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TEACHING LOGISTIC REGRESSION

Michael J. Campbell, Northern General Hospital, UK

Based on the experience of teaching logistic regression to non-mathematicians, a number
of areas of possible confusion  are identified that may arise particularly when the method
is contrasted with multiple linear regression. The fact that the model is multiplicative in
odds ratios means that the concept of interaction needs to be clearly defined. Confidence
intervals for the estimates of the odds ratios are asymmetric about the estimate, in
contrast to confidence intervals in multiple regression which are symmetric. The fact that
including a covariate will often increase the standard error of an estimate, rather than
decrease it, is somewhat counter-intuitive. Logistic regression must be clearly
distinguished from logit, or log-linear modelling.

INTRODUCTION

I have taught logistic regression on a number of postgraduate courses, to doctors

and health care professionals on Masters in Public Health and in Epidemiology. I have

discovered a number of areas in which confusion reigns, and in this paper I intend to

highlight problematic areas.

THE MODEL

In all regression models we distinguish between a dependent or outcome variable,

and an independent or input variables. In multiple linear regression the dependent variable

is continuous, and the independent variables can nominal, categorical or continuous. In

logistic regression the independent variable is nominal, that is it can take one of two

categories. As an example Oakeshott et al (1998) looked at various risk factors for

chlamydial infection in a cross-sectional survey. The dependent variable was the presence

or absence of Chlamydia trachomatis on a cervical smear. The predictor variables were

age<25, race and number of sexual partners. The focus is on the risk of Chlamydia

infection, given age, for example. Each of these associations was tested separately using a

chi-squared test and found to be significant. The questions that remained included:

i) Are any of the variables confounded (for example age and race), so that if we control

for age, is race still significant?  ii) Is there any interaction between the input variables,

for example is a young person with multiple partners at much higher risk than would be

predicted from each risk factor separately?
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When the input variables are categorical, one can cross-tabulate them with the

outcome variable, and determine, for example, the proportion of women with Chlamydia,

who are aged less than 25, of one particular and with more than 2 sexual partners.

The model needs to be described with care. If the expected (or population)

probability of a positive result for a woman i with risk factors Xi1...,Xip is πi then the

model is

logit(πi) = loge{πi/(1-πi)} = β0 + β1Xi1+...+βipXip.  (1)

I initially justify the logit transform by stating that the right hand side of equation

(1) is unbounded. A probability must lie between 0 and 1. An odds ratio must lie between

0 and infinity. A log odds ratio, or logit, is unbounded and has the same range as the right

hand side of equation (1).

Most elementary books distinguish the case when all the independent variables are

categorical and when some are continuous. If the independent variables are categorical,

and the data tabulated by all levels of the covariables, then all women in a cell of the table

will have the same value of πi and this can be estimated by pi  which is the proportion of

women who have Chlamydia in that cell. If the independent variables are continuous, then

such a table cannot be drawn up; if one attempted to do so there would be as many cells as

there were women (if there were no ties in the continuous variable) and so the proportions

would be zero or one. Often, by analogy to multiple regression, the model is described in

the literature as above, but with the observed proportion, pi,  replacing pi.  This is

incorrect, because a model gives a prediction, and the relationship between the prediction

and the observed dependent variable depends on the error distribution. Many books

introduce logistic regression immediately after linear regression, and appear to suggest

that the two are very similar. However the analogy is not exact and this can cause

confusion amongst students. It is not so easy as in multiple regression to add an ‘error’

term’, and so the concept of minimising the error is more difficult. In theory the

parameters are estimated by maximising the likelihood of the observed values, using a

binomial error distribution. Students  may not have studied maximum likelihood at this

stage, (or indeed may never study it) and so the estimation procedure may appear

mysterious. It can be helpful to demonstrate that the weighted least squares approach

does, in fact give sensible results. Another problem is when the dependent variable is 0/1,

the student discovers that the logit of the dependent variable does not exist. This may lead

them to believe that logistic regression is impossible in these circumstances. Defining
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residuals is more difficult in logistic regression and model checking is different to the

linear regression situation.

LOGIT/LOGISTIC

Some computer programs confuse logit (or log-linear) models and logistic

regression. Logit models are used to analyse large contingency tables. They differ from

logistic models in that;

1. There is no clear division between dependent and independent variables.

2. In Logit models one has to fit the marginal values first, and associations are

measured by interactions. Thus for a logit model, in the Chlamydia example, one

would have to fit parameters corresponding to the proportion of subjects with

Chlamydia and aged <25  before fitting a parameter corresponding to the

interaction between the two. In logistic regression, the presence or absence of

Chlamydia is unequivocally the dependent variable, and marginal values do not

have to be accounted for.

3. In logistic regression the independent variables can be continuous.

CONSEQUENCES OF THE LOGISTIC MODEL

It is a standard result that if b1 is the estimate of β1 then exp(b1) is the estimated

odds ratio associated with X1 (note not relative risk as is sometimes stated).  If X1 is

continuous, then it is the increase in odds associated with a unit increase in X1. It is also a

standard result to show that, in a case control study, if the dependent variable is

case/control status, then exp(b1) again gives a valid estimate of the odds ratio associated

with X1. For service courses I simply state these results and do not attempt to prove them!

Since the model is described in terms of logs, what is additive on log scale is

multiplicative on the linear scale. Thus if being in a particular racial group increases the

risk of Chlamydia by 2 and being aged less than 25 increases the risk by a factor of 3, then

if the two risk factors are independent, someone in a particular racial group, and being

aged less than 25 will have a risk 2x3=6 times that of someone without those risk factors.

