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Introduction

In this paper we present a preliminary study aimed at the construction of an intelligent
tutoring/assessment system for the courses of statistics, psychometrics and data analysis of the
Faculty of Psychology of the University of Padova, Italy. Our intention is to base such a system
on some modern psychometric models and methods provided by the theory of knowledge spaces
(Doignon & Falmagne, 1985; Albert & Lukas, 1998; Doignon & Falmagne, 1999). According
to this theory, a knowledge domain is a set Q of all problems characterizing a given discipline,
and the knowledge state of a student is the set K ⊆ Q of problems that this student is capable
of solving. A knowledge structure is then the collection K of all knowledge states that can be
observed in a certain population of students. If this collection is closed under union (K, K ′ ∈ K
implies K ∪K ′ ∈ K) then it is called a knowledge space.

Knowledge spaces are in 1–1 correspondence with a particular kind of binary relations on
the set Q of items, called entail relations (Koppen & Doignon, 1990). In the simplest case, two
items p and q in Q are in an entail relation E (formally, pEq) if failing item p ’entails’ failing
item q. In this sense, item p contains prerequisites for solving item q.

If an entail relation — or, equivalently, the corresponding knowledge space — is available
for a given set Q of items, then it can be efficiently used in the assessment of the knowledge state
of a student. As an example, if pEq and a student has just provided a wrong response to item
p, then the response of that student to q can be obtained by inference. Thus, in general, the
whole knowledge state of the student can be recovered presenting her/him with a subset of the
items in Q. This subset is usually expected to be much smaller than Q making thus the whole
assessment process very efficient especially with large sets of items. Falmagne and Doignon
(1988) provide algorithms for the efficient assessment of the knowledge state of a student by
means of a knowledge space.

A knowledge space on a set Q of items can be constructed through the computerized
query of a set of experts on the corresponding entail relation (see, e.g., Koppen, 1993; Dowling,
1993; Stefanutti & Koppen, 2003). This method was used to build a knowledge space for a
set of problems in ”data analysis in psychology” (Stefanutti & Cristante, 2001) and this paper
focuses on the empirical validation of this structure by means of particular probabilistic models
that are introduced in the next section.

Probabilistic models

A knowledge structure (or a knowledge space) is a deterministic model specifying the
relationships among a set of problems in terms of prerequisites and background knowledge.
This deterministic representation, however, cannot be validated against empirical data directly.
In fact, empirical observations are affected by noise and random error and thus it makes sense
to shift from a deterministic framework to a non-deterministic (probabilistic) one. Doignon
and Falmagne (1999) introduced a probabilistic model which is appropriate for the empirical
validation of a knowledge structure (probabilistic knowledge structures). In our application we



used a logistic extension of the above-mentioned model proposed by Stefanutti (2003). In this
section we provide a short presentation of this model.

We consider a set Q of items, a set S of skills and a collection K of states and we use the
following notation: Q := {q1, q2, . . . , qm}, S := {s1, s2, . . . , sp}, K := {K1, K2, . . . , Kn}, where
m, p, and n are the cardinalities of Q, S, and K respectively. Then we introduce two binary
relations: a relation V ⊆ Q×K between items and states, and a relation W ⊆ S ×K between
skills and states. In an usual interpretation, W is the membership relation ’∈’, so that K si a
collection of subsets of S, and sWK iff s ∈ K for all s ∈ S, and K ∈ K. On the other hand, if
f : Q → 2K is a mapping such that, for all q ∈ Q and K ∈ K,

K ∈ f(q) ⇐⇒ qWK,

then f is a skill multi-map in the sense specified by Doignon and Falmagne (1999).
Each skill sl ∈ S is characterized by a parameter δl ∈ R specifying the difficulty to master

(or to learn) that skill. Then, we assume a probability distribution on the states in K, and the
probability that a student – randomly selected from the population – is in state Kj is given by

πj :=
exp(−ξj)∑n

v=1 exp(−ξv)
, where, for all Kv ∈ K ξv =

p∑
l=1

wvlδl for wvl =

{
1 if slWKv,
0 otherwise,

is the difficulty of state Kv.
The response pattern of a student is the subset R ⊆ Q of all items that obtained a correct

response from that student, and the collection of all response patterns is the power-set 2Q.
Given the probabilities πj of the states, the probability θi of a response pattern Ri ⊆ Q is
specified through the local independence model of Doignon and Falmagne (1999):

θi :=
n∑

j=1

ρijπj,

where ρij is the conditional probability that a student exhibits pattern Ri given that her/his
state is Kj. This conditional probability is specified by means of two parameters of the items
qk ∈ Q: a parameter ηk denoting the probability of a careless error for item qk, and a parameter
γk denoting the probability of a lucky guess for qk. The details of the derivation of ρij from
the parameters ηk and γk are beyond the scope of the present paper, and they can be found
in Doignon and Falmagne (1999). Here, for the sake of completeness, we just give the general
equation of the local independence model:

ρij =

[
p∏

j=1

η
(1−rik)wjk

k

] [
p∏

j=1

(1− ηk)
rikwjk

] [
p∏

j=1

γ
rik(1−wjk)

k

] [
p∏

j=1

(1− γk)
(1−rik)(1−wjk)

]
,

where

rik :=

{
1 if qk ∈ Ri,
0 otherwise.

