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In this paper we discuss computer environments that perform both simulation and
symbolic manipulations. Recent advances in symbolic computations have allowed us to
develop a computer laboratory that can handle formally a vast range of random
experiments, including experiments with infinite possible outcomes. In the laboratory
students can describe experiments using a simple formal language made up of primitives.
They then obtain representations of possible outcomes, results of simulations, and exact
answers for the probabilities of random events, as well as the values of different statistics.
Even for students with minimal mathematical skills, working with such environments
brings back the possibility to confront experimental and theoretical values, which is at the
core of a deeper understanding of probability and statistics, and their relation to reality.

INTRODUCTION

Experimentation with random phenomena has been proposed, for a long time, as a
method for giving students the opportunity to grasp the relation between results of
probability calculations and the reality of such phenomena. However, the time required to
get results that have statistical significance is generally very long, and experimentation in
a classroom are doomed to end rapidly after a few attempts.

More recently, simulations on computers have been proposed to replace actual
experimentations [Bergeron and Bordier 1991, Bordier et al 1994]. Computer simulations
are useful for the setting up of many didactic situations but, by themselves, they cannot
explain the underlying phenomena. In order to get a deeper understanding, one has to
construct the space of possible results of an experiment and analyze it with mathematical
tools. On the other hand, except for very elementary experiments, the mathematical tools
used in analyzing most situations - even simple ones like tossing a coin repeatedly - are
beyond the reach of most students. This is the case for problems asking for the expected
waiting time for an event, which are modeled using infinite series. In this paper, we show
that for a large class of problems of this sort, it is possible to automate the construction,

and the summation of the corresponding infinite series.

COMPUTATIONAL PROBABILITIES
A discrete random experiment can often be described by the set ? of its possible

outcomes, and by a function:
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p:?> [0, 1]

assigning a probability p(e) to each elementary event e ??? such that ; pe)=1-
Our goal is to construct a virtual laboratory where one could deefine, simulate and
compute exact answers to problems such as:
How many balls does one have to draw from an urn containing three balls, a
red, a blue and a white, before one gets a ball of each color, if drawings are
with replacement?
What is the probability that the pattern head-head-tail shows up before the

pattern head-tail-tail while repeatedly tossing a coin?

In each of these examples, there is a simple experiment — drawing a ball, tossing a
coin — with few outcomes. This elementary trial is repeated until the sequence of
outcomes have a specific property. These experiments belong to a large class of

experiments for which computational tools can be developed.

Representing infinite sets of sequences

The first problem in dealing with infinite sets is to be able to describe them with a
simple formalism. Consider, for example, the experiment E1 of repeatedly tossing a coin
until the pattern head-head-tail — abbreviated as hht — appears. The set of possible

outcomes looks like:

1 = {hht, hhht, thht, hhhht, thhht, hthht, tthht, hhhhht, ... }
In this set, the sequence hhthht does not appear since the experiment would have been

stopped after the third throw.
The main tool for describing such sets come from automata theory, whose goal is
to describe sets of sequences. Basically, a finite automaton is a graph whose oriented

edges are labeled with letters corresponding to elementary events (Figure 1).

Figure 1: An automaton describing a set ?1
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Examining Figure 1, we can see that any sequence that goes from node 1 to node 4
ends with the pattern hht, and does not contain any other occurrence of this pattern. We

say that this automaton describes, or recognizes, the set 1.

Rational Experiments

We first define a trial as a random experiment whose possible outcomes are in a
finite set T, each result having a fixed probability p of occurrence. An experiment E
consists of repeating a trial until a certain condition is satisfied. We say that the
experiment is rational if the set of its possible results can be recognized by a finite
automaton.

For example, the experiment of throwing a coin until both head and tail have
appeared at least once is a rational experiment. On the other hand the experiment of
throwing a coin until the number of heads equals the number of tails is not rational. It can
be shown that no finite automaton can describe all the possible outcomes of this
experiment. A more general discussion on the characterization of these experiments will

be given in the next section.

