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Teaching the topic of linear models is a complex process. A new teaching process will be
investigated which we will consider in two different ways. on one hand linear models and
guadratic programming problems are formulated and solved by statistical methods; on the other
hand the solution of the linear regresson model with constraints makes use of the simplex
methods of linear and quadratic programming.

INTRODUCTION

Teaching the topic of linear models is a complexcpss, a new teaching process will be
investigated in statistics education. We will cdesiin two different ways: on one hand linear
models and quadratic programming problems are flat®d and solved by statistical methods,
and on the other hand the solution of the linegragsion model with constraints makes use of
the simplex methods of linear or quadratic programgnil he interaction between teaching Linear
Models and Operations Research (OR) are explorelloly statistical and operations research
theories in statistics education. The aim of ttapgy is that students taking linear model courses
as well as a course in a linear or non-linear @gning (NLP) of Operations Research will
realize that there is a definite connection betwblese problems.

These interactions are considered both from assitai point of view and from an
optimization point of view. A linear regression nebds solved by a two-phase version of the
simplex method and a statistical algorithm for swvquadratic programming problem is
presented. In comparison with the nonlinear prognarg methods for solving quadratic
programming problem, the latter has the followidgantages:

(@) Statistics courses often form a core portiomost information science degree programs
at Bachelor level. The algorithm based on basitissitzal concepts is easy to understand, learn
and apply.

(b) Some of the steps of the algorithm are includeduilt-in functions or procedures in
most of the commonly used software packages3i& R, MAPLE, MATHEMATICA in statistic
education.

(c) The algorithm avoids the usage of slack andiaal variables. Some examples of
teaching linear models are given to illustrateitieas.

There are a few algorithms to solve optimizatioabpems for non-linear programming,
for example, geometric programming is approximabgda generalization of the arithmetic-
geometric mean inequality to solve algebraic naedr models; Algorithms for solving special
forms of non-linear models have been developedeaslpy for quadratic programming (see
Wang, Chukova and Lai, 2005 and Wang, Chukova, 2@04). In this paper we will focus on
guadratic programming (or non-linear) problems.

Quadratic programming is concerned with the probbémminimizing (or maximizing) a
guadratic objective function subject to linear inality (or equality) constraints with non-
negative values for unknown variables. There afewaapproaches to solve QP problems, for
example, simplex combinatorial approaches (see 8mdtRitter, 1988); ellipsoidal approaches
(see Chung and Murty, 1981); interior points meth¢gke Mehrotra and Sun, 1990) and Ben-
Daya and Al-Sultan (1997) developed an exteriompalgorithm for quadratic programming
based on a penalty function approach using a siNgston method (see Ferrez, Fukuda and
Liebling, 2005). This paper will discuss some apfees for solving QP problems based on a
statistical point of view in statistical education.

For optimization problems of quadratic programmimg will consider the optimum
value (maximum or minimum) of a function O 1, ..., pp) of p+1 parametergo, p1, ..., Bp.
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Due to the fact that max Z=min Z, we need only consider minimization problemrstypical
mathematical programming problem (MPP) consista single objective function, representing
either a profit to be maximized or a cost to be imiped, and a set of constraints that
circumscribe the decision variables. In the follogvisections, the relationships are given
concerning the multivariate linear models; therew fapproaches are presented to teach linear
models; and finally some examples are given to show to use these approaches in statistics
education.

RELATIONSHIP BETWEEN LINEAR MODELS AND QP MODELS
Consider a quadratic programming problem QP (1)

Minimise  Z(f) = b‘ﬁ+%,6’D,6’ ................................................. QP(1)

subjectto AB=C; and =0
where, fork < p+1, A{kx(p+1)}, D{(p+1)x(pt+1)} are matrices, Q{x1}, B{(p+1)x1}, b{(pt1)x1}
are column vectors, rank(A) kand D is a symmetric, positive definite matrix,igthcan be
decomposed as D=L'L (Note, matrices D and A haweladefined structure, with D often being
a covariance matrix of random variables in staiétanalysis), where L is a real upper triangular
matrix with positive diagonal elements and can bined by the Choleski decomposition of D.
The optimal value %) and solutions of QP(1) can be found based on &#othethod (see Wolfe
1959) which used the Kuhn-Tucker Necessary andicgrif conditions (NSC), i.e., any point
satisfying the NSC is solved for quadratic prograngrQP(1) through steps (see, e.g., Brown
and Goodall, 1959).

In a multivariate linear model (MLM) we consideethquares of differences between the
predicted and observed values and add up theseesididferences across all the predictions, we
get a number called the sum of squared errors (F3&n a statistical point of view we want the
SSE to be as small as possible, i.e. to minimiZe Bf#h the constraints of non-negative variables
B as QP(2).

