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Bayesian statistics is usually viewed as an 'advanced' course; Bayesian methods are either seen 
as an optional extension or its founding ideas are seen as difficult to grasp.  There are, however, 
two good reasons for changing this. First, the recent strong increase in interest in Bayesian 
methods, in several areas. Second, the fact that Bayesian methods are particularly relevant for 
the kinds of decisions health related professionals have to make. Here we will argue that the 
Bayesian approach makes a quite convenient platform for introducing key ideas of probability 
and statistics to biology and health professionals; we will also outline how such a course can be 
organized around everyday, easy to grasp, examples, exploring how those simple situations 
involve a complexity that requires a deeper discussion of the concepts and ideas underlying the 
modeling process that can lead to acceptable and adequate answers to them. 
 
INTRODUCTION 

In this presentation we describe and comment a short and introductory course on 
Bayesian Statistics.  The course was presented as a 5 hour introduction to Bayesian statistics to 1st 
and 2nd year undergraduate students of Bioinformatics (Biology major plus information 
technology and statistics minors).  We assumed basic knowledge of Probability theory (random 
variables) and recommended, but not as mandatory, a first course in classical statistical methods. 
 
INITIAL QUESTIONS 

We started by presenting some questions, without any prior explanation or discussion.  
These questions aimed at showing students that even in simple, real life everyday problems, there 
are complex probability issues that are of principal importance and that go well beyond the 
“favorable over total cases” definition of probability. 
 

Question: ‘What is the probability that if I toss a coin it lands on “heads”?’ 
 

Some students here will likely answer “0.5.”  However, the common thing is that only a 
minority will do, or even no one and the rest will remain silent expecting some sort of catch.  
Insisting a bit more on getting answers, students will recognize that a series of ambiguities will 
need to be solved before we can provide an answer to the question (which coin is used? how is it 
tossed? what is “heads”? etc.).  It is quite relevant here that, even in this most simple and 
straightforward probability statement, assumptions must be made before a probability of heads 
may be agreed upon, usually that there are only two possible outcomes and that they have the 
same probability. That shows that someone must be making the assumptions and therefore 
probability must be conditioned to the person or agent making the statement. In this particular 
case, one can discuss the fact that prior to any experience with that coin, it is reasonable to 
assume that we have no reason to presume that one of the outcomes is more likely than the other. 

 
Next question: “What is the probability that your lecturer has more than 50 pesos (around 5 
USD) on her/him (pockets etc.), right now?” 

 
Here, we show students that probability statements will possibly also depend on 

additional information each agent may have (who is the lecturer? possible income? etc.).  In 
Mexico, students may survive on 50 pesos a day or less.  A university lunch will cost possibly 30 
to 40 pesos.  Some people assign probabilities like 70% or 99% and other more conservative 
(maybe suspicious) say 20% or even less.  It is easy to see that there is not the probability but a 
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probability, conditional on the agent making the statement, meaning that the information 
available to the agent is constitutive part, in a sense, of that a probability. 

Linking this with the coin situation, one can discuss, then, what if we begin with the 50-
50 assumption, toss the coin and a head comes up: what is the probability that a second toss will 
also produce a heads? Let’s further assume that the coin was chosen ‘at random’ by asking one of 
the students for a coin s/he had on the pocket. The ‘wisdom of the streets’ — meaning what 
people without specialized education on this would say — is quite likely that the probability is the 
same as before, ½. Interestingly, this answer coincides with that which would be given by a 
classical statistician, but for different reasons: while the layman would probably say that it is a 
regular coin picked at random, and with regular coins one always think of 50-50, the statistician 
would probably invoke the principle of insufficient reason — one throw is not sufficient to 
change my assumption. With a well motivated group of students this may lead to a quite 
sophisticated discussion on how many throws would be necessary to provide sufficient reason to 
make one change the 50-50 assumption. 

Another quite challenging discussion could arise if the professor is lucky— as we have 
been on occasions — to have a student to be brave enough to put forward the thesis that in fact 
the probability of heads would diminish — even if for a tiny amount — once “in the long run 
heads and tails should equal, so there should be some sort of ‘compensation’ mechanism to 
guarantee that it happens.” Do coins have memory (maybe of a quantum nature)? More generally, 
this may lead to a discussion of how strong animism is in everyday life (just consider a person 
punching a car and cursing it because it failed to start). 

