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Non-linear smoothers based on the extreme selectors have been developed as a class with very 
powerful properties and ideally suited for application to data having impulsive noise, the type of 
data that often occur in the engineering and financial fields. Some of their properties make them 
ideally suited as a basis for teaching students about the art and science of data smoothing. These 
include inter alia their treatment of blockpulses of particular lengths as either signal or noise, its 
idempotency properties, which powerfully and visually demonstrate the mathematical concept of 
idempotence (which is often difficult for students to grasp) and the way that they systematically, 
measurably and monotonically “peel off” variation until one has a sufficiently smooth result. In 
this paper we define and discuss members of this class of smoothers and illustrate how their 
properties make them attractive aids in teaching aspects of nonparametric smoothing as well as 
aspects of Extreme Value Theory. A Standard and Poor 500 financial data set will be used for 
illustration purposes. 
 
INTRODUCTION 

Smoothing techniques are, broadly speaking, an approach to remove fluctuations from a 
time series with the purpose of uncovering patterns in the series, with a minimum of 
preconceptions and assumptions as to what those patterns should be. The goal is to separate the 
data into a smooth component (fitted curve, trend) and a rough component (residuals, noise), i.e., 

data = smooth + rough. 
In the process of smoothing, the random error is reduced, thus making the variance of the 

smoother sequence small relative to the variance of the original sequence (Anderson, 1971). 
Smoothers fall into two basic categories: linear and non-linear. LULU smoothers is a class of 
non-linear smoothers introduced by Rohwer (1989), based on extreme selectors within moving 
windows. They have very powerful mathematical properties, are easy to understand and to 
compute and thus ideally suited as an aid to teaching students about smoothing. Furthermore, 
their distribution theory ties in naturally with Extreme Value Theory (EVT) and is thus a useful 
teaching application of the latter. 

In this paper we will introduce the smoothers, discuss some of their mathematical and 
distributional properties and illustrate them using a financial data set.  

 
DEFINITIONS 

Let 
 3 2 1 0 1 2 3{..., , , , , , , , ...}x x x x x x x x− − −=  
be a numerical sequence. LULU smoothers are compositions of the following two basic rank 
selectors operating on x. A forward operator n∨  is defined as: 
 ( ) { }, ,n

i i ni
x Max x x +∨ = K  

and a backward operator n∧  as 
( ) { }, , .n

i n ii
x Min x x−∧ = K  

The operator n∨  is called “forward” since xi is replaced by the maximum of xi and the next n 
observations in the sequence and correspondingly n∧  is called “backward” since xi is replaced 
by the minimum of xi and the previous n observations in the sequence. Clearly a single upward 
point will be removed by x∧  and a single downward point will be removed by x∨ . To remove 
both upward and downward isolated single points, the compositions ∧∨  and ∨ ∧  are needed. 
Similarly, sequences of consecutive upward and downward impulses of length n will be removed 
by n∧ n∨  and n∨ n∧ . A simple illustration of this for n=1 is given below. 
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Denote these half smoothers as  

-

-

( )   (  )    {max( ,  ..., ),  ..., max( ,  ..., )} 

( )   (  )   {min( ,  ..., ),  ..., min( ,  ..., )}.

n n
n i i i n i i i n

n n
n i i i n i i i n

U x x Min x x x x and

L x x Max x x x x
+

+

≡ ∧ ∨ =

≡ ∨ ∧ =
 

LULU smoothers are formed from compositions of nL  and nU  as building blocks. In particular, 
we can combine them as n nU L  and n nL U .  

Now, an important aspect of many data analyses is to separate signal and noise in a data 
series. “Signal,” however is a vague term and needs to be better defined in order to work with it in 
a sensible fashion. One approach to defining signal is in terms of so called blockpulses. Rohwer 
(2002) defines an n-blockpulse as a sequence 
 { }1 2...0, , , ..., , 0, ...nx b b b=  
with b1 = b2 = ... =bn = b and infinitely many zeros on both sides. It is called upward if b is 
positive and downward if b is negative. In particular, blockpulses exceeding a certain length 
would then be considered signal and shorter blockpulses as noise. Since it follows quite easily 
that LnUn and UnLn remove blockpulses of increasing length as n increases, a natural smoother can 
be formed by applying these iteratively, for n ≥ 1. Thus in order to smooth from above we form a 
flooring smoother  

( )1 1 2 2 1 1 1.........n n n n n n n nF U L U L U L U L U L F− − −≡ =  
and to smooth from below, we form a ceiling smoother 

( )1 1 2 2 1 1 1......... .n n n n n n n nC L U L U L U LU L U C− − −≡ =  
 

It can be proved that for each n: n n n n n nU L F C L U≤ ≤ ≤ , in other words the interval [ ],n nF C  

narrows the ambiguity of [ ],n n n nU L L U  (see e.g., Rohwer, 2005). These smoothers provide a 
smoothed band that is useful in itself or may be used to construct a final smoothed sequence. 
 
SOME MATHEMATICAL PROPERTIES 

The LULU smoothers have a number of extremely attractive mathematical properties (see 
e.g., Rohwer, 1989; Rohwer and Toerien, 1991; Rohwer, 2005) – we mention only the following 
two. 

