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Neyman-Pearson or frequentist inference and Bayes inference are most clearly differentiated
by their approaches to point null hypothesis testing. With very large samples, the frequentist and
Bayesian conclusions from a classical test of significance for a point null hypothesis can be contra-
dictory, with a small frequentist P -value casting serious doubt on the null hypothesis, but a large
Bayes factor or Bayesian Information Criterion (BIC) in favour of the null hypothesis. We follow the
Bayesian approach by Dempster (1974, 1997) and Aitkin (1997) and use the likelihood ratio between
the null and alternative hypotheses to provide a different evaluation of the point null hypothesis, one
in which frequentist and Bayesian conclusions are much closer. In this paper, we outline the key ideas
behind this approach to hypothesis testing and contrast this approach with frequentist P -values and
Bayesian analyses based on usual Bayes factors.

Simple null hypotheses

In the example due to Stone (1997), a physicist runs a particle-counting experiment to identify
the proportion θ of a certain type of particle. He has a well-defined scientific (null) hypothesis H1 that
θ = 0.2(= θ1) precisely. There is no specific alternative hypothesis, only the general H2, that θ 6= θ1.
He counts n = 527, 135 particles and finds r = 106, 298 of the specified type. What is the strength of
the evidence against H1? The binomial likelihood function

L(θ) =

(
n

r

)
θr(1 − θ)n−r ≈ L(θ̂) exp

{

− (θ − θ̂)2

2SE(θ̂)2

}

is maximized at θ = θ̂ = 0.201652 [SE(θ̂) = 0.0005526]. The standardized departure from the null
hypothesis is Z1 = |θ1 − θ̂|/SE(θ̂) = 2.9895, with a two-sided P -value of 0.0028, indicating strong
evidence against the null hypothesis. The maximized likelihood ratio is L(θ1)/L(θ̂) = 0.01146.

The physicist uses the uniform prior π(θ) = 1 on 0 < θ < 1 under the alternative hypothesis,
and computes the Bayes factor. For this example, the Bayes factor is

B =
L(θ1)∫

1

0
L(θ)π(θ)dθ

≈ 1√
2πSE(θ̂)

· L(θ1)

L(θ̂)
= 8.27,

indicating evidence in favour of the null hypothesis. Thus the P -value and Bayes factor are in clear
conflict. However the posterior distribution of θ is not in conflict with the P -value, since the posterior
probability that θ > 0.2 is

Pr[θ > 0.2 |y] = Φ(2.9895) = 0.9986 = 1 − P/2.

Any Bayesian using the uniform prior must have a very strong posterior belief that the true value
of θ is larger than 0.2. Equivalently, the 99% equal-tailed Bayesian credible interval for θ is θ̂ ±
2.576SE(θ̂) = (0.20023, 0.20308) which is numerically identical to the 99% frequentist confidence
interval, and excludes θ1.

This example illustrates one of the difficulties of Bayesian analysis, that one may have to choose
between “hypothesis testing” and “estimation” approaches when these are in conflict. Kass and
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Greenhouse (1989) and Kass and Raftery (1995) give clear statements of the difference between these
approaches.

In his 1974 conference paper, Dempster considered the likelihood ratio between the null and
alternative hypothesis models:

LR(θ) = L(θ1)/L(θ).

Since θ is unknown under the alternative, LR(θ) is also unknown, but is a function of θ and so, given
the data, it has a posterior distribution π[LR(θ) |y]. We may therefore find its posterior percentiles,
and so can find Pr[LR(θ) < 0.1 |y] for example. A likelihood ratio of 0.1 between fully specified simple
hypotheses would be quite strong sample evidence against the “numerator” hypothesis; a posterior
probability of 0.9 or more that the likelihood ratio was less than 0.1 would similarly be quite strong
evidence against this hypothesis, and in general the posterior distribution of the likelihood ratio can
be used to assess the strength of the evidence against (or in favour of ) the null hypothesis.

