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THE FORECASTING VOICE: A UNIFIED
APPROACH TO TEACHING STATISTICS

Alan McLean, Monash University, Australia

The typical text in business statistics claims, in one way or another, that the use of
statistics is to aid in decision making. In practice, very few texts do much to illustrate this,
concentrating on a conventional development of techniques. Putting this reservation
aside: how does statistical analysis ‘aid in decision making’?

Statistical analysis provides forecasts of what is likely to happen, based on
probability models, with estimates of how good the forecasts are likely to be. Decisions
can then be made on the basis of the forecasts. A statistical analysis provides the basis for
choosing an appropriate model. Statistics is not about finding ‘truth’ but about finding
useful ways of describing ‘reality’.

It follows that statistics teaching at any level should be intimately concerned with
models and forecasting.

INTRODUCTION

A typical introductory statistics text is made up of five parts.  A coverage of

descriptive statistics techniques is followed by probability theory, with the emphasis on

the standard distributions (particularly, of course, the normal). Third is a development of

the basic concepts of inference, with some work done on the assumptions underlying the

development of sampling distributions. Fourth is a selection of work on comparison of

means, regression, ANOVA and cross tabulation. Finally, there may be some chapters on

other topics.

The treatment is directed toward the student understanding how to carry out the

techniques, even when the development is quite nonmathematical. Authors use a variety

of examples to illustrate, usually more or less piecemeal, how techniques are applied.

Rarely does an author present a unified approach to the application of statistical methods.

It is toward the development of such a unified approach that this paper is directed.

THE THEME

It is my contention that the ultimate aim of any statistical analysis is to forecast,

and that this determines which techniques apply in particular circumstances. The word

‘forecast’ is used here not in the restricted sense of extrapolating a time series, but in the

more general everyday sense of predicting the future in a situation of uncertainty. All

forecasts are based on the use of probabilistic models. The type of forecast is determined
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by the choice of model, and the quality of a forecast is determined by the validity or

otherwise of the model.

The idea that statistics is all about making forecasts based on probabilistic models

of ‘reality’ provides a unified approach to the subject. In the literary sense, it provides a

consistent authorial ‘voice’.

PROBABILITY

The core idea of probability is that of the probability distribution of a random

variable. The two ideas expressed in this phrase are inextricably entangled. If one

identifies a set of possible outcomes for an ‘experiment’, a listing of these outcomes, with

their associated probabilities, forms a probability distribution. The outcomes may be

identified by name - in which case we would speak of a nominal random variable - or

numerically - in which case we would speak of a numeric random variable.

PROBABILITY MODELS

In specifying a probability distribution, we specify a model for the future: these are

the outcomes which we accept as possible, and these probabilities measure, according to

the model, how likely each outcome is to occur. When we say that the probability of a

coin coming up heads is 0.5, we are not expressing some absolute truth. We are

describing a model which experience has shown to be reasonably valid.

The concept of a probability model becomes more explicit when we introduce the

standard distributions. Each of these is a model which can be applied to any particular

situation with greater or less validity. Our students learn the conditions, for example,

under which a binomial model is applicable.

For the normal model we are likely to rely on ‘experience shows that this type of

variable has a normal distribution…..’. In the real world however there is no such thing as

a normal distribution, nor any other of the standard distributions. Each is a mathematical

fiction. We can say that a variable is approximately normal, by which we would mean that

past experience shows that the normal model is a useful, if partial, description of reality.

Indeed, with this example, our students are likely to force us into talking of models, when

they ask about behaviour at infinity, and we answer that normality ‘is a good model near

the centre of the distribution’.

SOURCES OF MODELS
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The typical textbook introduction to probability identifies a spectrum of ways in

which probabilities are arrived at, with ‘subjective probability’ at one end, and ‘objective

probability’ based on long run proportions and exemplified in games of chance at the

other. The middle part of the spectrum is occupied by ‘frequentist probability’, based on

short run proportions. Rarely is it pointed out, first, that there is always some element of

subjectivity – probability models are always subjective – and second, that in using short

run proportions we are inferring on the basis of sample data.