Idempotence as well as co-idempotence hold for the LULU smoothers, i.e., for example 
for n nL U , we have: 

( )2
n n n nL U L U=  and ( )2

n n n nI L U I L U− = − . 
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Note that idempotence means that there is no “noise” left in the smoothed data and co-
idempotence means that there is no “signal” left in the residual. 

A second property we mention is with respect to the handling of variation. Since the 
purpose of smoothing is to reduce the variation in the data, it is extremely useful if a smoother 
does this in an ordered and measurable fashion. LULU smoothers have this property with respect 
to total variation. For a sequence 1x l∈ , the latter is defined as  

1( ) | |i i
i

T x x x
∞

+
=−∞

= ∑ − . 

A LULU smoother P  then has the property  
( ) ( ) ( )T x T Px T x Px= + − . 

We can iterate on this, viz for 1P  and 2P  both LULU smoothers, it follows that  

1 1

2 1 1 2 1 1

( ) ( ) ( )
( ) ( ) ( ).

T x T Px T x Px
T P Px T Px P Px T x Px

= + −
= + − + −

 

Consider for example the LULU ceiling smoother nC  for which  

1( )n n n nC L U C −= . 
Applying the above therefore gives 

( ) ( ) ( )1 1

1 1( ) ( ) ( ).
n n

n n n n

T x T C x T x C x

T C x T C x C x T x C x
− −

− −

= + −

= + − + −
 

 
This variation reduction property is clearly extremely useful for applications. It gives a measure 
of the amount of variation “peeled off” during each successive application of a smoothing 
operation and is a diagnostic tool to decide when one could terminate the smoothing process. 
 
DISTRIBUTIONAL PROPERTIES 

It is not too difficult to obtain the exact distribution of LULU smoothers. For example, 
consider n nL U . Let 2 1 0 1 2..., , , , , ,...X X X X X− −  be a sequence of i.i.d. random variables with 
distribution function .XF  Denote by 

n nL UF  the distribution function of n nL U  based on this 

sequence. Then, for 1,2,...n = , 
1 1 2( 1)

2 2( 1)

( ) ( ) (1 ( )) ( ) (1 ( )). ( )

1 ( 1)( 2)(1 ( )) ( ),
2

n n

n n n
L U X X X X X

n
X X

F x F x n F x F x F x F x

n n F x F x

+ + +

+

= + − + −

+ − + −
 

thus a polynomial in .XF  Also, for nU  we have  

( ) ( ) ( )( ) ( )1 11
n

n n
U X X XF x F x n F x F x+ += + − . 

Similar results hold for n nU L  and nL . 
Using these results and EVT, we can find the limiting distributions of n nL U  (respectively n nU L ) 
and nU  (respectively nL ), as n →∞ . These results show that nU  has the same limiting 
distribution as the second largest order statistic and that n nL U  lies asymptotically between the 
second and third largest order statistics. See Conradie, de Wet and Jankowitz (2006) for these 
results. 
 
ILLUSTRATION 

We illustrate the variation reduction property of LULU smoothers by applying it to 
Standard and Poor 500 data for the period 4 January 1999 to 3 October 2000. 
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Figure 1: Standard and Poor 500 Data for the period 4 January 1999 to 3 October 2000 
 
The total variation for this data set is: 

1( ) | | 5085.45i i
i

T x x x
∞

+
=−∞

= ∑ − =  

Smoothing by 1 1 1 1 1 1 and LU C U L F= = , using the decomposition ( ) ( ) ( )1 1T x T C T x C= + − , 

respectively ( ) ( ) ( )1 1T x T F T x F= + − , gives 5085.45 = 2835.22 + 2250.23, respectively 
5085.45 = 2875.14 + 2210.31, or, as percentages, the decompositions give 100% = 55.75% + 
44.25%, respectively 100% = 56.54% + 43.46%. The smoothed sequences are given in Figure 2 
below. 
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Figure 2: Data smoothed by 1 1 1 1 1 1 and LU C U L F= = . Where there is only one line, they coincide, 

otherwise 1C  denotes the upper line and 1F  the lower line 
 
Now, if we apply the smoother 2 2L U  to 1 2(obtaining )C C , we obtain the further 

decomposition ( ) ( ) ( )1 2 1 2T C T C T C C= + − , resulting in 5085.45 = 2079.8 + 755.42 + 
2250.23. In percentages this is 100% = 40.90% + 14.85% + 44.25%. This means that a further 
14.85% has been removed from the smoothed sequence obtained in the first iteration. Further 
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smoothing (by applying 3 3 2 to L U C ) does not produce any significant further reduction in the 
“smooth,” indicating that further smoothing is not needed. The results for 2F  are very similar. 
The smoothed sequences 2C  and 2F  are given in Figure 3 below. 
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Figure 3: Data smoothed by 2C  and 2F . Where there is only one line, they coincide, otherwise 2C  

denotes the upper line and 2F  the lower line. 
 
CONCLUSION 

This paper defined and discussed a class of non-linear smoothers based on extreme 
selectors with some very attractive properties. These properties can be used to illustrate some 
mathematical concepts in a straightforward fashion to students. Furthermore, the smoothers are 
easy to compute, even with standard spreadsheet software and students can thus easily implement 
them. 
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