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HOW TO TEACH THE SOLUTION OF THE PROBLEM OF LINEAR
REGRESSION,  DIRECT APPROACH IN A CLOSED FORM

Helmut Maier, Berlin School of Economics, Germany

The paper refers to the situation teaching basic statistics to students with little
background in mathematics, especially no knowledge in differential calculus.  Goal of the
paper is to show that knowledge of  basic linear algebra is sufficient to explain the
problem and the solution of linear regression, and this in a closed form. This approach
avoids black box teaching where students learn how to get results and don’t learn why,
and it replaces the so-called Gaussian normal equations which use partial derivatives.
Starting point is the so-called residual variance of  the dependent variable. The paper
presents a decomposition of this variance in three non-negative terms, hence the solution
of the problem of linear regression is obvious. Besides, this decomposition may be used to
explain properties of the correlation coefficient and the coefficient of determination.

OPENING REMARKS

The problem of linear regression and its solution by means of the differential

calculus leading to the so-called Gaussian normal equations are well known and classical

components of basic courses of statistics in education. Indeed, there seems to be no need

for a further contribution.  Just this situation might be the reason why a fundamental

formula, presented in this paper, is not written in formula collectives, and is not being

used in descriptions of  linear regression analysis, in opinion of the author. Viewing this

formula, a decomposition of the residual variance of  the dependent variable, the solution

of the problem of linear regression is obvious, indeed. There is no need of knowledge of

differential calculus. The formula itself, and her diversion use basic knowledge of linear

algebra. Thus, the same methods are used for the formulation and the solution of the

problem of linear regression, and not different ones as done by Gauss. A need for such an

approach arised from education at Berlin School of Economics in the late 80th years.

Because of changes in the education pattern, many students did not have enough

knowledge of the differential calculus during current courses of statistics (absence of

partial derivatives).  The formula was developed in 1988. Her use saves lecture time, this

is empirical result of her application in the 90th years. Viewing this educational aspect,

the explanations in this paper are separated in the simple case of  one dependent variable

and one independent one, and the general case of one dependent variable and a set of

independent variables. The presentation excludes the proof of the formula of

decomposition, this proof is given with Maier (1998).
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THE SIMPLE CASE OF LINEAR REGRESSION OF A VARIABLE Y AGAINST A
   VARIABLE X

We denote by X and Y two stochastic variables,  we assume n given observations

of X and Y, denoted by xi  and yi  with  i = 1,2,..,n , and  we assume that Y depends on X.

The symbols m and b denote limited slope and intercept of any straight line

y(x)  =  m x  +  b  in a plane defined by rectangular x and y coordinates. The cursive

symbols  x and y  denote the means of the observations xi  and  yi , that is

x  =  ( x1 +...+ xn )/n  and  y  =  (y1 +...+ yn )/n, the symbols  sx
2 and sy

2 denote the

estimations of the variances of  X and Y, with  sx
2  =   ( (x1-x)2 +...+ (xn-x)2 )/n  and

sy
2  =  ( (y1-y)2 +...+ (yn-y)2 )/n ,  their positive roots  sx and sy estimations of the standard

deviations of  X and  Y. The symbol sxy denotes the estimation of the covariance between

X and Y, that is  sxy  =  ( (x1-x) (y1-y) +...+ (xn-x)(yn-y) )/n , and the symbols r and r2

denote estimations of the correlation coefficient and the coefficient of determination

between X and Y, the latter is the square of the first, that is  r  =  sxy /( sx sy ). Furthermore,

we denote by sLy
2 the estimation of the residual variance of  Y referring to the assumption

that Y depends on X described by y(x) = m x + b, that is

sLy
2  =  ( ( y1-y(x1) )2 +... + ( yn-y(xn) )2 )/n.  The value  sLy

2  is equal to the mean of the

squares of the distances of the observation points (xi , yi) to the corresponding points of

any straight line y(x) measured parallel to the y-axis.

