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ASSESSING ROBUSTNESS OF THE ONE-SAMPLE t-TEST

John C.W. Rayner and A. Carolan, University of Wollongong, Australia

In statistical folklore some parametric tests are designated as generally robust, and hence
almost universally applicable.  Conversely some tests are supposedly so sensitive to their
underlying assumptions that their use can seldom be appropriate.  So the t-test is
generally seen as always applicable, and Bartlett’s test of homogeneity of variance is
always dubious.  This all or nothing approach is counter-intuitive.  It is more likely that
as an assumption like normality progressively fails, the assumption that the significance
level is, say, 5%, progressively becomes more doubtful.  The rate of decline will depend
on both the test and the property in question.

We assess the one-sample t-test and the two-sample F test for equality of variance.
The properties are the closeness of the actual and nominal test sizes and optimality.  We
give practical advice to the data analyst faced with outcomes such as those above.

INTRODUCTION

Not all users of statistical tests check assumptions such as normality and

homogeneity of variance, and for those that do, the subsequent choices may be difficult.

Suppose that when you apply a standard statistical package to a particular data set, you

find that the one-sample t-test has p-value 0.02, the Shapiro-Wilk test assessing normality

has p-value 0.05, and the Wilcoxon test has p-value 0.20.  Do you assume that the one-

sample t-test is robust, and conclude there is some evidence of a that the mean is other

than that hypothesised, or do you doubt the validity of the t-test, and on the basis of the

Wilcoxon test conclude that there is no valid evidence of against the null hypothesis?

This example prompts the observations in the abstract.

For the one-sample situation we compare the t-test, the Wilcoxon test and an

optimal test for the correct model.  For the two-sample situation we compare the

likelihood ratio F test and the nonparametric Mood test.

ASSESSING NORMALITY AND ROBUSTNESS

The parametric tests we subsequently consider are for data assumed to come from

normal populations.  If normality is the correct model, these tests are optimal.  It is useful

to assess normality and to build models of progressive failure of normality.  To do this

first assume we have a random sample X1, .. ., Xn  from a N(µ ,  σ 2 ) distribution with

probability density function.
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This can be assessed by embedding  in a k-parameter alternative:

in which  is a k by 1 vector of parameters,  is a normalising

constant that ensures  integrates to 1 over , and the  are

the normalised Hermite-Chebyshev polynomials constructed to be orthonormal on

;  see Abramowitz and Stegun (1970, 22.2.15).

The  were constructed by Neyman (1937) to depart smoothly

from the null probability density function .  For  this

departure is in the moments of X up to the k + 2 th.  So for example, 

differs from normality by having skewness and kurtosis possibly different from that of a

normal distribution.

In Rayner and Best (1989, section 6.2) normality was assessed by deriving the

score test of  against .  Components  are defined with the

property that if a particular component  is significantly large, it suggests the

corresponding θr  is non-zero.  The score test statistic is

Note that  and  are standardised versions of the well-known skewness and

kurtosis coefficients.  Rayner and Best (1989) encourage the use of  for formal testing,

and simultaneous use of the components  in a data analytic manner.  So a

large  suggests non-normality, and large  and  suggest deviations from what

might be expected under normality in the third and sixth moments.  But note the

discussion in Rayner, Best and Mathews (1995).

This assessment of normality suggests an alternative model if normality is

rejected.  It follows that if only  and  are significantly large, a model of the form

 is suggested, but containing only  and .  Inference about 

could then be based on this, the “correct” model.  Alternatively a nonparametric test could
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be used, or we could proceed with the parametric t-test in spite of the failure of the model.

The justification for doing this is that the parametric test is “robust”, but what does robust

mean?

A procedure is said to be robust if its behaviour is relatively insensitive to slight

departures from the assumptions underlying that procedure.  There are two types of

robustness of interest here.  Size (sometimes “validity”) robustness occurs when the

nominal and actual test sizes are not significantly different under slight model failure.

Optimality (sometimes “efficiency”) robustness occurs when a specified optimality is not

significantly affected by slight model failure.  Clearly other notions of optimality, for

example, independence robustness, could be defined and are of obvious interest.

Subsequently we assess size and optimality robustness by simulation studies of

two situations that assume normality.  Normality is allowed to progressively fail by

sampling from a distribution of the form gk (x; θ, µ , σ) in which θ  starts with a value of

zero and increases in magnitude.

 ONE-SAMPLE LOCATION TESTS

Suppose we assume we have a random sample X1, .. ., Xn  from a N(µ ,σ2 )

distribution, and we wish to test H0 : µ = µ0 against K: µ ≠ µ0 .  The two-sided one-

sample t-test rejects the null hypothesis H0 : µ = µ0  in favour of K: µ ≠ µ0  when T 2  is

sufficiently large, where T = (X − µ0 ) n / S  in which X  and S are the mean and standard

deviation of the Xi .

To examine the effect of progressive model failure, we conducted a simulation

study in which observations were assumed to come from a random sample of size n = 50

from a distribution with probability density function

          g(x; θ4 ,  µ ,  σ ) = C(θ4;  µ ,  σ) exp θ4 h4 (x − µ) / σ )( ){ } f X (x; µ ,  σ ),  − ∞ < x < ∞ .

