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Chin-Diew Lai, Department of Statistics, Massey University,  New Zealand
John C W Rayner, School of Mathematics and Applied Statistics,

  University of Wollongong, , Australia
T P Hutchinson, School of Behavioural Sciences, Macquarie University, Australia

Most statistics students know that the sample correlation coefficient R  is used to estimate
the population correlation coefficient ρ.  If the pair (X, Y) has a bivariate normal
distribution, this would not cause any trouble.  However, if the marginals are nonnormal,
particularly if they have high skewness and kurtosis, the estimated value from a sample
may be quite different from the population correlation coefficient ρ.  Our simulation
analysis indicates that for the bivariate lognormal, the bias in estimating ρ can be very
large and it can be substantially reduced only after a large number (3-4 million) of
observations.  This example could serve as an exercise for the statistics students to realise
some of the pitfalls in using the sample correlation coefficient to estimate ρ.

INTRODUCTION

The Pearson product-moment correlation coefficient ρ is a measure of linear

dependence between a pair of random variables (X,Y).  The sample (product-moment)

correlation coefficient R, derived from n observations of the pair (X, Y), is normally used

to estimate ρ. Historically, R has been studied and applied extensively. The distribution of

R has been thoroughly reviewed in Chapter 32 of Johnson et al. (1995). While the

properties of R  for the bivariate normal are clearly understood, the same cannot be said

about the nonnormal bivariate populations.  Cook (1951), Gayen (1951) and Nakagawa

and Niki (1992) obtained expressions for the first four moments of R in terms of the

cumulants and cross-cumulants of the parent population.  However, the size of the bias

and the variance of R are still rather hazy for general bivariate nonnormal populations

when   ρ ≠ 0 since the cross-cumulants are difficult to quantify in general. Although

various specific nonnormal populations have been investigated, the messages on the

robustness of R  are conflicting.

The bivariate lognormal distribution is very well known.  It arises from

transforming the marginals of the bivariate normal distribution by the exponential

function.  It has several applications in the literature.  For example, Mielke et al.(1977)

use this bivariate distribution for analyses of treatment (clouding) effects on

measurements (precipitation amounts) when appropriate covariates (related controlled
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area measurements) are available.  The correlation coefficient r for the bivariate

lognormal population can be obtained easily and it has been given in several books, e.g.,

pp. 20 of Johnson and Kotz (1972).

Results of our simulations indicate that the sample correlation R for the bivariate

lognormal with skewed marginals and ρ ≠ 0  has a large bias and a large variance for

smaller sample sizes. One requires several million observations in order to reduce the bias

and variance significantly. When we did these simulations, we got a surprise and that we

still do not fully understand what is happening. Various histograms of the sample

correlation coefficient R based on our simulation results are plotted below. Tables of

summary statistics are also provided. The paper concludes with a cautionary note for

students and teachers of statistics regarding the sample correlation as an estimate for ρ.

ELEMENTARY PITFALLS IN INTERPRETING THE SAMPLE CORRELATION

Let R  denote the sample correlation which is an estimate of r and let r  be an

observed value of R .  The sample correlation R is only a summary statistic; there are

several pitfalls in interpreting it and therefore it is worthwhile emphasising these points.

• One should not confuse correlation with causation.

• r = 0.0  does not mean that there is no relationship between two marginals.  A

scatterplot might reveal a clear (though nonlinear ) relationship.

• Even if the correlation is close to 1, the relationship may be obviously nonlinear.

• Many different-looking sets of points can all produce the same value of r (see

Chambers et al., 1983, section 4.2, for eight scatterplots, all having   r =.7 ). The

well know Anscombe (1973) data has four scattered plots. All have   r =.816.

• The value of r calculated from a small sample may be totally misleading if not

viewed in the context of its likely sampling error.

• There are several other measures of statistical dependence.  These include rank

correlation coefficients.

Students likely have some experience in simulating sample statistics, e.g., sample

mean from normal, sample mean from Cauchy and R from bivariate normal.  They would

taste a disaster in the second example. Here, we wish to alert them another potential

difficulty when sampling R from nonnormal bivariate populations.