 
Another one:  “What is the probability that it rains tomorrow in X (some known but distant 
place)? What is the probability that has rained yesterday in X? 

 
Here we explore the aspects examined before about agents and assumptions and introduce 

one final and crucial one: students feel that a probability statement could be made for both 
questions, nevertheless for the second we are talking about something in the past, an event that 
already occurred and should dispense a probability statement, requiring instead only a ‘yes’ or a 
‘no.’  Here we can argue that the important point is that we do not know — even if as yet — 
whether it rained in X or not, bringing uncertainty and the need of using a probability statement 
for the event. Also, it is possible to discuss that although in this case as with the coin we are 
talking about the same thing, probability, the coin can be tossed as many times as we want but the 
‘rain in X at such and such day’ is a one-off event; that might help our students to fully appreciate 
the point above: that probability statements are about events — past or future — about which we 
do not have sufficient information to make assertive statements and that, again, brings in the fact 
that we are talking about someone having or not sufficient information.  
 
AXIOMATICS 

One topic that is only taught in advance courses of Bayesian statistics is the axiomatic 
foundations.  However, we introduce the axioms (as given by DeGroot, 1970) without giving any 
proof of the basic theorems (like transitivity etc.); one can nicely justify the axioms (rules of the 
game) for preferences, since students have been engaged — through the initial questions — in 
making probability (and thus preference) statements about complex events (rain in the past, coin 
tossing, etc.).  The advantage of introducing the axioms is discussing the “auxiliary event” (axiom 
5 in DeGroot), and its direct link to the definition of probability as comparison to a standard event 
(we avoid explaining the more precise but difficult definition as a preference relation between two 
lotteries).  Using this, we establish a definition of probability that goes well beyond the much 
more usual, and quite restricted, frequentist definition. 
 
SOME MATHEMATICS: 

The next part of the course involves trying to go into more technical calculations. Given 
the axioms, a basic principle is established for Bayesian inference: 
 

“uncertainty is measured with probabilities” 
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In that respect, Bayes’ theorem is a means for “updating probabilities with evidence 
(data).” The most basic form of Bayes’ theorem is proved and an interpretation of its parts is 
given (prior and posterior probabilities, model, and normalization constant).  A Bernoulli trials 
example is explained in which the success probability is fixed to values 0.2, 0.5 and 0.7 
(representing the degree of some enzyme reproduction in a colony of cells, and these values are 
known from some previous theory).  Having 20 trials and 12 successes, the posterior distribution 
is obtained using a table. 

A second example is explained using Bernoulli trials in general.  Using a beta prior 
the posterior is shown to be beta also.  Students are then introduced to the R programming 
language and they use a simple function to calculate the corresponding beta posterior 
distribution for any beta prior and data.  We show how the prior and data affects the posterior 
and that with a lot of data the effect of the prior diminishes.  This is a simple, hands on, 
introduction to the important results of Bayesian asymptotics, that otherwise will be too 
technical to cover. 

The expected outcome of ‘mathematising’ the discussion is that students will have a 
stronger feeling that incorporating an agent’s knowledge and assumptions into further probability 
statements is not simply a matter of ‘pure intuition’ or common-sense; the mathematical tools 
offer a negotiated way that allow several people to account for that updating in an acceptable 
way. More in general — and we think this should be included in the discussion — this is a 
characteristic of any mathematical modeling, be it using statistical concepts and tools or 
otherwise, in any field of knowledge. 
 
THE GENDER PROBABILITY PROBLEM 

A couple has had 5 pregnancies resulting in boys, and they wish to know the probability 
that with their 6th pregnancy they will — finally! — have a girl.  

Apart from any “technical” considerations one can explore the possible human and 
cultural interests in asking such a question. In some cultures it is considered normal that fathers 
wish to have sons (so they can, for instance, play football with them), while mothers wish to have 
daughters (perhaps to keep them company while the ‘boys’ play football). In other cultures 
having a daughter means the parents will have to save money for the dowry if they want to get her 
married. Generally speaking, that simple, naïve, question may trigger a quite interesting — and 
always due — conversation about gender questions in relation to culture and society. 

