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It is an established opinion that young children have good probabilistic intuitions although their 
mental framework for reasoning probabilistically may be fragmentary and even contain 
inconsistencies. We join the camp of mathematics educators who advocate an early training in 
stochastic thinking. We recognize, however, that such early training can only be based on a 
heuristic approach to stochastics. The heuristic approach that we propose here is implemented by 
guiding children to actively construct stochastic situations by means of plastic tinker-cubes and 
stochastic urns. The aim of this enactive training is to foster the development of a dynamic mental 
imagery for representing stochastic situations. 
 
INTRODUCTION 

Due mostly to historical factors, the pace at which stochastics has been integrated as a 
component of mathematics school curricula has been comparatively slow: The debate on how 
early and to what extent children should be taught statistics and probability is far from being 
concluded. Probability is one of the core concepts in stochastics and aspects of it are being 
grasped by a child of seven (Piaget, 1952; Wollring, 1994; Falk, 1982, Martignon and Wassner, 
2005). Yet its philosophical and mathematical complexity, involving either notions of infinity and 
convergence in the classical approach, or notions of sets and measures in the modern 
formalization, has led mathematics educators to think that the inception of probabilistic concepts 
should be confined to the last years of secondary school. In countries like Germany this late 
inception had, until 2003, seldom been implemented with real enthusiasm by teachers, although 
most did acknowledge that stochastics is more useful than other branches of mathematics for 
everyday life. The influence of the NCTM Standards and the effects PISA Studies 2000 and 2003 
operated a change in the attitudes both of teachers and of ministerial organizations towards 
statistics and probability in schools: After all, 25% of all questions in the PISA 2003 tests dealt 
with probabilistic or statistical situations. In most of the Länder special recommendations have 
also been formulated in the programs for primary school to encourage teachers to introduce first 
notions of descriptive statistics and probabilities.  
 
STOCHASTIC MODELING AND COMMON SENSE IN SCHOOL 

One of the mathematical test items of PISA 2003 was the following:  
 Consider two boxes A and B. Box A contains three marbles, of which one is white and two are 
black. Box B contains 7 marbles, of which two are white and five are black. You have to draw a 
marble form one of the boxes with your eyes covered. From which box should you draw if you 
want a white marble? 

The PISA 2003 Report (PISA Consortium 2004) commented that only 27% of the 
German school students obtained the “correct answer.” The answer “I should choose from Box 
A” without explanation for one’s choice would have been insufficient.. Would bare common 
sense lead a school student to choose Box A? In other words, does a student guided by common 
sense conclude that the more convenient box is the one with a larger proportion of white marbles? 
Once this is established the rest is trivial. The next question is whether the proportion of white 
marbles in “1 out of 3” is larger than in “2 out of 7”: Without recurring to fractions a school 
student could see that “1 out of 3” is like “2 out of 6.” The next step would be to compare “2 out 
of 6” with “2 out of 7,” which is again straightforward, without involving fractions. Establishing 
that the more convenient box is the one with the larger proportion of white marbles was seen by 
Laplace as based on unaided common sense. Modern cognitive psychology has provided a good 
amount of empirical evidence for this assertion: the discoveries of Gigerenzer and his school 
corroborated Laplace’s views by proving empirically that humans make sound judgments based 
on “natural proportions of frequencies,” or simply “natural frequencies. Hasher, Zacks and Sanft 
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(1982) proved empirically that humans sample frequencies and make inferences based on sample 
sizes (1982). When one proportion is markedly larger than another, they know instinctively which 
one should be chosen even when the choice is between one high proportion and the combination 
of two low ones (Martignon and Krauss, 2003). Mathematically correct statements on why and 
when larger proportions in samples correspond to larger chances in the populations do require 
serious amounts of conceptual work. Therefore, if what has to be conveyed to school students in 
early grades is the competence to “reduce common sense to a calculus” (as Laplace put it), the 
recipe seems to boil down to (1) Basic stochastic modeling with natural representation formats 
and (2) Simple heuristics for operating with these formats. 
 