In the Stone example, approximating the binomial likelihoods by the corresponding normal
likelihoods gives the “deviance” as

D(θ) = −2 log LR(θ) = Z2

1 − Z2,

where Z = [θ− θ̂]/SE(θ̂) has a posterior N(0, 1) distribution, and Z1 is Z with θ replaced by θ1. Now
Z1 = 2.9895 and so

Pr[LR(θ) < 0.1 |y] = Pr[D(θ) > 4.605 |y] = Pr[χ2

1 < 4.331] = 0.9626,

while

Pr[LR(θ) < 1 |y] = Pr[D(θ) > 0 |y] = Pr[χ2

1 < 2.98952] = 0.9972 = 1 − P

where P is the frequentist P -value from the likelihood ratio test. This illustrates Dempster’s funda-
mental result (which he gave for a p-parameter simple null hypothesis against a general alternative)
that, with normal likelihoods and flat priors, the P -value is equal to the posterior probability that the

likelihood ratio is greater than 1, that is, that the data support the null hypothesis more strongly than

the alternative.
The above form of Bayesian analysis comes to the same conclusion as the frequentist analysis,

that there is strong sample evidence against the null hypothesis. Why does the Bayes factor point in
the opposite direction? One point which does not seem to have been noticed is that we intended to
compare the null binomial model with “some other” binomial model, unspecified. But the binomial
distribution integrated over the flat prior gives a uniform distribution with mass 1/(n + 1) at the
n + 1 possible values of r. The Bayes factor is comparing the null binomial model with the uniform
distribution for r. This was surely not our intention, since no binomial distribution is uniform. The
integration has taken us outside the family of binomial distributions within which we wanted to
compare the null model.

The general Bayesian opposition to the use of averaging over the sample space in frequentist
testing is weakened in this approach, since the P -value has a fully Bayesian interpretation, though it
might be argued that the P -value still overstates the strength of evidence against the null hypothesis
since it refers only to a preference for the null hypothesis over the alternative. However we may
compute any percentiles of the posterior distribution of the likelihood ratio; in the example above,
there is strong posterior evidence that the likelihood ratio is less than 0.1, not just that it is less than 1.
The information in the full posterior distribution of the likelihood ratio provides a richer analysis
than just the frequentist P -value, and also calibrates the P -value from a Bayesian perspective. This
approach was extended to models with nuisance parameters in Aitkin (1997).

General point null hypothesis testing problems

Consider a family of models M , determined by a probability model f(y |ηηη) depending on a vector-
valued parameter ηηηT = (θθθT , φφφT ). It is helpful to consider the probability model in the context of a large
but finite population of N members, in which θθθ and φφφ represent population properties like the mean
and variance, which could be determined exactly by a census of the population, though we have only a
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sample of n values. Some Bayesians (see, for example, Geisser (1993)) deny the relevance of parameters,
insisting that only random variables have a real existence, but most statisticians regard them as
convenient model components, and survey sampling statisticians take finite population parameters as
the essential feature for statistical inference.

The likelihood for the given data y is L(θθθ,φφφ) = f(y |θθθ,φφφ). In our analysis there are true values

of θθθ and φφφ; the prior distribution for these parameters represents our uncertainty about these true
values. We consider a null hypothesis H1 which specifies the value θθθ1 of θθθ, while φφφ is unspecified. The
alternative hypothesis H2 has either θθθ completely unspecified, or taking a different specified value θθθ2.
In either case φφφ is unspecified. The joint prior distribution for θθθ and φφφ is π(θθθ,φφφ). This may be proper
or improper; we make particular use of flat priors to represent diffuse prior information, with the aim,
following Berger and Bernardo (1989), of developing a reference prior analysis of these hypothesis
testing problems.

If the true value of φφφ, and the true value of θθθ under the alternative H2 were known, the likeli-
hood ratio between the hypotheses would provide the data evidence for H1 against H2; we write the
likelihood ratio as

LR = LR(θθθ,φφφ) = L(θθθ1, φφφ)/L(θθθ,φφφ),

where the dependence of LR on the data y and the known value θθθ1 are suppressed, and the values
of θθθ and φφφ are understood to be the true values. In this approach the inferential function LR is the
likelihood ratio defined by a section through the likelihood at the true value of the nuisance parameter
φφφ, evaluated at the null hypothesis value θθθ1 and at the true value of θθθ. Though the true values of φφφ

and θθθ are unknown, their posterior distribution is known and therefore so is the posterior distribution
of LR. In particular, we may evaluate the posterior probability Pr[LR < k |y] for any specified k,
like 0.1 or 0.01. It will be convenient to evaluate such probabilities through the posterior distribution
of the “true deviance” D = −2 log LR.

