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Teaching the topic of linear models is a complex process. A new teaching process will be 
investigated which we will consider in two different ways: on one hand linear models and 
quadratic programming problems are formulated and solved by statistical methods; on the other 
hand the solution of the linear regression model with constraints makes use of the simplex 
methods of linear and quadratic programming. 
 
INTRODUCTION 

Teaching the topic of linear models is a complex process, a new teaching process will be 
investigated in statistics education. We will consider in two different ways: on one hand linear 
models and quadratic programming problems are formulated and solved by statistical methods, 
and on the other hand the solution of the linear regression model with constraints makes use of 
the simplex methods of linear or quadratic programming. The interaction between teaching Linear 
Models and Operations Research (OR) are explored by both statistical and operations research 
theories in statistics education. The aim of this paper is that students taking linear model courses 
as well as a course in a linear or non-linear programming (NLP) of Operations Research will 
realize that there is a definite connection between these problems. 

These interactions are considered both from a statistical point of view and from an 
optimization point of view. A linear regression model is solved by a two-phase version of the 
simplex method and a statistical algorithm for solving quadratic programming problem is 
presented. In comparison with the nonlinear programming methods for solving quadratic 
programming problem, the latter has the following advantages: 
(a) Statistics courses often form a core portion in most information science degree programs 
at Bachelor level. The algorithm based on basic statistical concepts is easy to understand, learn 
and apply. 
(b) Some of the steps of the algorithm are included as built-in functions or procedures in 
most of the commonly used software packages like SAS, R, MAPLE, MATHEMATICA in statistic 
education.  
(c) The algorithm avoids the usage of slack and artificial variables. Some examples of 
teaching linear models are given to illustrate the ideas. 

There are a few algorithms to solve optimization problems for non-linear programming, 
for example, geometric programming is approximated by a generalization of the arithmetic-
geometric mean inequality to solve algebraic non-linear models; Algorithms for solving special 
forms of non-linear models have been developed, especially for quadratic programming (see 
Wang, Chukova and Lai, 2005 and Wang, Chukova, Lai, 2004). In this paper we will focus on 
quadratic programming (or non-linear) problems. 

Quadratic programming is concerned with the problem of minimizing (or maximizing) a 
quadratic objective function subject to linear inequality (or equality) constraints with non-
negative values for unknown variables. There are a few approaches to solve QP problems, for 
example, simplex combinatorial approaches (see Best and Ritter, 1988); ellipsoidal approaches 
(see Chung and Murty, 1981); interior points methods (see Mehrotra and Sun, 1990) and Ben-
Daya and AI-Sultan (1997) developed an exterior point algorithm for quadratic programming 
based on a penalty function approach using a single Newton method (see Ferrez, Fukuda and 
Liebling, 2005). This paper will discuss some approaches for solving QP problems based on a 
statistical point of view in statistical education. 

For optimization problems of quadratic programming, we will consider the optimum 
value (maximum or minimum) of a function Z (β0, β1, …, βp) of p+1 parameters β0, β1, …, βp. 
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Due to the fact that max Z= ─min Z, we need only consider minimization problems. A typical 
mathematical programming problem (MPP) consists of a single objective function, representing 
either a profit to be maximized or a cost to be minimized, and a set of constraints that 
circumscribe the decision variables. In the following sections, the relationships are given 
concerning the multivariate linear models; then a few approaches are presented to teach linear 
models; and finally some examples are given to show how to use these approaches in statistics 
education. 
 
RELATIONSHIP BETWEEN LINEAR MODELS AND QP MODELS 

Consider a quadratic programming problem QP (1) 
Minimise Z(β) = b' β + 1

2 β 'Dβ ..................................................... QP(1) 

subject to Aβ ≥ C;   and  β ≥ 0 
where, for k ≤ p+1, A{k×(p+1)}, D{( p+1)×(p+1)} are matrices, C{k×1}, β{( p+1)×1}, b{(p+1)×1} 
are column vectors, rank(A) = k and D is a symmetric, positive definite matrix, which can be 
decomposed as D=L'L (Note, matrices D and A have a well defined structure, with D often being 
a covariance matrix of random variables in statistical analysis), where L is a real upper triangular 
matrix with positive diagonal elements and can be obtained by the Choleski decomposition of D. 
The optimal value Z(β) and solutions of QP(1) can be found based on Wolfe’s method (see Wolfe 
1959) which used the Kuhn-Tucker Necessary and Sufficient conditions (NSC), i.e., any point 
satisfying the NSC is solved for quadratic programming QP(1) through steps (see, e.g., Brown 
and Goodall, 1959). 

In a multivariate linear model (MLM) we consider the squares of differences between the 
predicted and observed values and add up these squared differences across all the predictions, we 
get a number called the sum of squared errors (SSE). From a statistical point of view we want the 
SSE to be as small as possible, i.e. to minimize SSE with the constraints of non-negative variables 
β as QP(2). 

