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The maximum function can be used very efficiently in discriminant analysis and hypothesis 
testing, and can significantly improve the comprehension of the approach presented. 
 
A PROBLEM ENCOUNTERED IN TEACHING DISCRIMINANT ANALYSIS 

Discriminant analysis is a statistical technique designed to find a relation between 
variables, to be used to distinguish between distinct groups (or discriminate one group from 
another). This relation is to be established from a set of training data. Usually, the same relation 
also serves to classify a new data set into one of the groups.  

We consider here the Bayesian approach, based on two, or several, distinct statistical 
distributions which represent the groups. In classical discriminant analysis with the normal 
model, as taught at universities and colleges, we consider the linear or quadratic discriminant 
function, and look for the values of its parameters that would fit the data best. However, the 
presentation of this approach, limited to data Rp space, does not easily allow a clear 
comprehension of the arguments by students, and emphasis is put on the linear case, which is 
simpler. In this article, we will use the function  

  gmax (x) = max qf1(x),(1− q) f2(x){ } 
and its graphs to improve this presentation. Students will be able to see where the linear or 
quadratic boundaries come from, and their very logical uses. 
 
DISCRIMINATION BETWEEN TWO NORMAL POPULATIONS: CLASSICAL APPROACH  

Let Xi ~ N(µi, Σi), i =1,2, be two independent normal (column) vectors in Rp, representing 
populations π1 and π2. In classification, we consider the two normal multivariate densities, 
together with their prior probabilities q and 1 - q. 

In practice, estimates of the population mean vectors, µ1 and µ2, and the variance-
covariance matrices, Σ1 and Σ2, are obtained from independent samples of size n1 and n2, from the 
two populations, using their sample equivalents, x 1 , x 2 , and S1 and S2.  
 
Equal Covariance Matrices: Σ1 = Σ2 = Σ 

The decision rule is as follows: For a new observation x0, allocate it to π1 if ld(x0)>0, 
where the linear discriminant function is 

1( ) ( ) '( )ld A−= − −*
1 2x x x S x ....................................................................................(1) 

where 
1

2
1 ( ) '( ) ( ) ln((1 ) / )
2

A q q−= − + −*
1 2 1x x S x + x  

and S* is the estimate of Σ obtained by pooling S1 and S2. The function ld(x) is represented by the 
straight line D1.  
 
Different Covariance Matrices: Σ1 ≠ Σ2  

We allocate x0 to π1 if the value of the quadratic discriminant function at x0, 

qd(x0) = x 1
' (S1 )−1 − x 2

' (S2 )−1[ ]x0 −
1
2

xo
' (S1 )−1 − (S2 )−1[ ]x0 − k > ln((1− q) /q) .....(2) 

and to π2, otherwise, where 

k =
1
2

ln S1 S2( )+ (x 1
' (S1 )−1 x 1 − x 2

' (S2 )−1 x 2)[ ] 
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The function qd(x) is represented by a curve of 2nd degree ( parabola, hyperbola or 
ellipse). 

 
PROPOSED METHOD 

The above approach is solely based on mathematical equations. We now use graphs too. 
We define gmax(x) as above, and in Rp+1, draw the graph {x, gmax(x)}. We adopt the 

decision rule: For x0, allocate it to π1 if gmax(x) = qf1(x), and to π2 otherwise. We can easily prove 
the equivalence with the classical method. Furthermore, this function enjoys several properties 
associated with the Bayes error, Pe, which is the minimum error in classification. 
 
EXAMPLE: DISCRIMINATION BETWEEN CANADIAN AND ALASKAN SALMON 

A good example to illustrate this process is the following (Johnson and Wichern (1998, 
p.659)). We wish to classify a salmon to either the Alaskan or the Canadian species, based on 
observations X and Y, where X is the diameter of its scale rings for the first year of freshwater 
growth, and Y is similarly defined for the first year of marine growth. We have 2 samples of 50 
for each species. The two populations are supposed normal and q = 0.50.  
 
Linear Discriminant Function 

Supposing a common covariance matrix (estimated by the mean of S1 and S2 computed in 
the next section), we have: 

S* =
17.262 −28.96
−28.96 28.672

⎡ 

⎣ 
⎢ 

⎤

⎦
⎥ 

while x1 = (98.38, 429.66) and x2 = (137.46, 366.62).  
By (1), the linear boundary D1, given by ld(x), is y = 2.4336x +111.1705. 
In R3 the two populations are represented by two normal surfaces with similar shape. 

They intersect each other along a space curve G1, whose projection on the (x,y)-plane is the above 
straight line D1 (Figure 1). The graph of gmax is easily obtained from these surfaces.  
 

 
 

Figure 1 
 
Quadratic Discriminant Function 

The different covariance matrices are estimated by 

S1 =
16.432 −191.43

−191.43 37.4042

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     and     S2 =

18.062 133.50
133.50 29.892

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

By (2), the boundaries D2 and D2
’ are given by the quadratic discriminant function qd(x), which, 

in turn, gives a curve with two branches, with equation: 
y = -65.427 + 2.6428 ± 1.2471 √[1.0371 × 105 – 1.4846 × 103 x + 6.0673× 10 x2]. 
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The densities are now represented by two normal surfaces with different shapes, intersecting 
along 2 space curves G2 and G2’, whose projections on the (x,y)-plane are the two curves D2 and 
D2’ mentioned above (Figure 2 and Figure 3).  
 

 
 

Figure 2 
 

 
 

Figure 3 
 
CONCLUSION 

The use of the gmax(x) function, and of its graph in R3 (when X is two-dimensional), 
provides a presentation of the arguments behind discriminant analysis, using visual effects as well 
as equations, and is more effective, as the reactions of our students, from different domains, seem 
to show.  
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