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Bayesian Statistics is typically taught, if at all, separately from conventional frequentist
methods. It is becoming clear, however, that the emergence of powerful objective Bayesian
methods (where the result, as in frequentist statistics, only depends on the assumed model and
the observed data) provides a new unifying perspective on most established methods, and may
be used in situations (e.g. hierarchical structures) where frequentist methods cannot. On the
other hand, frequentist procedures provide mechanisms to evaluate and calibrate any statistical
method. Hence, it may be the right time to consider an integrated approach to mathematical
statistics, where objective Bayesian methods provide the inferential construction elements, and
frequentist methods the necessary evaluations. The emphasis of this presentation will be on
undergraduate courses on mathematical statistics, but the main ideas may also be applied to
more basic introductory and service courses.

1. Introduction

A comparative analysis of the undergraduate teaching of statistics through the world
shows a clear imbalance between what it is taught and what it is later needed; in particular,
most primers in statistics are exclusively frequentist and, since this is often their only course in
statistics, many students never get a chance to learn important Bayesian concepts which would
have improved their professional skills. Moreover, too many syllabuses still repeat what was
already taught by mid last century, boldly ignoring the many problems and limitations of the
frequentist paradigm later discovered.

Hard core statistical journals carry today a sizeable proportion of Bayesian papers, but
this does not yet translates into comparable changes in the teaching habits at universities.
History often shows important delays in the introduction of new scientific paradigms into basic
university teaching, but this inertia factor is not sufficient to explain the slow progress observed
in the introduction of Bayesian methods into mainstream statistical teaching. When the debate
flares up, those who prefer to maintain the present situation invoke mainly two arguments:
(i) Bayesian statistics is described as subjective, and thus inappropriate for scientific research,
and (ii) students must learn the dominant frequentist paradigm, and it is not possible to
integrate both paradigms into a coherent, understandable course. The first argument only
shows lack of information from those who voice it: objective Bayesian methods are well known
since the 60’s, with landmark books by Jeffreys, Lindley, Zellner, Press and Box & Tiao, and
reference analysis, whose development started in late 70’s (see e.g., Bernardo Smith, 1994,
Ch. 5, and references therein), provides a general methodology which includes and generalizes
the pioneering solutions. The second argument is however much stronger: any professional who
makes use of statistics needs to know frequentist methods (not just because of their present
prevalence, but because they may be used to analyse the expected behaviour of any statistical
methodology), and it is not easy to integrate into a single course the basic concepts of two
paradigms which are often described as mutually incompatible. The purpose of this presentation
is to suggest an integrated approach, where objective Bayesian methods are used to derive a
unified, consistent set of solutions to the problems of statistical inference which occur in scientific

International Statistical Institute, 55th Session 2005: Jose Bernardo



investigation, and frequentist methods (designed to analyse the behaviour under sampling of
any statistical procedure) are used to establish the behaviour under repeated sampling of the
proposed objective Bayesian methods.

Section 2 briefly describes a possible syllabus to develop these ideas in practice. Section 3
contains a simple, illustrative example.

2. An integrated approach to theoretical statistics

The central idea of our proposal is to use objective Bayesian methods to derive statist-
ical procedures which directly address the problems of inference commonly found in scientific
investigation, and to use frequentist techniques to evaluate the behaviour of those procedures
under repeated sampling. For instance, to quote one of the simplest examples, if data consists
of a random sample of size n from a normal N(x |µ, σ), with mean x and variance s2, the in-
terval x± tα/2 s/

√
n − 1 is obtained from an objective Bayesian perspective as a credible region

to which (given the data) the population mean µ belongs with (rational) probability 1 − α.
In our experience, this type of result—which describes what may said about the quantity of
interest given available information—is precisely the type of result in which scientists are genu-
inely interested. Moreover, the frequentist analysis of that region estimator shows that, under
repeated sampling, regions of this form would contain the true value of µ in 100(1 − α)% of
the possible samples, thus providing a valuable calibration of the Bayesian result. The corres-
pondence between the objective credible regions and the frequentist confidence regions (which
is exact in this example) is nearly always approximately valid for sufficiently large samples.