The decomposition of  the residual variance, sLy
2

 , is

sLy
2   =   (  sx m  - r sy ) 2  +  ( y - m x - b ) 2  +  sy

2 ( 1 - r 2 ) ,

that is sLy
2 is a function of  the data parameters x, y, sx, sy, r, and of the parameters m and b

of the straight line y(x) = m x + b . This function is a sum of three non-negative parts. For

the first two parts, this is obvious because these terms are squares. For the third part, this

is obvious if we make use of the knowledge that  (1 - r 2 ) is non-negative. Given fixed

data sets of  X  and  Y,  the data parameters are constants, and the parameters of the

straight line are variables. This decomposition holds for any limited values of m and b.

The problem of linear regression of  Y against X is: Find a straight line  y(x)  =  m

x + b with minimum residual variance  sLy
2 . To realize such an optimal solution, we

choose the values of  slope m and intercept b so that the first two non-negative parts in the

decomposition are zero. Obviously, this choice is a necessary as well as a sufficient
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condition to get the absolute minimum, and it leads to a canonical form of a linear

equation system for the unknown values of  the variables slope m  and intercept b,

                   sx m  -  r sy      =   0            and         y  -  m x  -  b   =  0 ,

hence to the solutions  m = r sy / sx   and  b  = y -  x r sy /sx  , and to the straight line of

regression  y(x)  =  y  + (x - x) r sy / sx  , which describes the assumed dependence between

X and Y in quantitative terms. The graphical interpretation of this solution process is:

Turn a given straight line in this way that its slope is equal  (r sy / sx ), and  adjust it in this

way that the point  (x , y)  representing the means of  the data sets, is on this straight line.

Then you will get the straight line with minimum residual variance. This solution uses

elementary methods of linear algebra. Besides, as the third part of the partition of the

residual variance sLy
2 is independent from m and b, this part,  sy

2 ( 1 - r 2 ),  is  the

minimum of the residual variance.

Characteristics of the correlation coefficient may be derived from the formula of

decompo-sition. In case of minimum of the residual variance, the equations  sLy
2  =  sy

2

(1- r 2)  and   m  =  r  sy / sx  hold. As  sy  and  sx  are positive, the slope of the regression

line is positive when r is positive, and the slope is negative when r is negative. As  sLy
2 is

non-negative and sy
2 is positive, we conclude 0  ≤  sLy

2  =  sy
2 (1 - r 2 ) ,  hence   0  ≤  1 - r

2, and  -1  ≤  r  ≤  1. The case  r2  =  1 is equivalent to  sLy
2  =  0  and equivalent to  yi -

y(xi)  =  0  for  i = 1,...,n  by definition of  sLy
2 . The latter means that all points (xi , yi) lie

on the regression line and satisfy the dependence between X and Y.  The case  r  =  0  is

equivalent to  sLy
2  =  sy

2  and means that the minimum residual variance is as big as the

variance of Y, hence we conclude that there is no dependence between X and Y.

The interpretation of the coefficient of determination may be derived from the

formula of decomposition. In case of minimum of  the residual variance, the equation  sLy
2

=  sy
2 (1-r2)  holds. Hence we derive   r2  =  (sy

2 -  sLy
2 )/ sy

2  .  As  sLy
2 is the residual

variance of  Y (after linear  regression analysis), and sy
2  is the (original) variance of  Y,

we interpret the term  (sy
2 - sLy

2)  as this part of the variance of  Y which can be explained

by the assumption that Y depends on X in the computed way. Hence the ratio

(sy
2 - sLy

2) / sy
2  is the percentage of the variance of  Y which can be explained by the

assumption that Y depends on X in this way, and thus by definition this ratio is the

coefficient of determination.

THE GENERAL CASE OF LINEAR REGRESSION OF A VARIABLE Y AGAINST
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    A SET OF VARIABLES XJ

