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CLASSICAL AND BAYESIAN PARADIGMS:  CAN WE TEACH BOTH?

Dalene K. Stangl, Institute of Statistics and Decision Sciences, Duke University, USA

This paper describes my experiences and attitudes toward teaching both the Classical
and Bayesian paradigms in an introductory statistics class.  At Duke University, I teach
two first-course classes, one at the undergraduate level for social-science majors and one
at the graduate level for professional students in public policy. While covering both
perspectives is not easy, it is well worth the effort.  By introducing the Bayesian paradigm
students are better able to interpret an observed significance level correctly.  By
introducing the Classical paradigm students are able to understand that subjectivity is
not reserved for the Bayesian paradigm.  Many other advantages that arise from teaching
both perspectives will also be discussed.

INTRODUCTION

In a recent paper (Moore, 1997) David Moore argues that it is, at best, premature

to teach the ideas and methods of Bayesian inference in a first statistics course for general

students.    He argues that: 1) Bayesian techniques are little used, 2) Bayesians have not

yet agreed on standard approaches to standard problem settings, 3) Bayesian reasoning

requires a grasp of conditional probability, a concept confusing to beginners, and 4) an

emphasis on Bayesian inference might impede the trend toward experience with real data

and a better balance among data analysis, data production, and inference in first statistics

courses.  These arguments were striking to me, not because I vehemently agreed or

disagreed with them, but because they were remarkably similar to the reasons why, for the

last five years, I have been slowly incorporating Bayesian inference into my introductory

statistics classes.

Moore argues that Bayesian techniques are used little, and he uses the published

medical literature and a survey of Department of Energy statisticians as evidence. Since

coming to Duke as an assistant professor in 1992, I have collaborated with researchers

trained in medicine and the social sciences. These collaborators collect, analyze, and

publish their research with very little aid from trained statisticians.  In these collaborations

I have observed one thing in particular.  While the statistical analyses they present in

publications is nearly 100% classical, the statistical interpretations made in their day-to-

day work is not. In daily conversations, debates, and  statistical analyses, they rarely

follow classical prescriptions for ‘legitimate’ data analyses or give classical

interpretations to their inference.  In their day-to-day activities their thinking and the

ICOTS 5, 1998: Dalene K. Stangl



257

decisions they make based on this thinking are nearly 100% Bayesian.   What appears on

paper is not indicative of what goes on in their heads.  I think it is important that

consumers of our statistical methods understand that this discrepancy exists and make a

conscious choice to live with the split reality or to work towards congruency between

thinking and publication.  The choice for my collaborators is an easy one, they will live

with the split reality.  Resources give them no alternative.  This brings me to my students.

My work at Duke also requires that I teach students interested primarily in social science

who aspire to be the doctors, lawyers, policy makers, and researchers. I want them to be

conscious of the split reality too.  I take it as part of my job as a responsible educator to do

what I can to make sure that they understand both perspectives.  My ultimate goal is to

teach students to learn to think analytically about applied problems.  Teaching standard

templates of statistics, whether Classical or Bayesian, is counterproductive to this effort.

Teaching them to ask questions from both a classical perspective and from a Bayesian

perspective and to examine the differences requires intense analytic thinking.  Because

conditional probability is one of the most important analytic concepts I teach, and because

mastery of this concept is required for interpreting both p-values and posterior

probabilities correctly, teaching both classical and Bayesian paradigms gives my students

a double dose of this concept and a double dose of analytic thinking.  So, how can a

professor teach both paradigms in a single semester?

METHODS

Because of the breadth and pace of the course, I use what Schau and Mattern

(1997) call a map technique.  Students receive a visual aid depicting the topics and

interrelation between topics to be covered in the next 14 weeks.  Every few weeks we

review a low-resolution map to refresh their image of how the details just covered fit into

the ‘big-picture’ and we preview a high-resolution map that tells where we will be going

in the next few weeks.  At the lowest resolution, topics are grouped into 3 categories: 1)

descriptive statistics, 2) probability, and 3) inference. During the 14 weeks of class, the

proportion of time spent on each of the categories is roughly 3/7, 1/7, and 3/7

respectively. Because it is unsurpassed in cogently presenting the basics of descriptive

statistics, probability, and classical inference, I use the book Statistics by Freedman,

Pisani, and Purves (1997).  I supplement the probability section of the book with my own

segments on conditional probability and Bayes theorem, and the inference section with
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my own segments on Bayesian inference that borrow heavily from Statistics: A Bayesian

Perspective by Berry (1996).  Students spend 2.5 hours/week in lecture and 50

minutes/week in a supplemental session used for ‘real-data’ computer assignments and

discussion of the use of ‘real’ statistics in articles related to their fields of interest.

