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The variogram is one of the most important tools in the assessment of spatial variability of a 
spatial statistical model. Estimation and testing on this function is a crucial problem in random 
processes inference, with several applications in a broad spectrum of areas such as geostatistics, 
hydrology, atmospheric sciences, etc. We show in this work how a generalized family of 
variogram estimators can be built based on the classical ideas of smoothing techniques in 
nonparametric regression. Some examples will be given in order to compare the performance of 
Nadaraya-Watson and Local Linear estimators with the empirical variogram. The proper choice 
of the bandwidth for these methods will be discussed. Some applications to atmospheric and/or 
environmental data will also be provided. Finally, some extensions to the space-time setting will 
be considered. Special emphasis will be placed on teaching aspects in this talk. 
 
INTRODUCTION 

Spatial statistics constitutes nowadays one of the fundamental topics in teaching 
Statistical Inference. It is part of the academic program in specialized courses (especially PhD 
programs) in Mathematics Schools. It also appears as a study topic in engineering courses 
(Mining Engineering, Geostatistics…) or in MSc Programs, connected with other fields as 
Epidemiology, Geography, etc. 

In this talk, we focus on the revision of a part of the Course on Environmental Statistics, 
held during the ISI&EH Conference (July 2003, University of Santiago de Compostela, Spain). 
This course was taught by different experts and a part of it was devoted to smoothing techniques 
in Spatial Statistics. This part was developed by Prof. Wenceslao González-Manteiga. Professors, 
students and researchers from all over the world attended the course. The outline of the course 
was the following: 
• Geostatistical Modeling 
• Spatio-temporal Modeling 
• Non-stationary spatial processes 
Here, we only introduce the analysis of the spatial dependence through smoothing techniques, 
completely new in this type of courses. 
 
SPATIAL DEPENDENCE: EMPIRICAL VARIOGRAM ESTIMATION. 

Let {Z(s)/ s ∈ D ⊂Rd} be a spatial random process where D is a bounded region with 

positive d-dimensional volume. Suppose that n data, Z(s1), Z(s2),…, Z(sn), are collected, at known 
spatial locations s1, s2,…, sn, respectively. A random process is defined as intrinsic or intrinsically 
stationary if the following conditions are satisfied: 

a) E(Z(si)−Z(sj)) = 0 for all si, sj∈D 

b) Var(Z(si)−Z(sj)) = 2γ(si − sj), for all si, sj∈D 
The latter assumptions convey to the fact that the first two moments of the difference 

Z(si)−Z(sj) depend only on the relative location, si − sj, of the two variables. The function γ is 

called the semivariogram (and 2γ is the variogram). 
As it has already been mentioned in the abstract, estimation of the semivariogram is a 

fundamental problem in intrinsic random processes inference, with applications in a broad 
spectrum of areas such as geostatistics, hydrology, atmospheric science, etc; see, for instance, 
Cressie (1991) and references therein. In particular, the semivariogram estimation plays a crucial 
role for spatial prediction, since the kriging equations depend on the semivariogram function 
which is, in general, unknown. 
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The semivariogram γ must satisfy the conditionally negative definiteness property:  

  (1) 
1 1

( ) 0 (
m m

i j i j
i j

a a s s m nγ
= =

− ≤ ≤∑∑ )

for any {si ∈ Rd/ 1≤ i ≤m} and for any {ai ∈ R/ 1≤ i ≤m}, such that . 
Otherwise, negative mean squared prediction errors may be obtained; therefore, property (1) will 
be also required from the semivariogram estimator. 
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Condition (b) may be replaced by the more restrictive condition:  
c) Var(Z(si)−Z(sj)) = 2γ(||si − sj||), for all si, sj∈D 
Then, the intrinsic random process is said to be isotropic. In this case, the first two 

moments of Z(si)−Z(sj) will be dependent only on the distance of the spatial locations, ||si − sj||. 
For the sake of simplicity, we have considered isotropic models in this presentation; 

however, this assumption is not so restrictive in practice. In fact, a different semivariogram may 
fit in each direction, in case that the random process proves to be anisotropic. A natural and 
unbiased estimator based on the method of moments, due to Matheron (1963), is the empirical 
semivariogram given by: 
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and |N(r)| is:  
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When data are irregularly spaced, the latter estimator is usually smoothed by considering a 
tolerance region T(r) around r, rather than N(r).  