SAMPLE CORRELATIONS OF THE BIVARIATE LOGNORMAL
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Let (X, Y) denote a pair of bivariate lognormal random variables with correlation

coefficient r; derived from the bivariate normal with marginal means   ζ1  ,   ζ2 , standard

deviations  σ1, σ2, and correlation coefficient ρN

It is well known that if we start with a bivariate normal distribution, and apply any

nonlinear transformations to the marginals, Pearson’s product moment correlation

coefficient is smaller (in absolute magnitude) in the resulting distribution than the original

bivariate normal one (of course, rank correlation coefficients are unaltered provided the

transformations are monotonic). The expression for the correlation coefficient of the

bivariate lognormal expression can be found in  page 20 of Johnson and Kotz (1972):

  

ρ =
exp(ρNσ1σ2) − 1

exp(σ1
2 ) −1{ } exp(σ2

2) −1{ }
     (1)

Eq (1) indicates that ρ is independent of  ζ1 and  ζ2 , we therefore set them both to zero for

convenience sake.  We note that the  σ ' s  measure the skewness of the lognormal

marginals :α 3 = β1 = ω−1( )1 / 2 (ω + 2),ω = exp(σ 2 ); see pp. 212 of Johnson et al.

(1994).

Clearly, ρ increases as  ρN  increases.  For example, for σ1 = 1and σ2 = 2, we have

 

  

ρ =
  0,                          if   ρN = 0

0.179,                         if   ρN = 0.5
0.666,                       if   ρN =1 

 

 
 

  
      (2)

We note the skewness coefficients for σ1 = 1and σ2 = 2 are 6.18 and 429, respectively.

The correlation ρ  for the bivariate lognormal may not be very meaningful if one or both

of the marginals are skewed. Consider the case for which  σ1 = 1 and σ2 = 4.  By setting

ρN = −1 and ρN =1 in (2), respectively, we work out the lower and upper limits for

correlation between X and Y  to be -0.000251 and 0.0312.  As Romano and Siegel (1986,

section 4.22) say, “Such a result raises a serious question in practice about how to

interpret the correlation between lognormal random variables.  Clearly, small correlations

may be very misleading because a correlation of 0.01372 indicates, in fact, X and Y  are

perfectly functionally (but nonlinearly) related.”

The distribution of R, when (X, Y) has a bivariate normal distribution is well

known and it has been well documented in Chapter 32 of Johnson and et al. (1995). The

bias   E(R) − ρ( ) and the variance of R  are both of  O(n−1)  and therefore ρ can be

successfully estimated from samples or simulations.  For nonnormal populations, the
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moments of R may be obtained from the bivariate Edgeworth expansion which involves

cross-cumulant ratios of the parent population.

SIMULATION RESULTS

In order to study the sampling distribution of R  and assess its performance as an

estimator of ρ, we carried out a large-scale simulation exercise.  In our simulation

procedure, we use the following steps:

Step 1: Generate n observations from each of the pair of independent unit normals (U, V).

Step 2: Obtain the bivariate normal (X*,Y * )  through the relationship:

X* = σ1U +ζ 1,   Y
* = σ 2ρNU + σ2 (1 − ρN

2 )1 / 2 V +ζ 2      (3)

Step 3: Set X = exp(X* )  andY = exp(Y* ) .  Then (X,Y ) has a bivariate lognormal

distribution with correlation coefficient given by (2).  As we are only interested in the

correlation coefficient, we set both  ζ1  and  ζ2  to zero.

All the simulations and plottings are carried out using MINITAB commands:

(i)  Simulate   U → C1, V → C2 , (ii)  C1∗ σ1 → C3,  σ2 ∗ ρN ∗ C1 + σ2 ∗ 1− ρN
2 ∗ C2 → C4

(iii)   exp (C3) → C5,exp (C4) → C6 and (iv)  Corr C5- C6 → M1  (Here, C stands for

‘column’ whereas M stands for ‘matrix’).

Three cases are considered: (i)   ρN = 1, (ii)  ρN = 0.5 and (iii)   ρN = 0, each with

 σ1 = 1and σ2 = 2; and their corresponding correlation coefficients of the bivariate

lognormal population are (i)  ρ = 0.666  , (ii)  ρ = 0.179 and (iii)  ρ = 0, respectively.  The

following histograms are plotted for the three cases considered:
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Fig 1: 50 Samples of 4 Million (with rho = 1)
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Fig 2: 100 Samples of 3 million (rho =0.5)
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Fig 3: 100 Samples of 3 Million (rho = 0)

        Table 1. Summary of Simulations
ρ Sample Size No of Samples Mean  Standard Deviation

Fig 1 0.666 4 Million 50 0.68578 0.029979
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Fig 2 0.179 3 Million 100 0.18349 0.015889
Fig 3 0 3 Million 100 0.00006 0.000526

The plots displayed above indicate that the distributions of R are skewed to the

left, and, except for the case ρ = 0, they have quite large variances even for such large

sample sizes. We have also calculated the asymptotic expansions for both the bias and the

variance of R, and found, except when ρ = 0, the leading coefficients in each case to be

very large.  So there is sound theory behind the simulation demonstrations.

