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SIMULATION MODELS, GRAPHICAL OUTPUTS,
AND STATISTICAL DISCOVERY

K. Laurence Weldon, Department of Mathematics and Statistics,
Simon Fraser University, Canada

Both graphics and simulation are tools of increasing use in statistical education and
practice. However the parametric traditions of statistics still resist the legitimacy of these
technologies. Yet the historical roots of the discipline feature data analysis and
probability modeling as principal tools, and graphics and simulation can be seen as the
transformation of these roots caused by the computer revolution. With this perspective,
much of the theory of statistical inference can be seen as a temporary diversion. This view
has implications for both the style and content of statistics courses. The proposal here is
that we should be using much more graphics and simulation in our courses, and more
focus on data analysis and probability for content. Graphics provide the links between the
two areas. It is argued that graphics and simulation allow a broader-based
understanding of statistics, something that is both attractive and useful for both students
and practitioners.

INTRODUCTION

The roots of statistics go back to gambling and genetics (probability modeling),

and official statistics associated with politics, taxation and vital statistics (descriptive

statistics).  Applied research in the fields of agriculture and silviculture required designed

experiments which led to the development of the theory of inference. The subject has

broadened in many directions in recent decades, to include exploratory data analysis,

study design, decision theory, Bayesian inference, and resampling techniques.  The

current diversity of approaches invites an educator to reconsider the scope of the

discipline since the historic sequence of topics is not necessarily appropriate for

pedagogy.  In fact, a re-examination of statistics curricula is helpful in investigating the

foundations of the subject.

Ironically, there is a sense in which a “back-to-basics” movement in teaching

statistics would be an innovation of some merit.  More particularly, we argue for a return

to a focus on probability modeling and descriptive statistics, the roots of the discipline, for

introductory courses. The result would be an innovation because of the impact of

computer software on statistical practice and theory.  The increase in importance of

algorithms, graphics, multivariate computations, simulation and resampling methods are

fairly clear consequences.  More subtle is the decreasing importance of some traditions:

parametric models for inference, optimality of inference methods, the least squares
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criterion, the common location-scale summaries, and the histogram. Another subtle

influence is the increase of trial-and-error methods (or iterative methods) of modeling.

Descriptive statistics  is the engine behind most modern data analyses: the number

one rule for the applied statistician is “look at the data”. Pre-computer constraints limited

the scope of data-analytic work with the result that the mathematics of very specialized

inference contexts was the focus of the statistician’s attention for several decades.  The

restrictive traditions of this era have been painfully slow to relax and evolve.  In an effort

to fill modern needs, some educators in statistics have rejected mathematical statistics and

probability modeling in favour of computerized data smoothing and other “informal”

methods. While statisticians are aware of the hazards of informal inference, it appears

these hazards are no more serious than with the formal pre-computer methods undertaken

while the data could not be easily visualized. This view has been convincingly made by

Cleveland (1993). His argument for a new paradigm of statistical analysis based on

graphics is compelling:   the advantages of a graphical approach for inference over

classical methods is particularly evident with multivariate data, and in practice,

multivariate data is the norm. Descriptive statistical methods have become much more

than a first step.

Probability modeling is another root of statistical theory that has taken on a new

importance in the computer age. Computer simulation has increased the practical utility of

probability modeling. Unfortunately, teachers concentrating on data analysis and graphical

statistical methods may have reduced the probability content of their courses. However, in

the broad view of statistics, observation of a consequence of randomness may be

considered data of a kind, and the combination of applied probability modeling and

simulation is an effective way of studying such phenomena. The traditional probability

models can be combined to mimic complex systems, and simulation can reveal the

properties of these complex systems even when data is absent or incomplete.  To

understand the potential for this approach, students need to be exposed to it in elementary

contexts. For some details of an introductory course in statistics based on probability

modeling, see Weldon (1998).

 A modern training in statistics should have a heavy dose of the use of graphical

methods.  Graphical methods are important for both data analysis and the study of applied

probability models.  Until statistical software made graphical methods feasible, both these

approaches to the discipline of statistics were held back. In the case of applied probability
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models, computers not only allowed the simulations themselves, but also the portrayal of

findings over the parameter space. In this paper my theme is that graphical methods play

an essential role in both statistical education and practice, since they are the key tool in

both data analysis and applied probability.

THE ROLE OF GRAPHICAL METHODS IN LEARNING DATA ANALYSIS

In order for statistical education to be useful, the student must learn the intellectual

processes needed for statistical practice.  This process is not simply an exposure to facts,

but exposure to the questions and answers associated with the analysis of data.  For

example, questions like

•  Is this an exploratory study or a confirmatory study?

•  Is there any reason that this data might not be typical of the population of

interest?

•  Are there any unusual features to this data, and if so, how will they affect my

findings?

•  How shall my findings be described for the primary audience of this analysis?

•  need not be memorized by the student who has been led through some guided

experiences.