Computing probabilities with formal series
In order to be able to answer questions about an experiment, we will associate to
the experiment a formal series which will contain all relevant information about the

experiment. Consider, for example, the experiment E1, and suppose that the probability of

head and tail is 1/2. Then the probability of a sequence, say thhht, is given by (1/2)5, or

1/32. We now consider the formal sum:

Ex(h, t) =<5 hht + i hhht + gl thht + 5 hhhht-+..

In this sum, the coefficient of each term is the probability of occurrence of the
corresponding sequence. If the expression E1(h, t) is known, many questions about the
experiment can be answered. For example, consider the problem of evaluating the
expected number of throws before the pattern hht occurs. This number is given by the
sum:

_1 1 1 1
n__83+T64+T64+_§25+"'
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where each sequence in E1(h, t) has been replaced by its length. But it is possible to
obtain the number n in another way. We first substitute h and t by s in E1(h, t), yielding:

F(s) = Eu(s, 5) =4S +165° +165° + 4o 5+

We derive F(s) with respect to s, and we evaluate the result for s =1.

All these manipulations will make sense if it is possible to obtain a closed form

for E1(h, t). For rational experiments, the good news is that these functions are always the

quotient of two polynomials that is, rational functions. This is done by considering the

matrix M whose coefficients mj j are the labels of arrows from node i to node j in the
automaton of Figure 1, multiplied by their elementary probability. Results from graph
theory tell us that the matrix MK describes the sequence of labels of paths of length k

between node i and node j. We are interested in all possible paths between node 1 and

node 4, that is, the coefficient (1, 4) in the matrix:

I+M+M2+M3+M4+ ..

But this matrix is also the inverse of (I - M) where I is the identity matrix. In order
to compute E1(h, t), we need only to inverse the matrix (I - M), and get the value of its (1,
4) coefficient. This kind of inversion is easily carried out by symbolic mathematics

software — Maple in our case. We obtain:

— 1 1
Ey(h, t) = mhh 7Rt

With this form, we easily get the value

_ S
FO) = 4 s @-9)

3

which can be derived — again with the help of Maple - yielding the value 8 for the

expected length of the experiment.

THE LABORATORY

We have given a brief outline showing how it is possible to automatically compute
exact answers to probability problems related to rational experiments. Based on the results

of (Bergeron, 1992), we constructed a laboratory which we describe in this section.

Defining and Simulating Experiments
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In order to define an experiment, the user must specify an elementary trial and the
probabilities associated with each outcome, for example drawing a ball from an urn with
results {red, blue, white}, each with a probability 1/3. Each experiment in the laboratory
will consist in repeating the trial until a certain condition is satisfied.

Describing stopping conditions is done by a language that allows the user to specify
either: 1. A pattern, or sequence of patterns, that will stop the experiment. 2. Unions of
sequences of patterns. 3. Properties of the sequence of outcomes such as the frequency of a
given outcome, the number of different outcomes, or the length of the experiment.

For example, stopping conditions for the urn containing three balls could be: all
three colors have appeared, or the more complex a sequence of two red balls eventually
followed by a blue ball, or a blue ball eventually followed by a sequence of two red balls.

It can be shown (Bergeron, 1992) that any experiment generated by using this
language gives rise to a rational experiment. With the automaton associated to an
experiment, it is easy to perform simulations: using the automaton, the computer generates
random numbers and chooses an edge accordingly. Figure 2 shows the cumulative mean
length of the experiment of drawing a ball in an urn containing 3 balls until all three colors
have been drawn. The graph clearly exhibits a stabilization process.

Once an experiment is defined, the user can define random variables and compute
probabilities on them. For example, the length of an experiment is defined as the number
of elementary trials necessary to complete the experiment. The expectation of this
variable would give a theoretical value for the mean length of the experiment.

For the example of the preceding section, the expected length is 5.5, which is

corroborated by the simulations of Figure 2.

Simulations

Figure 2. The Variation of Mean Length in 20 Simulations
Interfacing the Laboratory
Even if the laboratory can be used as a stand alone application, we intent to use it

as an expert underlying pedagogical applications available on the Internet. Smaller
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environments can focus on specific problems and provide interfaces suitable to a target
group of students. For example, we developed an application that explores various
phenomena arising in the experiment of throwing a coin and stopping when one of two
patterns occurs. This environment, and others to come, will be made available on the Web

as a part of a library of experimental probability applications.
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