The parameters that have to be estimated for this model are the difficulties δl of the skills and
the error probabilities ηk and γk of the items. There are thus 2n + p parameters to estimate
in the whole. Given a suitable random sample of the population of students, the goodness of
fit of the model can then be tested through standard statistics like chi-square or the likelihood
ratio test, by comparing the observed frequencies Fi of the response patterns Ri in the sample,
with the frequencies Nθi predicted by the model, where N is the sample size. In both cases,
the degrees of freedom are d.f. = |2Q| − 2n− p− 1.



Results

In this preliminary study a subset of 10 items were selected among a large set of problems
that are typical in a course of ”Techniques of Psychological Research and Data Analysis” of
the Faculty of Psychology of the University of Padova, Italy. The items cover a basic and an
intermediate level of the course, and their topic is ”basic probability theory”, ”contingency
tables” and ”log-linear analysis”. As an example, the first of them is displayed below:

”In a group of managers, a percent of 60% speaks two languages. Among all managers,
55% of them works often abroad, and the 20.4% is capable of speaking two languages
and is often abroad. If a manager is picked at random, which is the probability that this
manager does not work often abroad given that s/he does not speak two languages?”

A knowledge space was obtained for the above-mentioned set of items through a computerized
query of five experts of the domain of knowledge. We present in this section the results obtained
in the empirical validation of this knowledge space.

A test Q containing the 10 selected items was administered to a group of 400 Italian
students attending the course of ”Techniques of Psychological Research and Data Analysis”.
Thus, the data collected from these subjects consisted in a set of 400 response patterns. The
knowledge space on the 10 items was then tested empirically through the logistic model pre-
sented in the previous section. The parameters of the model were estimated by maximum
likelihood, and the fit of the model was tested by means of the likelihood ratio statistic.

The logistic model requires the specification of a set S of skills and the two relations V and
W . In this application we assume the existence of a set S of 10 skills and a bijective mapping
f : S → Q so that there is one skill for each of the 10 items in Q. Moreover, we assume that,
for all items q ∈ Q, all states K ∈ K and all skills s ∈ S:

qVK ⇐⇒ q ∈ K, and sWK ⇐⇒ f(s) ∈ K.

Thus V can be interpreted as the membership relation between Q and K, where K is a collection
of subsets of Q.

The available dataset (400 students) was not very large, if compared with the number
of theoretical response patterns: for a set of 10 items there are 210 = 1024 different response
patterns. For this reason it was decided to partition the full set Q of 10 items into two disjoint
subsets Q1 := {1, 2, 3, 4, 5} and Q2 := {6, 7, 8, 9, 10} of 5 items each. The corresponding
knowledge spaces K1 and K2, obtained by

K1 := {K ∩Q1 : K ∈ K}, and K2 := {K ∩Q2 : K ∈ K}

were then tested separately. The logistic model was thus applied to the following knowledge
spaces:

K1 := {∅, {4}, {5}, {2, 5}, {3, 4}, {4, 5}, {1, 3, 4}, {2, 3, 4}, {3, 4, 5},
{1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 5}, Q1},

K2 := {∅, {7}, {9}, {10}, {7, 10}, {9, 10}, {7, 9}, {6, 7, 10}, {7, 9, 10},
{6, 7, 8, 10}, {6, 7, 9, 10}, {7, 8, 9, 10}, Q2}

For all the statistical decisions in testing the model a probability value of .05 was used.
An application of the logistic model to the knowledge space K1 gave a likelihood ratio of 23.46
that with 32− 10− 5− 1 = 16 degrees of freedom has a probability of .102, thus the model is
accepted. Table 1 shows the parameter estimates obtained for the items in Q1 and Q2. Each
row in the table contains the error probabilities and the difficulty parameter of a single item
(remember that skills and items are in a 1–1 correspondence).



1. Parameter estimates for the knowledge space on the 10 items:
careless error (η), lucky guess (γ), and difficulty (δ).

Items η γ δ Items η γ δ

1 0.000 0.085 9.335 6 0.000 0.000 −0.529
2 0.000 0.275 −0.697 7 0.000 0.000 1.897
3 0.048 0.416 −2.314 8 0.000 0.780 −1.514
4 0.029 0.001 5.806 9 0.051 0.186 −0.696
5 0.038 0.000 −3.084 10 0.100 0.317 3.197

The model was then applied with the spaceK2 and a likelihood ratio of 23.84 was obtained.
With 16 degrees of freedom also this value is not significant, suggesting that the model can be
accepted. Observe that, although a pretty good fitness was obtained also for this second space,
the lucky guess probability γ8 is very high (0.78), meaning that — if the model reflects the true
structure on the items in K2 — a student provides a correct response to item 8 by lucky guess
with a probability of 78%. Taking into account that item 8 was a multiple choice item with 5
different alternatives, this result would suggest that either the model is not correct or the data
for this item are unreliable. Further investigations are needed for this second part of the model
in order to establish the source of this inconsistency.
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