EDUCATING STOCHASTIC MODELLING THROUGH ENACTIVE REPRESENTATIONS: 
STOCHASTIC URNS AND TINKER-CUBES 

Along the lines of the recipe suggested above we have designed a program for canalizing 
young children’s aptitudes in stochastic thinking. The program we propose is being developed as 
an online guide for primary school instructors (Martignon and Kurz-Milcke, 2006). It consists of 
instructions for a series of units distributed through the sequence of years in primary school, 
aiming at educating children in modeling stochastic situations. This is achieved by guiding them 
to actively construct representations of situations and learn to answer questions based on the 
features of these representations. In these playful yet structured activities children develop an urn 
concept that goes far beyond the material perception of an object called urn. The material urns 
with which children work are transparent plastic containers, which children can easily hold with 
their two hands. Children’s modeling of situations by means of small plastic cubes, denominated 
tinker-cubes, which can be assembled in little towers, is performed with great ease and pleasure. 
After all, children are good at “imagining” scenarios, say by mentally converting sofas into 
cockpits and tables into airports. They have even less difficulties than an adult in representing and 
modeling situations by means of available tokens and objects. 

As a possible instance of urn construction children can construct the urn for “our class,” 
where each girl is represented by a red tinker-cube and each boy by a blue one. Other features can 
be encoded easily by adjoining cubes in other colors for say, blond hair, or brown hair. Thus urns 
end up containing towers of tinker-cubes, which children construct, encouraged by the teacher. In 
recent explorative studies we have had children of the fourth grade construct urns for describing 
concrete situations like the following: In a class there are 12 girls and 11 boys. Of the girls 8 
have long hair, and of the boys 2 have long hair. All other children have short hair. Construct an 
urn representing the class so that you will easily detect the boys with long hair.  

One possibility is, for instance, that of encoding “long hair” with a yellow cube and 
“short hair” with a “green” cube. As a possible test of children’s probabilistic intuitions the 
teacher picks one tower composed of two cubes and hides it behind her back, making sure that the 
children have not seen, which tower she has picked. She says “My tower has one yellow cube. 
What do you think, is it a boy or a girl?” This activity is repeated many times with different 
settings. Due to the feedback provided by the teacher showing the tinker-cube tower she has 
hidden, children develop a propensity to bet for the more probable situation. These activities are 
performed by children in the fourth class. They learn to construct urns and to make bets on 
whether a tower represents a certain item in a cell of a certain partition. Categorical partitions are 
characterized by constructing the apposite urns. Children do even count the towers and answer 
questions concerning quantified categorizations. These tasks contain first elements of Bayesian 
reasoning at a heuristic level. Kurz-Milcke has systematically guided children in the fourth grade 
to construct tree diagrams, initially using concrete urns and colored string to produce tree-like 
layouts on the class room floor (Kurz-Milcke and Martignon, in press). What surprised us was the 
extraordinary readiness of children to reason and play with representatives (i.e., the towers of 
tinker-cubes) and always know what was meant. On the other hand it is well known that children 
games are based on simulation and representation: chairs become rockets and tables become 
airports! This capacity to simulate and encode is one of the fundamental resources of scientific 
thought and teachers can help canalizing this resource in useful directions. Urns and tinker-cubes 
are just an example of enactive simulation. The studies illustrated above concern the fourth grade 
but our conceptual framework envisages urns and tinker-cubes as enactive representations from a 
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very early stage. Already in the Kindergarten urns are used for categorizations: red and green toys 
of two types, balls and tinker-cubes of different sizes, are sorted by children and placed in urns. 
At one instance they place all red toys together and all green toys together (Martignon and 
Wassner, 2005). Between five and six years of age children begin to play with dice. These games 
fascinate children because of the combination of luck and chance. They throw two dice and bet on 
the outcome. It is common to see them blowing on the dice to ensure good luck.  

We have tested a game of dice in 4 first grade classes in Stuttgart and surroundings. 
Children were divided into groups of four, two boys and two girls. Every group had to play at a 
table after having participated in completing a table drawn on the blackboard displaying the 
possible outcomes of the dot sum of two dice. Every pair of teams alternated in throwing a pair of 
dice. Each team made bets on the corresponding outcome. At every instance the winner was the 
team whose bet was closer to the actual outcome. A total of 30 bets were performed and the 
sequence of bets of each team was then analyzed. The question we analyzed was to which extent 
having completed a table of the possible outcomes of the pairs of dice had influenced children’s 
bets. Feedback provided by the sequence of outcomes clearly had an impact on children’s bets. 
We could trace three factors that influenced children’s bets: feedback, knowledge of the possible 
combinations for each outcome, and finally affective relationships towards special numbers, like 
3, 7 and 12. After the bets, there were discussions on the bets and their outcomes. The concept 
discussed was “strategy”: the teacher explained the meaning of the word and asked children about 
theirs. Most children (60% of the teams, N = 18 teams) could talk about their betting strategies 
and detect principles that had guided them through the game. Finally the urns describing the 
possible outcomes were constructed, by means of tinker-cubes in 11 different colors. 
 