An alternative estimator has been proposed in Cressie and Hawkins (1980), by using 
instead the root square of the differences |Z(si)−Z(sj)|; however, this estimator may be destroyed 
by a single outlier in the data. In this sense, a more robust variogram estimator is suggested in 
Genton (1988a), based on a highly robust estimator of scale. 

The semivariogram estimators mentioned above cannot be used directly for spatial 
prediction, since condition (1) typically fails. In that case, the estimation procedure must be 
modified in order to obtain a semivariogram estimator with this requirement. A first approach is 
based on choosing a parametric family first, as proposed in Cressie (1985) or in Genton (1988b), 
and then selecting a semivariogram in the family considered which best fits the data. However, 
one should take care when judging the quality of a parametric estimator obtained from the 
empirical semivariogram, due in part to the fact that the latter estimator is a poor tool for 
distinguishing the degree of smoothness of a differentiable process; see Stein (1999), and also 
because one may misspecify the underlying model. 

 
A GENERALIZED FAMILY OF VARIOGRAM ESTIMATORS BASED ON SMOOTHING 
TECHNIQUES 

The idea of averaging the square differences (Z(si)−Z(sj))2, leads to a very general 
construction of semivariogram nonparametric estimators as follows: 
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For instance, taking {, ( ) i ji j s s rw r I − == }  yields to the empirical semivariogram (Matheron 

1963).  
An alternative estimator is suggested in García-Soidán et al (2004), as a result of adapting 

the Nadaraya-Watson regression estimator to the context of spatial data. The estimator obtained 
may be written as given in (4) by selecting: 
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where K denotes a symmetric density function and h=hn is the called bandwidth parameter. 
Another general estimator studied in García-Soidán et al (2003) is constructed by using 

the local polynomial fitting, since it provides a kernel method with attractive properties; see Fan 
and Gijbels (1996) for a description of this procedure in a regression setting. For the sake of 
simplicity, we will apply the local linear estimation: we suppose that the semivariogram function 
can be locally approximated by  for r in a neighborhood of r1 ( )
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using Taylor’s expansion. The latter polynomial may be fitted locally by a weighted least-squares 
problem, say, by obtaining β0 and β1 that minimizes 
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The minimizers of (6) will be given by  
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Then,  may be considered as an estimator of , for k=0,1. k̂β
( )( )k rγ

The expression above means that the local linear estimator will be constructed by taking 
 in (4) as . From the two kernels, several features make advisable the use of the 

local linear estimation in practice. The bias at the boundary is of the same order as that in the 
interior, unlike the Nadaraya-Watson estimator; this is an important advantage. Moreover, 
boundary modifications may be a difficult task, specially in higher dimensions; for instance, the 
Nadaraya-Watson estimation requires the use of an specific combination of boundary kernels, to 
retain rates of convergence. In addition, the perfomance of the local linear semivariogram outside 
the boundary may be better than that kernel method for an appropiate selection of the kernel 
function. The properties of both estimators are detailed in García-Soidán et al (2003, 2004). Real 
environmental data applications will be shown in the talk. 

, ( )i jw r 0, , ( )i jw r

 
SPATIO-TEMPORAL VARIOGRAM MODELS 

For a stationary spatio-temporal process Z(s,t), denote the observed values of the process 
as Z(s1, t1),…, Z(sn, tn). Then, the empirical estimator of the semivariogram will be given by 
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where {( , ) ( , ) : ( ),i j i jN r u i j s s T r t t u= − ∈ − }=  and T(r) is a tolerance region about r. 
In practice, if we use this estimator of the semivariogram, then the estimates may be 

highly variable. In order to avoid this “overfit” problem, we propose again the use of multivariate 
nonparametric estimators. 

As in the spatial case, we can obtain an estimate of γ(r,u) by multivariate local linear least 
squares regression, minimizing  
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where K(⋅) is a bidimensional kernel and H is a bandwidth matrix. If is the solution of 
the straightforward weighted linear least squares problem of equation (7), then the pilot estimate 
of γ(r,u) will be . 
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The estimates obtained with this method depend highly on the bandwidth matrix H; thus 
the main concern when using this estimator is choosing an appropiate bandwidth matrix. 

As well as for the purely spatial setting, several illustrations based on different criteria for 
the bandwidth selection will be shown in the talk, with applications to real data.  
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