What follows is the particular implementation of an integrated approach to theoretical
statistics which been used for the last two years in teaching the course Mathematical Statistics
to third year undergraduate students of mathematics at the University of Valencia, Spain.

1. Foundations
Introduction to decision theory
Probability as a rational conditional measure of uncertainty
Divergence and information measures

2. Probability models
Exchangeability and representation theorems
Likelihood function. Properties and approximations
Sufficiency and the exponential family

3. Inference: Objective Bayesian methods
The learning process. Asymptotic results
Elementary reference analysis
Point estimation as a decision problem
Region estimation: lowest posterior loss regions
Hypothesis testing as a decision problem

4. Evaluation: Frequentist methods
Expected behaviour of statistical procedures under repeated sampling
Risk associated to point estimators
Expected coverage of region estimators
Error probabilities of hypothesis testing procedures

It is argued that an integrated approach to theoretical statistics requires concepts from
decision theory. Thus, the first part of the proposed course includes basic Bayesian decision
theory, with special attention granted to the concept of probability as a rational measure of
uncertainty. Divergence measures between distributions are also discussed in this module, with
emphasis in the intrinsic discrepancy, δ{p1, p2} = min[k{p1 | p2}, k{p2 | p1}], where k{pj | pi} =∫

X pi(x) log[pi(x)/pj(x)] dx is the Kullback-Leibler divergence of pj from pi, and with the
discrepancy between two families defined as the minimum discrepancy between their elements.
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The second part of the course is devoted to probability models. The concept of exchange-
ability, and the intuitive content of representation theorems, are both described to provide
students with an important mathematical link between repeated sampling and Bayesian ana-
lysis. The definition and properties of the likelihood function, the concept of sufficiency, and a
description the exponential family of distributions complete this module.

The third part of the proposed syllabus is a brief course on modern objective Bayesian
methods. The Bayesian paradigm is presented as a mathematical formulation of the learning
process, and includes an analysis of the asymptotic behaviour of posterior distributions. Refer-
ence priors are presented as consensus priors designed to be always dominated by the data, and
procedures are given to derive the reference priors associated to regular models. Point estima-
tion, region estimation and hypothesis testing are all presented as procedures to derive useful
summaries of the posterior distributions, and implemented as specific decision problems. The
intrinsic loss function, based on the intrinsic discrepancy between distributions, is suggested for
conventional use in scientific communication: the intrinsic loss δ{Θ0, (θ, λ)}, the loss from us-
ing a model in the family M0 = {p(x |θ0, λ), θ0 ∈ Θ0, λ ∈ Λ} as a proxy for model p(x |θ, λ),
is defined as the intrinsic discrepancy δ{px |θ0,λ, M0} between the distribution p(x |θ, λ) and
the family of distributions M0. This loss function is invariant under one-to-one reparametriza-
tions, and hence produces a unified set of solutions to point estimation, region estimation and
hypothesis testing problems which is consistent under reparametrization (Bernardo, 2004), a
rather obvious requirement, which unfortunately many statistical methods fail to satisfy.

The last module of the course presents the frequentist paradigm as a set of methods
designed to analyse the behaviour under repeated sampling of possible solutions to problems of
statistical inference. In particular, they are used to study the risk associated to point estimators,
the expected coverage of region estimators, and the error probabilities associated to hypothesis
testing procedures, with special attention to the behaviour under sampling of the objective
Bayesian procedures discussed in the third module. The required evaluations are made using
both analytical techniques, when the relevant sampling distributions are easily derived, and
Monte Carlo simulation techniques when they are not.

3. An Example

To illustrate the ideas proposed, we conclude with a a simple example. Let x be the
mean of a random sample x = {x1, . . . , xn} from p(x | θ) = θe−xθ. The reference prior here is
π(θ) = θ−1, and the corresponding posterior is gamma π(θ |x) = Ga(θ |n, nx), a function of
the sufficient statistic x. The reference posterior π(θ |x) is represented in the right panel of
Figure 1 for a random sample of size n = 10, simulated with θ = 2, which yielded x = 0.608.
The intrinsic loss of using model p(x | θ0) as a proxy for p(x | θ) (whose value is independent of
the parametrization chosen to describe the model) is δ{θ0, θ |n} = n δ1{θ0, θ}, with

δ1{θ0, θ} =

{
(θ/θ0) − 1 − log(θ/θ0), if θ ≤ θ0

(θ0/θ) − 1 − log(θ0/θ), if θ > θ0.