With subjective probabilities it is clear that a model is being formulated, and

whether or not it is valid can be discussed. With a gambling game, it has to be emphasised

that the game is fair; that is, the die is balanced, the cards are well shuffled. Then it can

reasonably be assumed that all outcomes are equally likely – and hey presto! we have our

model.

Despite the rise of the casino culture, the importance of this equal probability

model is that it underlies random sampling. If we have a variable measured on a

population, the ‘probability distribution of the variable’ refers to the probability of each

value when a member of the population is selected randomly.

If we know the probability distribution, having measured the variable for all

members of the population, we can use this, perhaps with some simplification through

grouping of data, as an ‘empirical model’. Alternatively, we can approximate the

empirical model by some standard model. Conceptually the empirical model is simpler,

but is likely to be computationally more intense. Further, the probability distribution is

likely to change marginally in the future, when the errors in using the standard model may

be no more than the errors due to change.

Whatever the source of the model, there is always a subjective element in its

choice. And whether or not the choice was good is eventually determined by whether or

not it works!

PROBABILITY AND FORECASTING

A probability distribution is used to predict what will happen when the experiment

is carried out. The prediction may simply take the form of ‘It will come down heads with

probability 0.5’, but in practical applications we are likely to have to put our money where

out mouth is, so to speak. Neglecting the obvious example of gambling games we for

example forecast demand, on the basis of which we will determine our inventory; we
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forecast how many people will accept an invitation, which will affect our catering

arrangements; we forecast rainfall, which will affect our crop planting or our holiday

plans.

THE ‘BEST’ FORECAST

What is the ‘best’ forecast depends on the type of variable. For a nominal variable,

it is reasonable to define the ‘best’ forecast as the outcome which is most likely to

eventuate; that is, the mode. The criterion of ‘best’ is to minimise the probability of error.

This has nothing to do with .centrality. - the concept is meaningless with a nominal

variable. Note that there may not be a single ‘best forecast’. For a nominal variable, it is

necessary therefore to know the probability of each outcome, in order to determine the

mode. For a variable defined on a population, under random sampling, we therefore need

to know the proportion of the population for each value of the variable.

With a numeric variable, if the number of different outcomes is small, we can also

use the mode. However, the numeric scale gives the option of using the concept of error,

and if there are many outcomes, we have to take this option. The best forecast can then be

defined as the one which in some way minimises the likely error.

The almost invariable choice is to minimise both the absolute expected error and

the expected squared error; this is achieved by using the mean as the forecast. If the mean

is used as the forecast, the absolute expected error indeed is zero, ensuring that the

forecast has no bias built in, and the expected squared error is just the variance. In

comparing forecasts across variables, models or populations, if in each case the mean is

used, the forecasts will have zero expected error. The best forecast will then be the one

with the smallest variance.

The reason for the choice of squared errors is usually explained in terms of

‘getting rid of the negative signs’; that this is better than using absolute errors because it is

‘mathematically more amenable’. These reasons are plausible, but the real reason is that

our mathematics is based on models in which variables are assumed to be mutually

orthogonal. There is no reason, in principle, why some other criterion, or loss function, is

not used; for example, the expected absolute error.

QUALITY OF FORECASTS

With a nominal variable, the quality of the forecast is automatically specified by

giving the probability of it being correct. This is for most people a meaningful way of
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expressing the result. ‘I predict that it will rain tomorrow. The probability of my being

correct is 0.8.’

Note that this is not the same as: ‘The probability of it raining tomorrow is 0.8.’ In

this case, I am forecasting the probability of rain.

For a numeric variable, the quality is specified by giving the expected squared

error. This is generally not meaningful in practical terms. However, we can do something

which corresponds to the nominal case. We can specify a prediction interval – an interval

in which the result will lie with specified probability.