In discussions of data analyses, the language of choice is ‘graphics’. The mere

mention of correlation, regression, location and scale, smoothing, sampling or normal

distribution will have the instructor and the student drawing graphs at each other. So a

course in data analysis will require a few icons that students are very familiar with: the

density curve, the dot plot, scatter diagram, the contour ellipse for bivariate data, the

regression line and conditional densities, and the population-sample schematic. These

icons can be combined and duplicated in creative ways that suit the particular needs of a

given data analysis.

Clearly, graphics is the most important tool for the process of data analysis. This

claim is increasingly accepted by statistics instructors.  In the next section I explore the

use of graphics to enhance the study of probability models, even when no data is available

- this technique is less popular than the use of graphics for data analysis, but may have

been underrated so far.
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THE ROLE OF GRAPHICAL METHODS IN SIMULATION

Simulation in statistics is usually used to estimate probabilities or expectations in

situations where the analysis is mathematically intractable. However, for all but the most

advanced students, most results are unknown and may be considered “intractable” from

their point of view. For example, the bias in the usual sample standard deviation may be

simply assessed for a particular distribution such as the standard normal. The result for

n = 5,10,15,20 is -6.0 %, -2.8%, -1.8%, -1.3%.  Similarly for the exponential distribution

the corresponding result is -14.6%, -7.5%, -5.4% and -4.3%.  This simulation experiment

can be summarized graphically as:

2015105

0

-5

-10

-15

Samplesz

Percent Bias in the Sample Standard Deviation
as a Function of Sample Size

Exponential Distribution

Normal Distribution

Most students would find the table of data less informative, even though the same

information is there.  It is doubtful that a formula could do a better job, even if the student

knew a formula for this bias. The graph gives a summary of the bias in the sample SD for

a wide range of situations, in an efficient and memorable way. The fact that it was

produced with minimal knowledge of mathematical or statistical theory is also

noteworthy.

Another use of graphics with simulation is to familiarize students with the

consequences of random sampling.  For example, many students think that a sample of

size 30 from a normal distribution will look like a normal distribution. But a few dotplots

will show that this is not so; moreover, the grouped-data histogram will not improve

things very much for these moderate-sized samples.
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Many basic statistical tools make an assumption of normality.  How is one to

judge whether a given sample of data is from a normal population?  Of course the real

question is, does it matter much that I will assume normality in this instance? In any case,

if the student learns the futility of trying to recognize normality based on a small sample,

this will be a valuable lesson. Graphical presentation of the simulated output is the key

here.

This example illustrates the use of simulation and graphics to teach about the

consequences of randomness in the simplest setting, that of random sampling from a

primitive population. However the need for graphics is even more vital in summarizing

the outcome of more complex systems.  Consider, for example, the symmetric random

walk.  Actually, for this model it is rather easy to produce mathematical results, but the

graphical representation makes clear visually things that are very sophisticated

psychologically.  Most students make the common error of confusing an expected value

for the final displacement, 0, with the usual displacement which will be anywhere within

2n1/2 of 0. Consider for example the following typical symmetric random walk portrayal

for 500 steps.

Not only is the increasing variation from 0 evident from the picture, but the

apparently systematic trends in either direction are clearly illusions.  With this simple

example in mind, students will learn to be skeptical of claims made on the mere basis of

past observations for trends in the stock market, world climate,  earthquakes, etc.  It is
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difficult to make this point convincingly without both simulation and the graphical output

of the simulation.

PARAMETRIC TRADITIONS AND GRAPHICAL COMMUNICATION

Statistical tradition is closely tied to parametric inference. The logical simplicity of

a focus on a few parameters for data summary has been compelling. But some of this

compulsion comes from an inability to produce graphical summaries efficiently.  A

simple linear regression is often used to describe the predictive relationship between two

variables, such as the prediction of weight from height used to assess “ideal” weight.  But

there is no belief in the fiction of a linear relationship here - it is merely a simple way to

approximate the relationship with a two-parameter summary, one that is easy to

communicate.  However, a good graphical summary can be based on an empirical

nonparametric smooth of the data, with any degree of smoothness desired, and without the

constraint of a simple parametric representation. Parametric summaries will still be

needed with explanatory models, but empirical models are more common in statistical

practice. With graphical relationships easy to generate and communicate electronically,

there is less need for parametric summaries.

CREATIVITY IN DATA ANALYSIS AND PROBABILITY MODELING

Whether one is using graphics to analyze data or to study probability models, the

creative stimulus of the visualizations cannot be denied.  If traditional statistical inference

has concentrated on reining in our creative urges so we are not overly enthusiastic about

possibly transient effects,  modern statistics is letting go of the reins in order to broaden

the role of statistics to a more exploratory role.  Instead of statistics playing the role of the

inference police, it is becoming more like a research collaborator. While we may not want

to go all the way, a journey in this direction is probably a good thing.

CONCLUSION

The discipline of statistics has been profoundly changed by the electronic

revolution. Both the computation and communication aspects of this revolution have

required that the mentors of our discipline reassess what they teach.  Significant aspects of

this change in attitude are the increase in importance of the graphical presentation of
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results, the simulation of probability models, and the decreased importance of parametric

inference.
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