The reference posterior expectation of δ{θ0, θ |n} (which uses the observed data x to estimate
the minimum log-likelihood ratio log[p(x | θ)/p(x | θ0)] against θ = θ0 to be expected under
repeated sampling), is the intrinsic statistic

d(θ0 |x) =

∫ ∞

0

δ{θ0, θ |n} π(θ |x) dθ ≈ 1
2

[
1 + n δ{θ0, θ̃(x)}

]
,

where θ̃(x) = [1− (2n)−1] x−1, represented in the left panel of Figure 1. In a hypothesis testing
situation, the intrinsic k-rejection region Rk consists of those θ0 values such that d(θ0 |x) > k,
on the grounds that, given x, the expected log-likelihood ratio against them would be larger
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than k. For instance (see Figure 1), with the data described, the values of θ0 smaller than 0.513
or larger than 4.768 yield an intrinsic statistic value larger than k = log(100) ≈ 4.6, and would
therefore be rejected using this conventional threshold, since the expected log-likelihood ratio
against them is expected to be larger than log(100). Moreover, the posterior expected loss of
using an estimate θ̃ as a proxy for the true value of θ is d(θ̃ |x); this is minimized at the intrinsic
estimate, θ∗(x) ≈ [1− (2n)−1] x−1, which is the intrinsic loss Bayes estimate (θ∗ = 1.568 in this
case, represented in both panels with a big dot).
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Figure 1. Intrinsic objective Bayesian inference for an exponential parameter θ.

A lowest posterior loss (LDL) p-credible region is one of the form Cp ≡ {θ̃; d(θ̃ |x) ≤ k(p)}
and such that

∫
C(p)

π(θ |x) dθ = p. For instance, C0.95 here consists of those parameter values

with expected loss below 1.496, the interval C0.95 = [0.923, 2.657] shaded in Figure 1. Moreover,
the sampling distribution of x is gamma p(x | θ, n) = Ga(x |n, nθ), and the sampling distribution
of t(x) = x θ is p(t | θ, n) = Ga(t |n, n); but this is also the posterior distribution of φ(θ) = x θ,
π(φ |x, n) = Ga(φ |n, n). Hence the expected coverage of Cp(x) is

∫
{x∈Cp} p(x | θ) dx = p, for

all θ values. More generally, the frequentist coverage of all reference posterior p-credible regions
in this example is exactly p.

Notice that, since the intrinsic loss δ{θ0, θ} is invariant under one-to-one reparametriza-
tions, the intrinsic statistic, the posterior intrinsic loss d(θ0 |x), is also invariant so that, if φ(θ)
is a one-to-one transformation of θ, the intrinsic estimate of φ is φ∗ = φ(θ∗), the intrinsic
p-credible region of φ is φ(Cp), and the k-rejection region for φ is φ(Rk).
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RÉSUMÉ

Une Vision Intégrée de la Statistique Mathématique: Construction Bayésienne
Objective et Evaluation Fréquentielle

On enseigne souvent la statistique bayésienne, le cas échéant, séparément des méthodes
conventionnelles. Il devient cependant clair que l’apparition de méthodes objectives bayésiennes
puissantes (dont les résultats, ne dépend que du modèle adopté et des données observées) fournit
une nouvelle perspective d’unification sur la plupart des méthodes établies et elles peuvent tre
employées dans des situations où les méthodes fréquentielles ne peuvent l’être. D’autre part, les
procédures fréquentielles fournissent des mécanismes d’évaluation et calibrent n’importe quelle
méthode. Par conséquent, c’est peut-être l’heure à présent de considérer une approche intégrée
sur l’statistique mathématique, où les méthodes bayésiennes objectives fournissent les éléments
de construction inferentielle, et les méthodes fréquentielles les évaluations nécessaires.
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