For the bivariate normal, the bias in R as an estimate of ρ is approximately

−ρ(1− ρ2 )n−1 / 2  and that var(R) ≈ 1- ρ2( )2
n−1  (pp. 556, Johnson et al., 1995). So for

these values of r (i.e., r = 0.666, 0.179 and 0), we would expect the standard errors to be

0.0003, 0.0006, and 0.0005, respectively.

In order to reassure the readers that 50 or 100 samples is sufficient, we now let the

number of simulations, k say, varies, but fix the sample size to n=100,000 of case (ii). The

following histograms indicate that the shape changes very little as k varies; all are skewed

to the left.

Figure 4.   Histograms of R with ρN = 0.5, n =100,000 (ρ = 0.179, σ1=1,σ2=2)

  0.240.200.160.12    0.30.20.1    0.30.20.10.0
(a) k = 50 (b) k = 100 (b)  k = 500 (c)  k = 1000

Table 2. Summary Statistics from 4 values of k (n =  100,000)
k Mean Median StDev Min Max Q1 Q3
50  0.20644 0.20875 0.01978  0.12860  0.25300 0.19606  0.21871
100  0.19779  0.20372  0.03118  0.11145  0.25910 0.18012  0.22023

On the other hand, if we fix k = 100 but allow n to varies from n = 50 to n =

1000000, we then have the following box-plots together with a table of summary

statistics.

 Figure 5.  Box-plots of various n, k=100     Table 3. Summary (ρ = 0.179, σ1=1,σ2=2)

500  0.19582  0.20131 0.03460 0.04924   0.28928 0.18159  0.21855
1000 0.19931  0.20418  0.02965  0.04472  0.30495 0.18370  0.21913
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50 0.3379 0.3289 0.2237
100 0.3258 0.2928 0.1506
1000 0.2613 0.2421 0.0960
10000 0.2195 0.2140 0.0501
100000 0.1979 0.2015 0.0266
1000000 0.1849 0.1905 0.0214

The last column of the preceding table indicates that the stand error is not

proportional to n−1/ 2  as one would probably expect should this be a well-behaved

bivariate distribution..

If the skewness of the marginals is reduced, R seems to become more robust.  For

example, consider the case when σ1 = σ2 =.5 and  ρN = 0.5; so that ρ =.4688 (recall, σ’s

measure the skewness of the lognormals). 100 samples of (a) 100,000 and (b) 1million

observations were simulated, and their results are now summarized as follows:

Figure 6. Histograms based on 100 Samples (with σ1 = σ2 =.5 and ρ =.4688)
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(a) Sample size : 100,000 (b) Sample size:1 million

Table 4: Summary Statistics of Two Different Sample Sizes (k =100)

Mean StDev Minimum 1st Quartile Median 3rd Quartile Maximum
Fig 4a 0.4689 0.0027 0.4611 0.4672 0.4689 0.4710 0.4747
Fig 4b 0.4689 0.0009 0.4667 0.4682 0.4688 0.4695 0.4714

We see that the normals fit the above data well. Indeed, formal goodness of fit

tests show almost perfect fit. It seems that the skewness of the marginals affect the

skewness of R.

CONCLUSION
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Many non-normal bivariate distributions are of concern in engineering, geology,

and meteorology, as well as in psychology.  Often, it is necessary to estimate the

correlation coefficient from the sample correlation R.  In most cases the sample sizes

concerned are in the order of hundreds instead of thousands or millions for obvious

reasons.  So the bias may be quite significant in some cases, especially if ρ is not close to

zero.

By using an easily understood example we have illustrated the problem in

estimating the population correlation and thereby we lend support to the claim of the non-

robustness of R. To our knowledge, most elementary texts do not discuss or highlight this

important issue. It is our view that undergraduates in statistics should be adequately

cautioned about this problem and be encouraged to check for the underlying assumptions

on the populations before reporting their findings on the correlation.
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