Minimise SSE(β) = ε 2 =∑ (Y − Xβ)' (Y − Xβ)  ................................. QP(2) 
where the ε are the residuals. A general least squares linear regression problem (i.e. Regression 
Programming (RP)) is obtained as QP(3) as follows: 

Minimise Q(β) = (Y − Xβ)' (Y − Xβ) ............................................... QP(3) 
subject to Aβ ≥ C;   and  β ≥ 0 

where β ∈ Rp +1 is the unknown and nonnegative vector, and for n ≥ p+1 and k ≤ p+1, 
X{ n×(p+1)}, A{ k×(p+1)}, are constant matrices, and Y{n×1}, C{k×1}, ε{n×1} are column 
vectors. Moreover ε ~ N(0, ε2I), X’X ≥ 0 and rank(A) = k. The solution of the linear regression 
with constraints (LRWC) is a subject of the Karush-Kuhn-Tucker theorem.  

Let the column vector X = L be the explanatory variable and the column vector 
Y = − 1

2
( ′ L )−1b  be taken as the response variable in multivariate regression analysis QP(3). We 

know that quadratic programming is concerned with minimizing a convex quadratic function 
subject to linear inequality constraints. The unique solution of a quadratic programming problem 
QP(1) exists provided that the feasible region is non-empty (the QP has a feasible space), and the 
relative minimum optimal value is also a global optimal value. Since {β : β ∈ R+

p +1, Aβ ≥ C} is a 
closed convex set, then ˆ β  is a unique optimal solution for model QP(2). The relationships are 
given between multivariate linear model and operations research by Wang (2005); Wang also 
gave the following theorem to show the relationship among the three models QP(1), QP(2) and 
QP(3). 

Let T
p *)ˆ*,...,ˆ*,ˆ*,ˆ(*ˆ

210 βββββ = be the least squares estimators without constraints in a 

linear regression model QP(2) and T
p )ˆ,...,ˆ,ˆ,ˆ(ˆ

210 βββββ =  be the least squares estimators in the 

model QP(3) (or QP(1)), both Tβ̂  and T*β̂  1+
+∈ pR , then we have  

(i) The relationship of optimal values between QP(1) and QP(3) is given by 
Z( ˆ β ) = Q( ˆ β ) − 1

4
′ b D−1b  
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(ii) The relationship of the optimal solutions of QP(2) and QP(3) is 
ˆ β = I − ( ′ X X)−1 ′ A H−1A[ ]ˆ β * + ( ′ X X)−1 ′ A H−1C  

where H = A( ′ X X)−1 ′ A . The details of the full proof are given by Wang (2005). 
 
TEACHING LINEAR MODELS BASED ON QP MODELS 

We will apply the relationship as above to teach the QP(1), QP(2) and QP(3). 
 
Teaching Linear Models QP(2) Using the Phase Method 

Considering QP(2) we differentiate Q(β) with respect to each of the β and set equal to 
zero, giving the normal equations in multivariate linear regression. For given observation X and 
Y, the simplex method is applied to the initial table, the solutions of a simple linear model are 
obtained based on the operations research methods. 
 
Using Linear Models to Teach the QP(1) Z (β) 

Solving QP(1) based on the linear model algorithms, from QP(1) we used slack variable 
vector S{k×1} for constraints to get standard form, and QP(1) is written as a linear program. The 
algorithm of the theorem may be used to solve the QP(1) Z(β): firstly solve the goal programming 
problem (with unknown variables S and d) to find the constants d; secondly use the relationship 
β = D−1 ′ A d − D−1b between β and d to get the optimal values β, then finally the optimal solution 
is found for QP(1). 
 
Using Least Squares to Teach the QP(3)  

A stepwise algorithm for searching for the solution to a QP(1) is explored on the basis of 
statistical theory (see Wang, 2005). It is shown that quadratic programming can be reduced to an 
appropriately formulated QP(3) with equality constraints and nonnegative variables. This 
approach allows us to obtain a simple algorithm to solve a QP model. The applicability of the 
suggested algorithm is illustrated with some numerical examples in research papers (see Wang, 
Chukova and Lai, 2005). Quadratic programming with zero-one variables is provided by Wang 
(2005); the problem can be reduced to search the extreme points of a zonotope. 
 
EXAMPLES 
     Example 1: Simple linear regression: 
Consider the example with 2 dimensions and sample size n=10 observations {(xi, yi), i=1, 2, ..., 
10} which was given by Wang (2005). Using the SSE to minimize SSE(β) with respect to β, then 
QP(2) is solved using simplex methods (a special method of operations research) in teaching 
linear models. 
 
     Example 2: Multivariate linear models: 
This example was given by Fang, Wang and Wu (1982) for n = 9, and p+1=6. In order to 
manufacture concrete, asphalt, big and small stones, crushed stones, grit, sands and rock powder 
are required. Denote these variables as X0, X1, …, X5 respectively. Different types of sieves are 
used to filter these elements and the mixture, Y, of them. The percentage of each of these 
variables that pass through the sieves are set to be x0, x1, …, x5 and y respectively. Using β0, β1, 
…, β5 to represent the percentage of these six elements in the mixture, they should satisfy β ≥ 0. 
According to the science of architecture, the total passing rate should fall into the given range and 
the closer to the middle point Y, the better. Therefore the problem becomes QP(3) which is 
equivalent to the least squares method for a linear regression problem (see Wang, 2005). Firstly 
we can find the optimal solutions β without the constraints for QP(2), and then we obtain the 
solution of QP(1). 
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