Prediction intervals can be calculated for any distribution, but this is rarely done in

the textbooks; although this type of calculation is typically done as an example for the

normal distribution, the concept of a prediction interval is not developed.

DESCRIPTIVE STATISTICS AND PROBABILITY

In descriptive statistics for snapshot data we distil information from a set of data

from a population or sample by obtaining frequency distributions, usually with grouping

of data to remove some of the noise, and by calculating summary statistics. This enables

us to ‘describe the sample or population’. The results ‘describe the population’ in two

senses. First, in a static sense: ‘20 percent of the population use Noxia soap’. The second

sense is dynamic: ‘the probability that a randomly chosen person from the population uses

Noxia is 0.20’, or: ‘the expected proportion of a random sample of people from the

population who use Noxia is 20%’. The first usage always implies the second. That is,

when we describe a population, we describe the probability distribution.

If the data are collected on the population we directly observe the probability distribution

– the empirical model - for the variable being measured. This is then used to make

probability statements, as discussed previously.

If the data are collected on a sample, we infer the probability distribution for the

population from the sample results. At the simplest level the assumption is made that the

sample results describe the population very closely, so forecasts are based simply on the

sample results: ‘20% of the sample use Noxia, so the probability that a person uses Noxia

is 20%.’ This is not restricted to newspaper reports of surveys: in introductory probability

using the ‘frequentist’ approach we do precisely this.

More rigorously, we use the sample statistics as estimates for the population, but

we also estimate how well the sample describes the population. To do this we obtain
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confidence intervals for the population parameters. For a nominal variable we must

estimate the probability of each outcome, since the best forecast is the mode, so for a

snapshot of a population under random selection, this probability is the population

proportion. In order to forecast a numeric value we must estimate the population mean,

since this is the best forecast. We also have to estimate the variability, as measured by the

standard deviation, since this is used in computing the prediction interval.

The sample mean is the best estimate for the population mean on the criteria of

unbiasedness and minimum variance. These criteria correspond to those for ‘best

forecast’.

DESCRIPTIVE STATISTICS AND FORECASTING

To forecast an individual observation – to provide a prediction interval for an

individual value - based on sample data for a numeric variable, use the sample mean to

estimate the population mean, then use it to provide the forecast.

The best forecast for a numeric variable, under the criterion of zero absolute expected

error and minimum expected squared error, is µ. If µ is ‘estimated’ by some arbitrarily

chosen number we can test it by calculating the absolute mean error and mean squared

error for the sample values. The sample mean is then the best forecast under the same

criteria, tested on the sample, as the population mean, tested on the population. To obtain

a prediction interval for this forecast we combine the uncertainty in the estimate of the

mean with the variability assumed in the model for X.

Prediction intervals are frequently introduced in the ‘typical introductory text’

under simple linear regression, when it is required to predict the value of Y for a given

value of x: it is common to find both a confidence interval on the mean and a prediction

interval on the individual value. It is understandable that  prediction should be raised in

regression – the reason for a regression analysis is to predict the dependent variable. On

the other hand, analysis of variance and cross tabulation are seen as extensions of basic

statistics, in which subpopulations are compared in terms of a numeric or nominal

variable respectively, and the predictive usage ignored.

CONCLUDING REMARKS

I have argued in this paper that the underlying purpose, often implicit rather than

explicit, of every statistical analysis is to forecast future values of a variable. These
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forecasts are based on probability models for the variables, in turn based on sample data.

Using natural criteria, the ‘best forecasts’ for nominal and numeric variables are

respectively the mode and mean. For a numeric variable, the quality of a forecast is

specified using a prediction interval.

If it is accepted that this view of the underlying thrust of statistics is correct, then it

is reasonable that texts should reflect this view. The predictive use of probability models,

and the use of prediction intervals, should be emphasised.

In a future paper I plan to discuss further the use of prediction concepts in multiple

variable models, particularly with nominal variables. For example, is a relationship which

‘exists’ in the sense of being significant, but which has very weak predictive power, at all

useful?
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