To the question itself, all sorts of reactions come up. Although they are Biology students, 
most of them will say that “it is still 0.5” (what have they done with all that impressive 
information about the first five pregnancies?).  However some will cast doubt and may argue that 
“given the evidence the probability should be less than ½.”  Even more interesting, some 1 or 2 
students say that “the probability should be higher now” arguing some sort of “compensation” 
given the large amount of boys in the family. 

The ‘50-50’ approach resembles the street wisdom about the coin. The ‘less than 0.5 for a 
girl’ approach could resemble the ‘sufficient reason’ argument for the coin. And the 
‘compensation’ argument could resemble the similar one for the coin. 

The trouble is, although there are seemingly similar approaches in the two cases, the 
factors conditioning the judgments in each case are quite dissimilar. However in the first case the 
reasoning might be the same — “independent events,” so to speak, as the birth of two children 
(‘individual humans’) seem to be as independent as two tosses of a coin, and there are only two 
possibilities (0 or 1), in the other two they may not be. 

Would five consecutive heads outcomes warrant that the coin was unfair? Not quite 
likely. So why would five consecutive boys warrant the couple of parents was biased towards 
boys? Maybe the fact that not many people have five children — and those who do are not likely 
to have, say, 20 — could be a factor, considering that one can easily produce hundreds of coin 
tosses, so in the gender situation five ‘tosses’ become a quite reasonable sample. In a similar way, 
although coins do not plausibly have a memory (going against animism), human bodies/beings 
might have such a memory (through emotions, wishes, souls and other factors that most of us are 
definitely not willing to associate coins with). 
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Again, the technical approach to this whole discussion might help students to gain 
consciousness of the role of a statistical approach to phenomena to which there is an intrinsic 
associated uncertainty. If the same theory can be used to study both what to say about five 
consecutive boy births and five heads coin tosses, then one can gain some appreciation of the role 
of such theory and tools, as well as gaining insight into, in this case, the fact that human couples 
can indeed be ‘biased’ towards boys or girls. In the early 90’s a doctor went on national television 
in the UK to say that after five boys the couple has “of course” a greater chance of having a girl, 
as a kind of compensation towards 50-50. Amazingly, in that same occasion he discussed 
techniques for increasing the probability of a given gender outcome, techniques that were clearly 
based on the fact that a combination of factors involving the parents’ physiology can indeed bias 
the ‘selection’ process (e.g., acidity of vaginal fluids). In other words, he implicitly refused to 
take those assumptions into account and stayed firmly with the 50-50 view, to the extent of 
adopting the ‘compensation theory.’ The interest of biology and health professionals in statistics 
is related to decision making, and that in itself recommends the Bayesian approach. 

As much as after five heads, heads should be expected, after five boys a boy should be 
expected — no matter how little we judge the balance to lean to one side, particularly because a 
new pregnancy has certainly much more impact in a couple’s life than a new coin toss. 

Theory may be used to approach this problem.  One may start asking, for instance, if the 
gender yielding each pregnancy is independent from pregnancy to pregnancy, given the unknown 
probability of male/female. Students are invited to give arguments against (conditional) 
independence in this case.  With this a model for Bernoulli trials is deduced and, assuming a beta 
prior, a beta posterior is obtained.  The former R code may be used to obtain the corresponding 
posterior. 

 
           (a)               (b) 

Figure 1: Prior (dotted) and posterior beta distributions for 5 failures in 5 Bernoulli trials, (a) with a 
noninformative uniform prior and (b) with a beta (100, 100) informative prior, representing prior 

information about the gender probability in any given pregnancy 
 

A flat (uniform) prior is first displayed for discussion, see Figure 1(a).  In this case, the 
probability of girl seems rather low (definitely less that 0.5).  However, it is not rare that some 
students ask “why did we use that flat prior?  Isn’t it what we now a priori, that is, before any 
pregnancy?”  This is especially interesting since we are talking about students that have been 
exposed to Bayesian ideas for only 2 hours!  Indeed, we rapidly agree, even for the people that 
felt the posterior should be less than 0.5, that the prior should be quite peaked around 0.5.  A 
rather different posterior is obtained, concentrated around 0.5 and just slightly shifted to 0 (see 
Figure 1(b)), coinciding with the general intuition that the probability will need to remain 0.5 
basically as before.  That is, our probability of a girl in the 6th pregnancy remains, for all practical 
means, 50-50.  But to reach this conclusion we needed to use additional information beyond the 
mere data set (X = {0, 0, 0, 0, 0}): our a priori information about the probability of having a girl 
in any given pregnancy. And in this case the amount of information is rather large and a quite 
peaked prior distribution around 0.5 most be agreed up on, as in Figure 1(b), as opposed to the 
rather neutral (and inappropriate for the pregnancy example) nature of the prior in Figure 1(a).  