We denote by Y and Xj , j = 1,...,p , stochastic variables, we assume n given

observations of  Y and Xj , j = 1,...,p , denoted by  yi and xji with i = 1,..,n  and j = 1,...,p ,

and we assume that Y depends on  the Xj  . The symbols m1,...,mp denote the different

limited slopes of a p-dimensional hyperplane in the (p+1)-dimensional space of the

variables Y and Xj , and the symbol b denotes its limited intercept. Using the coordinates

of this space, x1,...,xp, and y, the equation of this hyperplane is  y(x1,..,xp) = m1 x1 +...+ mp

xp  + b. With cursive symbols xj  for j = 1,..,p, and y, we denote the means of the

observations of the variables Xj   and Y, in formulas  xj = (xj1 +... +xjn)/n  and   

y = ( y1+...+yn)/n . The symbols sj
2 , for j = 1,...,p, and sy

2  denote the estimations of the

variances of the variables Xj    and Y, their positive roots  sj  and  sy  denote the standard

deviations of  Xj  and  Y, that is   sj
2 = ( (xj1-xj)2 +...+ (xjn-xj)2 )/n  for j = 1,...,p  and

sy
2  = ( (y1-y)2 +...+ (yn-y)2 )/n . The symbol  kqj  denotes for q = 1,..,p and  j = 1,...,p  the

estimation of the covariance between Xq and Xj , that is

kqj =  ( (xq1-xq)(xj1-xj) +... + (xqn-xq)(xjn-xj) )/n , and the symbol  rqj denotes the correlation

coefficient between the variables Xq and Xj , that is rqj  = kqj  / (sq sj) . For q = 1,...,p,  the

symbol  kqy  denotes the estimation of the covariance between Xq and Y, that is

kqy = ( (xq1-xq)(y1-y) +...+ (xqn-xq) (yn-y) ) /n, and the symbol rqy denotes the correlation

coefficient between Xq and Y, that is  rqy =  kqy / (sq sy) . We denote by  sHy
2 the estimation

of the residual variance of  Y referring to any p-dimensional hyperplane, we measure this

variance in the (p+1)-dimensional space due to Gauss as mean of the squared distances of

the n observation points (x1i ,..., xpi , yi), for i = 1,...,n, and parallel to the y-axis to the

upper or lower situated points of this hyper-plane. The residual variance is

sHy
2   =  ( (y1 - y(x11 ,..., xp1) )2  +...+ (yn - y(x1n ,..., xpn) )2 )/n.  We use matrix and vector

notation. We write fat letters for vectors and matrices, big letters for matrices, and we

denote by brackets the referring sets of values of matrices and vectors. We write the

symbol * for the transposed matrix, we assume vectors to be column vectors, and we

remind that the transposed vector of a row vector is a column vector. We denote the scalar

product of two vectors with a point  .  in between. Thus we get as notations, for the vector

with the slopes of the  p-dimensional hyperplane:  m  =  (mj)  =  (m1 ,..., mp)*, for the

vector variable with the coordinates x  =  ( xj )  =  ( x1 ,..., xp )*, for the equation of any

hyperplane y(x)  =  m . x + b , for the vector with the means of the variables Xj : Cursive

x  =  ( xj )  =  ( x1 ,..., xp )*, for the matrix of the p2 correlation coefficients between the  p
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variables X1,...,Xp:  R  =  (rqj),  for the matrix of the p2 covariances between the variables

X1,...,Xp : K  =  (kqj)  = ( rqj sq sj), for the vector with the covariances between Y and the

variables X1,...,Xp : ky  =  (kqy)  =  (k1y ,...,kpy)*, and for the vector with the correlation

coefficients between Y and X1,...,Xp :  ry  =  (rqy)  =  (r1y,...,rpy)*.  We note, R and K are

symmetric matrices. We introduce matrix A , defined by A*A = K,  as a partitioning of

matrix K of the covariances, and vector ß as a solution of  A*ß = ky . We assume, R and

K are regular, then the inverse matrices R-1 and K-1 as well as A , A-1, and vector ß exist.

The decomposition of the residual variance of  Y, sHy
2 , referring to any p-dimensional

hyperplane y(x)  =  m . x + b  with limited slopes and intercept is

      sHy
2  =   (Am - ß) . (Am - ß)   +   ( y - m . x  - b ) 2   +   ( sy

2  - ky . K-1 ky ) ,

that is  sHy
2  is a function of the data parameters  x , y , sy

2 , ky , K  (ββββ depends on A and ky

, and A depends on K), and of the parameters m and b of the p-dimensional hyperplane.