Aitkin (1997) showed that Dempster’s result for a p-parameter simple null hypothesis with
normal likelihoods and flat priors, namely

P [LR < k |y] = Fp[F
−1

p (1 − P ) + 2 ln k]

applies also to nuisance-parameter models (where p is the dimension of θ, P is the frequentist P -value
from the likelihood ratio test, and Fp(x) is the cdf of the χ2

p distribution). In particular, for k = 1,

Pr[LR < 1 |y] = 1 − P,

so again the P -value is the posterior probability that the likelihood ratio is greater than 1, that is that
the null hypothesis is better supported than the alternative.

In finite samples with non-normal likelihoods these are asymptotic results and hence are insuf-
ficient. However simulation-based approaches can be used to obtain the posterior distribution of LR
or D, and thereby an assessment of the null hypothesis.

Example – the two-parameter normal model

The model for data y is N(µ, σ2) with σ unknown. A null hypothesis H1 specifies µ = µ1 = 0;
the alternative H2 is general. A random sample of n = 25 observations gives y = 0.4, and unbiased
variance estimate s2 = 1. What is the strength of the evidence against H1 in favour of H2? The
t-statistic is t = 2.0, with a two-sided P -value of 0.057 from the t24 distribution.

Given independent diffuse priors on µ and log σ, the conditional posterior distribution of µ |σ is
N(µ̂, σ2/n), and the marginal posterior distribution of s2/σ2 is χ2

n−1
/(n − 1). The true deviance is

D = −2 log

{
L(µ1, σ)

L(µ, σ)

}
=

n

σ2

[
(y − µ1)

2 − (y − µ)2
]

= t2 · W − Z2

where Z has a posterior N(0, 1) distribution independently of W = s2/σ2 which has the
χ2

n−1
/(n − 1) distribution. It follows immediately that

Pr[LR < 1 | y] = Pr[D > 0 | y] = Pr[Z2/W < t2 | y] = 1 − P,
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where P is the P -value 0.057 from the tn−1 distribution. For other values of k, the distribution of D
has no simple analytic form. However, it is easily simulated using independent random iterates for
W and Z, and computing the value of D = t2W − Z2 for the observed t. For example, the simulated
probability that D > −2 log 1 = 0 is 0.945, with simulation standard error 0.0023, in close agreement
with the known value of 1−P of 0.943, and the simulated probability that D > −2 log 0.1 is 0.157, with
standard error 0.0036. Thus the probability that the LR < 0.1 is quite low – there is no convincing
evidence against the null hypothesis. This is of course to be expected since the P -value does not reach
even conventional levels. Note that the Bayes factor cannot be computed here due to the diffuse prior
on µ.

Conclusion

The possible inconsistency between the conclusions from posterior distributions of “null hypoth-
esis” parameters and those from Bayes factors for testing the hypotheses can be avoided by retaining
the full posterior distribution of the alternative model parameters and transforming from this distribu-
tion to that of the likelihood ratio between the models. The resulting inferences are consistent between
“hypothesis testing” and “estimation”, as they are in frequentist theory, and are closely related to
frequentist P -value conclusions, though these need to be recalibrated.

Our approach is quite general and widely applicable; see, for example, Aitkin, Boys and Chad-
wick (2005) for a range of examples of the standard frequentist hypothesis testing kind. This work
also extends the “nested model” approach to encompassing models, and shows that for the normal
multiple regression model, straightforward posterior simulation methods give Bayesian analogues to
backward elimination in frequentist theory.

Parametrization issues have to be considered carefully in this approach, as they do in other
Bayesian analyses and in frequentist analyses of models with nuisance parameters. A particular
strength of this analysis is the freedom to use flat, non-informative or other reference priors in the
comparisons of models in the same way they are used in posterior densities for individual model
parameters.
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International Statistical Institute, 55th Session 2005: Richard Boys, Murray Aitkin, Tom Chadwick