The first half of the semester probably looks like an introductory statistics class at

most any university, just a slightly faster pace.  Students are taught the differences

between observational studies and controlled experiments, how to describe the

distribution of a single variable and the relationship between two variables using

graphical and numerical techniques, and the basics of probability. The pace is quick, but

every year more and more students enter this course having seen this material in high

school mathematics classes.  I find the quicker pace is also made manageable by the vastly

improved computing technology of the last few years.  The new menu-driven statistical

software allows students to begin analyzing data instantly, and the new multi-media

teaching tools save an enormous amount of chalkboard time.

The second half of the semester probably does not look like any other introductory

statistics class at any university.  Using Freedman et al. (1997) I cover classical inference

showing students Observed Expected
Standard Error

−





 in a half-dozen different contexts.  Then we

return to probability and cover subjective probability, conditional probability, and Bayes

theorem.  Finally, we get to Bayesian inference. I teach two contexts only.  First I

demonstrate simple binomial-data examples with a discrete parameter space and hence

discrete prior, and then I demonstrate simple normal-data examples with a continuous

parameter space and a normal prior.  In the latter case, they learn to calculate the posterior

mean and standard deviation of the population average. The emphasis is on thinking

through Bayes theorem, updating beliefs, and making predictions about future

observations.

Students must pull together the entire course and compare and contrast the

Bayesian and Classical paradigms in three assignments, an oral presentation of a journal

article, a written data-analysis project, and a role-playing exercise.  The oral presentation

requires students to select an article from a list.  Popular choices are: “Should Pregnant

Women Move?  Linking Risks for Birth Defects with Proximity to Toxic Waste Sites”,

(Geschwind, 1992),  “Lesson Learned From Challenger:  A Statistical Perspective”,

(Dalal et al., 1989), “Small Cars, Big Cars:  What is the Safety Difference?”, (Evans,
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1994), “When batterer turns murderer”, (Good, 1995), “DNA, Statistics, and the Simpson

Case”, (Berry, 1994), “How Birth Order Influences Individual Characteristics”, (Moore et

al., 1995), “Statistical Evidence of Cheating on Multiple-Choice Tests”, (Klein, 1992),

“Techno-Thriller’ Statistics: Chance in the Fiction of Michael Crichton”, (Rossman,

1994), and “Who’s Number 1 in College Football? ... And How Might We Decide?”,

(Stern, 1995).   During discussion sections students present the article relating it to the

concepts learned in class, placing it in context of the Classical or Bayesian paradigm,  and

challenging, if possible, the statistician’s methods.

For the data analysis project, students must find a data set on a topic of personal

interest.  Most students conduct surveys, surf the internet, or skim through my own

collection to find a data set of interest.  The data set must contain nominal and continuous

variables.  The students must analyze the data set demonstrating mastery of each

technique (graphical and numerical) learned throughout the semester.  They must hand in

not only the analysis, but a written description and interpretation of each piece of output

for a person who has not yet taken statistics.  Their analysis must include at least one

question addressed from both the Classical and Bayesian viewpoint.

The role-playing assignment has taken two forms, a written exercise or a mock

legal trial, both based on information from the article, “The Mathematics of Making up

Your Mind”, by W. Hively.  The article appeared in the popular science magazine

Discover in May, 1996.  It covers the differences between the Classical and Bayesian

paradigm and highlights the controversies that can arise in interpretation using the

published results from a clinical trial testing the superiority of tissue-plasminogen

activator over streptokinase in the treatment of acute myocardial infarction.  They are also

given excerpts from the original articles that inspired the Discover article (Brophy and

Joseph, 1995 and The Gusto Investigators, 1993).

In the written exercise, students are asked to role-play 3 individuals: 1) a

government policy maker deciding whether Medicare will pay for the more expensive

treatment, 2) an insurance company officer deciding whether their company will pay for

the more expensive drug, and 3) an individual who is trying to convince the insurance

company that they should pay for the more expensive drug.  They must present a written

statistical argument (Bayesian or Classical) to defend each position.  In the mock legal

trial, students are given roles of plaintiff, defendant, prosecuting attorney, defense

attorney, or expert witness (statistical).  The case they must act out is a malpractice suit
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against a doctor  who prescribes the cheaper drug and the patient dies.  Both the written

exercise and the mock trial have worked well.

What do these final assignments that require students to compare and contrast the

Bayesian and Classical paradigms teach the students?  These final assignments bring to

light the advantages and disadvantages of each inferential paradigm and highlight the

nuances that distinguish them.  Students learn to make persuasive statistical arguments

and are better able to critique others’ statistical arguments.  Students learn that there are

alternative ways of thinking and publishing, and it is their choice.  Students learn that

statistics are a tool for more than hypothesis testing:  they are a tool for decision making.

Students learn that statistics will be useful in the future not just for testing null

hypotheses, but rather for most everything they do and read for the rest of their lives.
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