This function is a sum of three non-negative parts. For the first two parts, this is obvious

because these terms are squares. For the third part it turns obvious later, we note  ky . K-1

ky  =  sy
2 (ry

 . R-1 ry).  Given fixed data sets of the variables Xj , j = 1,...,p , and Y, these

data parameters are constants, and the parameters of the hyperplane are variables. The

first two parts depend on the parameters of the hyperplane, and the third does not.

The problem of linear regression is:  Find a p-dimensional hyperplane  y(x)  =  m .

x + b  in a (p+1)-dimensional space with minimum residual variance sHy
2. To realize such

an optimal solution, we choose the slope vector m and the intercept b so that the first two

parts of the decomposition of the residual variance are zero. Obviously, this choice is a

necessary as well as a sufficient condition to get the absolute minimum of the residual

variance sHy
2 . Using symbol 0 for the zero vector with p zeros as components, m and b

must satisfy the equations

             Am - ß  =  0         and        y - m . x - b  =  0  .

This is a linear equation system with (p+1) equations for the (p+1) unknowns m1,...,mp

and b. Firstly, we estimate the slope vector m,

m   =   A-1 ß   =   A-1 ( (A*) -1 ky )  =  (A-1 (A*) -1 ) ky  =  (A*A) -1 ky  =  K-1 ky  ,

and we note that  the solution  m = K-1 ky  does not depend on the chosen partitioning

A*A of  K , and hence is unique. Secondly and using this result, we estimate the intercept

b,

b   =   y  -  m .  x   =   y  -  K-1 ky
 . x
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which is unique as well. Hence we get the equation for the hyperplane with minimum

residual variance sHy
2 :

                  y(x)  =  m . x  +  b  =  K-1 ky
 . x  +  y - K-1 ky . x  =   K-1 ky

 . (x - x)  +  y .

The geometrical interpretation of this solution process is:  Move a given

hyperplane y(x) until the slopes fit  Am - ß  =  0 , and adjust it in this way that the point

(x, y)  representing the means of the data sets is on this hyperplane.

With respect to this hyperplane, the minimal residual variance is  sHy
2  =  sy

2 - ky
 . K-1 ky  .

Hence we conclude that this third part of the decomposition of sHy
2 is also non-negative.

The residual variance is equal zero if all observations satisfy the equation of this

hyperplane.  Furthermore and because of the relation kqy = rqy sq sy holds for q = 1,...,p ,

the scalar product  ky
 . K-1 ky   includes  sy

2  as a factor and may be written in different

terms using correlation coefficients, and may be used to derive characteristics of the

correlation coefficients. This we note. Because of  ky
 . K-1 ky  = sy

2 - sHy
2   we interpret  ky

 .

K-1 ky   as this part of the (original) variance of  Y which can be explained by the

assumption that Y depends on the X1,...,Xp in the estimated way. Hence  (ky
 . K-1 ky) /sy

2

=  (sy
2 - sHy

2) / sy
2   is the percentage of  the variance of Y wich can be explained by the

assumption that Y depends on the variables X1,...,Xp   , that is  (ky
 . K-1 ky) /sy

2   represents

the coefficient of determination. We conclude   0 ≤  (ky
 . K-1 ky) /sy

2  ≤  1 , and (ky
 . K-1 ky)

/sy
2 = ry 

. R-1 ry.

CLOSING REMARKS

The use of the decomposition formula of the residual variance of the dependent

variable leads to a linear equation system for the parameters of the p-dimensional

hyperplane which is equivalent to the so-called Gaussian normal equations. This we note.

In this direct approach, we get the solution in a closed form in addition. This means that

in case of  a single problem of linear regression there is no need to solve a linear equation

system. We compute the covariance matrix K of the independent variables Xj, the inverse

matrix K-1, the covariance vector ky , the vector x with the means of the independent

variables Xj , the mean y of the dependent variable Y, and hence the hyperplane  y(x)  =

K-1 ky
 . (x - x) + y . The different operations of linear algebra are only necessary to

understand why this hyper-plane is the solution of the problem of linear regression.

Furthermore, the results remain  valid when we replace the biased estimations of the
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variances and covariances (with factor 1/n) by the unbiased estimations (with factor 1/(n-

1) ), see Maier (1998). In this sense, the analysis of the residual variance is a strong and

suitable instrument to provide deepened knowledge of the problem of linear regression

and its solution.
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