URN ARITHMETIC IN THE FOURTH GRADE 

The fourth grade has proven to be the ideal time interval for making children familiar 
with a simple urn Arithmetic, which leads to simple solutions of problems like the Two Boxes 
selection task above. We denote by U(a:b) the urn with a red and b green tinker-cubes. We have 
two urns, namely U(1:2) and U(2:5): Which urn is more convenient if we want a red tinker-cube? 
For answering this type of question fractions are not required. We do though have to transform 
each urn in an equivalent urn, so that the resulting urns are easily compared. The concept of 
equivalent or similar urn requires at least 6 hours of playful constructions in the fourth grade, 
before it is consistently primed in the children’s minds. Why is U(1:1) equivalent to U(2:2)? 
Children assemble two red tinker-cubes and two green tinker-cubes. They learn that if you add the 
same amount of tinker-cubes to each single tinker-cube, the proportion does not change. They 
construct pyramids composed of 1:1 red and green cubes at the top, 2:2 red and green cubes in the 
second row, 3:3 in the third row, etc. Children then construct the pyramid for the proportion 1:2. 
Pyramids for several different proportions are placed on a table where they remain e and remain 
several days for all children to see. There comes the day when pyramids are dissembled and the 
corresponding urns are constructed by throwing pyramids of a pyramid row in an urn. For each 
pyramid several similar urns are constructed. The next step is to treat the comparison of two 
different urns; by different we mean urns, which are not similar. Here the instructor has to lead 
children to construct two similar urns, which become comparable. Given U(a:b) and U(c:d), one 
possibility is to construct U(ac:bc) and U(ac:ad) and the compare these urns, which becomes easy.  
This urn arithmetic requires a certain amount of discipline because progress in grasping the 
concepts of similarity and comparison demands discipline and time. We consider this first 
confrontation with comparison of proportions and similarity of proportions a fundamental 
previous step before fractions are introduced.  
 
PREPARING CHILDREN FOR BAYASIAN REASONING: FOSTERING STOCHASTIC 
HEURISTICS IN PRIMARY SCHOOL 

We have conducted studies and interviews with German school teachers concerning the 
aim of school education in probabilistic thinking. The core question was: Should the aim be to 
communicate formalized knowledge of probabilities or foster the use of heuristics based on sound 
(in the sense of Hogarth, 2001) modeling of elementary probabilistic situations (Wassner and 
Martignon, 2005)? Our conclusion is that teachers consider the education of elementary 
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probabilistic modeling a task to be placed prior – both with regard to the temporal sequence and 
in importance – to the theoretical treatment of probabilistic inference. Elements of theoretical 
treatment have to be provided, of course, when possible, but should be the completion and not the 
initiation of stochastics education in school. Historically, this attitude has been the same in the 
case of other fields of Mathematics, although the process has been less conscious. Other fields 
were incorporated in school curricula before and educational principles had been formalized and 
tested empirically. Basic arithmetic and geometry are taught first as heuristic competences; only 
at a later stage, school students are given a glimpse into these fields as more formalized bodies of 
theoretical development. The PISA studies, the recommendations of the NCTM Standards and the 
reformed German Curricula since 2005 advocate the education of mathematical competencies 
prior to, yet not substitutes of, theoretical knowledge. In direct analogy with arithmetic and 
geometry children’s aptitude should be prepared during primary school by means of basic 
heuristics for coping with elementary tasks of probability and statistics. By heuristic we do not 
mean a rule of thumb; we use the term in the sense made famous by Einstein (1905) and, in recent 
years, by Gigerenzer and his colleagues, namely, as a correct yet simple, partial approximation of 
the full approach. 
 
A CONCLUDING REMARK ON TINKER-CUBES 

We have chosen tinker-cubes because they are neutral toys: other toys like Legos polarize 
boys and girls and girls are less prone to use them in a spontaneous way. Our tinker-cubes can be 
assembled into towers and towers can be disassembled. Towers placed on a table can also serve 
as “living” histograms. Thus tinker-cubes display two stochastic functions: They can motivate 
probabilistic questions but also describe statistical situations. 
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