But again, and this is not a minor issue, the slight change here has to be assessed against 
the actual situation, involving a possible pregnancy and not a mere coin toss. This is the kind of 
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awareness that health professionals would benefit from, an awareness of the fact that the 
consequences of a decision must taken into account, and that leads us to our next topic. 
 
HYPOTHESIS TESTING 

Finally, and very important for Biology students, is a brief discussion on a Bayesian 
approach to hypothesis testing.  Following the basic principle established earlier: “uncertainty is 
measured with probabilities,” one comes to the idea that what is needed is to calculate the 
posterior probability of each hypothesis.  A final example is given, in which an experimental drug 
is tested on 20 patients with 15 successes. The standard drug is known to have a 50% efficacy.  
The hypothesis is established as: 
 

H1: p < 0.5 vs. H2: p >= 0.5 
 

Using a uniform prior, the beta posterior is obtained and the probability of H1: p < 0.5 
(efficacy of the experimental drug is less than 50%) is calculated as 0.0133.  Is the experimental 
drug better? 

Students tend to view 0.0133 as small (1.3%) and many tend to implicitly decide in favor 
of the experimental drug.  But, as for now, we are only able to say that “it is highly probable that 
the experimental drug has a higher efficacy than the standard drug, given the current evidence.”  
However, making a decision will necessarily need to take into account the consequences of our 
decisions.  Students then are presented with two fictional choices: 

 
1) You are the winner of a worldwide raffle and are invited to go to space for 1 week, orbiting the 

Earth, completely for free.  You are warned, however, that there is a 1% probability that the 
rocket blows at some point of the trip and you die.  Will you take the trip? 
Some students (risk prone) immediately say “yes,” while others call them “crazy” saying a 
cutting “no.”  After some discussion we go on to the next question: 

2) You are invited to enter a room for 10 min, next door, for an experiment the lecturer is 
conducting on human behavior.  The room has no windows, nothing inside and you are 
warned that there is a 1% probability that the room explodes while you are inside and you die.  
Will you enter the room? Of course, no one wants to enter the room, finding it a ridiculous 
idea. 

 
Nevertheless it is a 1% probability of dying in both examples.  Without studying decision 

theory, we suggest to students that decisions are not only based on probabilities but, crucially, on 
the consequences to be faced or enjoyed, and “small” or “large” probabilities are only a matter of 
the context we are dealing with.  
 
DISCUSSION 

With this brief description of a short course in Bayesian statistics, we show that Bayesian 
ideas and sophisticated probability concepts may be taught to Biology students in a non-technical 
way, and that the usual concept that Bayesian statistics is an advanced course is simply 
misleading.  Moreover, Bayesian statistics may well be a first course in statistics, once having 
some basic concepts of calculus and probability theory, which commonly undergraduate Biology 
students take in their first year.  Of course, more material can be studied, like normal sampling, 
nuisance parameters and marginalization.  This only takes basic knowledge of Calculus.  
Moreover, it is quite straightforward to establish the difference between probability and decision 
without embarking on any technical discussion on decision theory. For biology students and 
health related professionals, learning the important concepts of probability and developing an 
intuition based on them is probably the central aim of such part of their statistical education, They 
can then apply and use that intuition and those insights in their everyday practice, rather than 
trying to dominate the technical aspects, which could adequately — whenever necessary — be 
dealt with by (or at least consulted with) a statistician. 

The same general suggestion applies to mathematics education, that is, it is rather 
different to think with concepts than to be able to go into the technical side of it. It remains an 
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open question to investigation to assess the extent to which a technical mastery of statistics or 
mathematics fosters or hinders ‘thinking with the concepts.’ 
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