Minimise  SSE(B)=X&=(Y=XB)' (Y =XB) ceceeeeeiveeeeieeieireerenn. QP(2)
where thee are the residuals. A general least squares limgaession problem (i.e. Regression
Programming (RP)) is obtained as QP(3) as follows:

Minimise  Q(LB) = (Y = XB)' (Y = XPB) +eeerreeeeiieiieieiiiieiiieeeeee e QP@3

subjectto AB=C; and =0
where S0 RP*" is the unknown and nonnegative vector, and rfor p+1 andk < p+1,
X{nx(p+1)}, A{kx(pt1)}, are constant matrices, and n¥l}, C{kx1}, e{nx1} are column
vectors. Moreovee ~ N(O, €2l), X’X > 0 and rank(A) =. The solution of the linear regression
with constraints (LRWC) is a subject of the Kart&hn-Tucker theorem.

Let the column vector X = L be the explanatory ahke and the column vector
Y=-1(L") 'b be taken as the response variable in multivariegeession analysis QP(3). We
know that quadratic programming is concerned wiihimizing a convex quadratic function
subject to linear inequality constraints. The ueigolution of a quadratic programming problem
QP(1) exists provided that the feasible regionos-ampty (the QP has a feasible space), and the
relative minimum optimal value is also a globalioptl value. Since g: S0 R"*, AB=C} is a
closed convex set, thep is a unique optimal solution for model QP(2). Tetationships are
given between multivariate linear model and operatiresearch by Wang (2005); Wang also
gave the following theorem to show the relationsmpong the three models QP(1), QP(2) and
QP(3).

Let g* = (B,* B.* B.*.... B,* T be the least squares estimators without constrairds
linear regression model QP(2) a= (,éo,,él,,éz,...,ﬁp)T be the least squares estimators in the
model QP(3) (or QP(1)), botB™ and S*" OR,"", then we have

0] The relationship of optimal values between QR{d QP(3) is given by
Z(f)=QP-1bD7b
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(i) The relationship of the optimal solutions oP) and QP(3) is
B= [| —(X'X)‘lA'H‘lA]ﬁ* +(XX)TAHIC
whereH = A(X'X) ™A', The details of the full proof are given by Wa2@@5).

TEACHING LINEAR MODELS BASED ON QP MODELS
We will apply the relationship as above to teacgh@P(1), QP(2) and QP(3).

Teaching Linear Models QP(2) Using the Phase Method

Considering QP(2) we differentiate ) (with respect to each of tfand set equal to
zero, giving the normal equations in multivaridtes&r regression. For given observation X and
Y, the simplex method is applied to the initial lglthe solutions of a simple linear model are
obtained based on the operations research methods.

Using Linear Modelsto Teach the QP(1) Z ()

Solving QP(1) based on the linear model algorithimesn QP (1) we used slack variable
vector S{kx1} for constraints to get standard form, and QRgyritten as a linear program. The
algorithm of the theorem may be used to solve tREIPZB): firstly solve the goal programming
problem (with unknown variables S and d) to find ttonstants d; secondly use the relationship
L£=D7A'd-D"b betweerf} and d to get the optimal valuBsthen finally the optimal solution
is found for QP(1).

Using Least Squares to Teach the QP(3)

A stepwise algorithm for searching for the solutiora QP(1) is explored on the basis of
statistical theory (see Wang, 2005). It is shovat fuadratic programming can be reduced to an
appropriately formulated QP(3) with equality comsits and nonnegative variables. This
approach allows us to obtain a simple algorithnsatve a QP model. The applicability of the
suggested algorithm is illustrated with some nuoarexamples in research papers (see Wang,
Chukova and Lai, 2005). Quadratic programming \Zgno-one variables is provided by Wang
(2005); the problem can be reduced to search tinere points of a zonotope.

EXAMPLES

Example 1: Simple linear regression:
Consider the example with 2 dimensions and sampéens10 observations &, ), i=1, 2, ...,
10} which was given by Wang (2005). Using the S8Eninimize SSHY) with respect t@, then
QP(2) is solved using simplex methods (a speciahatkof operations research) in teaching
linear models.

Example 2: Multivariate linear models:
This example was given by Fang, Wang and Wu (1982n = 9, andp+1=6. In order to
manufacture concrete, asphalt, big and small stammeshed stones, grit, sands and rock powder
are required. Denote these variablexX@sX1, ..., X5 respectively. Different types of sieves are
used to filter these elements and the mixtifeof them. The percentage of each of these
variables that pass through the sieves are sei0,ix1, ..., x5 and y respectively. Usirf80, 31,
..., B5 to represent the percentage of these six elenretite mixture, they should satisy> 0.
According to the science of architecture, the tptasing rate should fall into the given range and
the closer to the middle point, the better. Therefore the problem becomes QP{Byhwis
equivalent to the least squares method for a linegiression problem (see Wang, 2005). Firstly
we can find the optimal solutiorfs without the constraints for QP(2), and then weambthe
solution of QP(1).
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