Probability density functions of this form for varying θ4  are given in Figure 1.  A

motivation for this family would be that S4  has been applied and found to be significant,

with V4  significantly large and with V3, V5  and V6  not significantly large.

We test H0  against K, with µ = 0 and σ  a nuisance parameter, without loss of

generality set equal to 1 in the simulations.  The nominal size was 5%.  Sizes and powers

were simulated for various θ4  using 5,000 simulations.
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Figure 1.  The probability distribution function g(x; θ4 , 0, 1)  for varying values of θ4

The t-test is known to be uniformly most powerful unbiased level α  (see

Lehmann, 1959) if the data are normal, but when θ4 ≠ 0  this is not the case.  For non zero

θ4  we derived the score test.  This test is quite complicated, and no details are given here,

other than the graphically presented simulated sizes and powers.

Note that the probability density function g(x; θ4 , µ, σ)  is symmetric, so the

Wilcoxon test that tests if the median is zero, is a competitor for the t-test that tests if the

mean is zero, since here the median and the mean are both zero.

Our simulations show that for all q4 the test sizes are comparable, that when

θ4 = 0 there is no real difference between the power curves, and that as θ4  increases the

score test quickly becomes dominant.  The Wilcoxon test is inferior to the t-test for

−1.2 < θ4 < 0 and thereafter becomes superior.  The results are most effectively shown

graphically.  See Figure 2.

If all the score test power functions are graphed together, it is seen that as θ4

increases the power for a given µ  increases.  The reverse is true for the t-test, while there

is no clear pattern for the Wilcoxon test.  See Figure 3.

It seems that in terms of comparability of nominal and actual test sizes, for

the models considered here all tests are size robust.  The huge power loses of the t-test

relative to the score test shows that in terms of retaining near optimality, the t-test is not

optimality robust.

ICOTS 5, 1998: John C. W. Rayner and A. Carolan



1228

θ = 0

µ

Po
w

er

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

θ = −0.4

µ

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

θ = −0.8

µ

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

θ = −1.2

µ

Po
w

er

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

θ = −1.6

µ

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

t - test
Wilcoxon test
Score test

 
            

Figure 2.  Comparison of power curves for testing H0 : µ = 0 against K: µ ≠ 0  using the
t-test, Wilcoxon test and score test as data becomes progressively more non
normal. Based on 5000 simulations, x ~ g(x; θ4 , µ , 1),  α = 0.05.
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Figure 3.  Power curves, as in Figure 2, grouped together for each of the three tests.

TWO-SAMPLE TESTS FOR EQUALITY OF VARIANCE

Our perception is that the t-test is thought to be generally robust, when in fact the

study of the previous section shows it does not have optimality robustness.  We now

consider two two-sample tests for equality of variances.  The F test, based on a simple

multiple of the quotient of the sample variances, is the likelihood-ratio test under the

assumption of normality.  This test is compared with Mood’s test: see for example Daniel

(1990).  We show that the F test has neither size nor optimality robustness.
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Observations were assumed to come from two random samples, both with size

n = 50, the first having standard deviation σ X  and the second having standard deviation

σY .  Both are from distributions with probability density function g(x; θ4 ,  µ,  σ)  given

above.  Using both the F and Mood tests, we test H0 : σ X = σY  against K: σ X ≠ σY ,

where without loss of generality we set σ X =1.  Again the test size is nominally 5% and

sizes and powers were simulated for various θ4  using 5,000 simulations.  In this case we

have not derived the score test.
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Figure 4.   Comparison of power curves for testing H0 : σ X = σY  against K: σ X ≠ σY
using the F test and Mood’s test as data becomes progressively more non
normal. Based on 5000 simulations, x ~ g(x; θ4 ,  0, σx =1)and
y ~ g(y; θ4 ,  0,  σY = σ), α = 0.05.

For normal data the F test was more powerful, while for θ4 = −0.2 and −0.4  there

was little to choose between the two tests.  For larger θ4  the Mood test was significantly

more powerful.  This was due, at least in part, to the F test having test size significantly

less than the nominal significance level, while the Mood test size was comparable with

the nominal significance level.  See Figure 4.

If all the Mood test power functions are graphed together, it is seen that as θ4

increases the power for a given µ  increases.  There is no clear pattern for the F test.  The
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F test exhibits neither size nor optimality robustness.  See Figure 5.  Comparing the

location testing of the previous section with the dispersion testing of this section, it is true

that the parametric test here breaks down for smaller θ4  than for the location tests.  In this

sense the t-test is more size robust than the F test.
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Figure 5.  Power curves, as in Figure 4, grouped together for each of the tests.

CONCLUSIONS

• There are several possible notions of robustness.  Teachers please note!

• In the definitions of robustness “slight” model failure is rarely defined.  It may be

helpful to data analysts to develop recommendations in terms of, for example, the

kurtosis test being significant at the 5% but not the 1% level.

• It is unreasonable to expect any test to be universally robust.

• For tests that are not size robust, resampling p-values would be more useful than

model-based possibly asymptotic p-values.

• When the model fails, tests based on the admitedly quite complicated “correct”

model may have far more power than the standard tests, whether parametric or not.
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