It is important to stress to students that this is not an interaction, this is a consequence of

the model if the two factors are independent. If RACE takes the value 1 for someone who

is of a particular race and zero elsewhere, and AGE takes the value 1 for someone aged

<25 and 0 elsewhere, then a model with AGE and RACE implies multiplicative risks. The
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interactive term AGExRACE can be included to see whether there is synergy  (more than

multiplicative) or whether the two factors interact together to be less than multiplicative.

Another consequence of the model is that the output is usually of the form b and SE(b). A

95% confidence interval for b is given by b+/-1.96xSE(b). Thus a 95% confidence

interval for the Odds Ratio is exp{b-1.96xSEb)} to exp{b+1.96xSE(b)}. This is

asymmetric about OR, which can cause some confusion amongst the students. For

example, from Oakeshott(1998), the Odds Ratio for Chlamydia for someone aged<25 is

2.5,  95% CI 1.1 to 5.6.

 MODEL CHECKING

An important question is whether the model describes the data well. This has been

extensively described by Collett(1991). If the logistic model is grouped, then there is no

problem comparing the observed proportions in the groups and those predicted by the

model. However, if  some of the input variables are continuous, one has to group the

predicted values in some way. Hosmer and Lemeshow(1989) suggest a number of

methods. In practice, investigators use the Hosmer-Lemeshow statistic to reassure

themselves that the model describes the data and so they can interpret the coefficients.

However, there is a theoretical objection to using a significance test to determine

goodness of fit, before using another test to determine whether coefficients are significant.

If the first test is not significant, it does not tell us that the model is true, only that we do

not have enough evidence to reject it. Since no model is exactly true, with enough data the

goodness of fit test will always reject the model, but the model may be ‘good enough’ for

a valid analysis. Also, if the model does not fit, what do we do? Is it invalid to make

inferences from the model? Collett (1991) describes a number of ways to investigate

when the model departs from the data more carefully and ways of correcting for

departures.

There are a number of ways the model may fail to describe the data well:  i) lack

of an important covariate, ii) outlying observations, iii) ‘extra-binomial’ variation

(Williams 1982), iv) the logistic transform is inappropriate.  The first problem can be

investigated by trying all available covariates, and interactions between them. Provided

the omitted covariate is not a confounder, then inference about the covariate of interest is

usually not affected. For example if the proportion of  people aged <25 in the study by

Oakeshott et al (1998) was the same in each racial group, (that is if a subject were in the
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survey and aged <25, they would not be more likely to be in one particular racial group

than any other) then the estimated the risk of chlamydial infection for people aged <25

will not be affected by  whether race is included in the model.

Outlying observations can be difficult to check when the outcome variable is 0/1.

However, some packages do provide standardised residuals and these can be plotted. It is

important also to look for influential observations which if deleted would change the

parameter estimates. Details are given by Pregibon(1981).

Extra-binomial variation can occur when the data are not strictly independent. For

example, repeated outcomes within an individual, or patients grouped by general

practitioner. Whilst the estimate of the regression coefficients is not unduly affected, the

estimates of the standard errors are usually underestimated, leading to a type I error rate

higher than the expected 5% (Cox and Snell, 1989) In the past this has been dealt with by

an approximate method, for example by scaling the standard errors (Williams, 1982).

However, it is now viewed as a special case of what is known as a random effects model

in which one (or more) of the regression coefficients b is regarded as random with a mean

and variance that can be estimated, rather than fixed. Many statistical packages have yet

to accommodate this type of model in logistic regression, although ones that do include

STATA5 and EGRET .

COVARIATE ADJUSTMENT

In multiple regression it is natural  to adjust the effect of one covariate for the

influence of another. However, this is not necessarily the case in logistic regression

(Robinson and Jewell 1991). Let Y, X1 and X2 each be a dichotomous variable taking the

value 0 or 1. The variable Y is the outcome variable and X1 the risk factor of principal

interest.

Suppose the following two models both provide a valid description of the

population structure.

logit(π)=β0
0 + β0

1X1 (2)

logit(π)=β1
0+ β1

1X1+β1
2X2 . (3)

If the estimated values of the coefficient associated with X1 in (2) and (3) are b0
1

and b1
1, then Robinson and Jewell (1991) showed that Var(b0

1)<= Var(b1
1), in other

words allowing for a covariate will almost always increase the standard error of the

estimate of interest. However, this does not mean to say that one should not adjust for
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covariates. They point out that, if X1 and X2 are independent, then b0
1 will fall between

b1
1 and zero. Thus although the variance of b0

1 is smaller, so is its estimate, and so a

significance test of an effect without the covariate in the model may given a large p-value

than one with a covariate in the model. The conflict is between bias and precision. The

estimated parameter b1
1 is unbiased but less precise than the biased estimate b0

1. If the

study is large, then bias is usually more important than precision, and so Robinson and

Jewell(1991) conclude that in general it is still a good idea to include covariates!

DISCUSSION

Before logistic regression is taught, the students should be familiar with the

following concepts: logarithms, odds, the binomial distribution, multiple linear regression

and maximum likelihood. For teaching on service courses the latter requirement may be

omitted but then it is easiest to restrict attention to the situation where there are a limited

number of independent variables, none of which are continuous. In this case the data can

be tabulated, the links with the chi-squared test can be made, and model checking is

easier.
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