameter will be included in the next random 95% confidence interval.  Prior

to flipping a fair coin, one should be 50% confident that the next flip will be heads.

In Step 2, a particular sample is obtained but the statistic is unknown.  The

classical probability becomes either zero or one.  But since the outcome is unknown,

one’s confidence has no basis for being changed either up or down.  If one “trusts in the

process,” one’s confidence after selection should be the same as that before selection.

In Step 3, the sample statistic and the associated confidence interval are known.  If

this particular confidence interval includes the population parameter, then the classical

probability is 1.  But generally that fact of reality is unknown.  Simply knowing the value

of the sample statistic typically gives no reason to change one’s strength of belief that the

associated 95% confidence interval includes the fixed parameter.
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Table 2.  Claims about large-sample confidence intervals from a normal population where
the standard deviation is known to be σ and where SE = Std. Error = σ/√n.

Confidence
Intervals

Context of uncertainty (what)

Description
of
Uncertainty

Sample has not
been drawn.
µ is unknown
x~  is variable

         and unknown

Sample is drawn;
Statistic is
unknown

µ is unknown
?x is constant

but unknown

Sample is
drawn;

Statistic is
known

µ is unknown
ox  is constant

       and known
Objective
Frequentist

Classical/traditional
P[(µo–2 SE) ≤ x~  ≤
(µo+2 SE)] = .95

P[(µo-2SE) ≤ ?x  ≤

      (µo+2SE)] = 0 or
1

P[(µo-2SE) ≤ ox

≤
  (µo+2SE)] = 1

Confidence
Strength of
belief  that
| x  - µ o|  ≤ 2SE 95% confidence

95% confident
| x~  - µo |  ≤ 2 SE

95% confidence
95% confident
| ?x  - µo|  ≤ 2 SE

95% confidence
95% confident
| ox  - µo|  ≤ 2 SE

In summary, one should be indifferent between (1) betting that a particular 95%

confidence interval includes the unknown population parameter and (2) betting that one

will draw a red ball from an urn containing 19 red balls and one blue ball.

TEACHING STRENGTH OF BELIEF

There is considerable debate about the utility of teaching anything Bayesian in an

introductory course.  Berger (1980, p. 120) concluded, “…most such users (and probably

the overwhelming majority) interpret classical measures in the direct probabilistic

[Bayesian] sense.  (Indeed the only way we have had even moderate success, in teaching

elementary statistics students that an error probability is not a probability of a hypothesis,

is to teach enough Bayesian analysis to be able to demonstrate the difference with

examples.)”  In opposition, David Moore (1992) has argued “There are, I think, good

reasons not to stress Bayesian methods in beginning instruction about inference.  First,

 ⇓⇓⇓⇓���� ⇒���� ⇒����
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they require a firm grasp of conditional probabilities….  This [difference between

conditionals] is fatally subtle.”

TEACHING RESULTS

Fifty business majors in two full-semester introductory statistics courses were

taught using these new ideas: confidence as a objectively calibrated strength of belief, the

redefinition of α and Type I error, and the calculation of the strength of belief in the truth

of the alternate when rejecting the null.  Conditional probabilities and Bayes Rule were

presented by means of tables of counts and percents.

Confidence was taught by saying, “If you have confidence that the sample is

random, then operationally one should treat a 95% confidence interval the same way one

would treat a 95% chance.”  Operationally, one’s willingness to bet on the result of

flipping a fair coin should be independent of whether or not the coin has been flipped

(provided the outcome is unknown).  Confidence in the process justifies the same

behavior.  The result was a quiet success.  Students had no difficult accepting the

equivalence.  No extended argument was needed.  A top student wondered why anyone

would think otherwise.

Hypothesis testing was taught classically and then strength of belief was

introduced using tables and counts.  Students didn’t seem noticably better able to

understand the meaning of alpha.  It is much easier to simply say that alpha is “the

probability of Type 1 error” than to have to add the phrase “when sampling from the null

distribution.”  Students quickly realized the difference between the quality of the test (p-

value) and the quality of the prediction (strength of belief that the alternate is true given

the null is rejected).  Still, the students had problems:  (1) They had difficulties describing

Type I error (cf., “rejecting the null”) and p-value (cf., “probability of rejecting the null”

or “probability of Type I error”).  (2) They had difficulty envisioning a ‘trial’.  In medical

tests, multiple trials involved different subjects.  In hypothesis tests about a state of

nature, how could there be multiple trials with only one world?  In general, students

seemed overwhelmed by the large number of concepts involved in interpreting hypothesis

tests from two different perspectives: classical and Bayesian.

CONCLUSION
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David Moore is absolutely right; students do have considerable difficulty with

conditional probability.  Differences between related conditionals are “fatally subtle.”  But

if we want our students to really understand hypothesis testing then we should teach

students more about conditionality -- not less.
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