
Using the Uniform Distribution in Teaching the Foundations of Statistics
Charles Rohde
Department of Biostatistics, Johns Hopkins University
615 North Wolfe Street
Baltimore, Maryland 21205 USA
crohde@jhsph.edu

1 Abstract

The uniform distribution has long been used to provide examples where standard frequentist inference
procedures are not applicable. In this expository paper we elaborate on these examples which can be
used in teaching a variety of topics in the foundations of statistical inference. The paper by Wittinghill
and Hogg (2001) discussed this subject from a frequentist viewpoint. Generalizations discussed here
include two examples due to Basu (Ghosh (1988)) which greatly expand the instructional value.

2 General Uniform (Rectangular) Model

Let X1, X2, . . . , Xn be iid with pdf

f(x; θ1, θ2) =
{

1
Δ θ1 ≤ x ≤ θ2

0 elsewhere
(1)

where Δ = θ2−θ1. It is easy to show that the minimum and maximum of X1, X2, . . . , Xn are minimal
sufficient statistics for θ1 and θ2. The joint density of Y1 and Yn is given by

f(y1, yn; θ1, θ2) =
n(n − 1)(yn − y1)n−2

(θ2 − θ1)n
θ1 ≤ y1 ≤ yn ≤ θ2 (2)

We note that the minimal sufficient statistic is not complete and that the maximum likelihood
estimators of θ1 and θ2 are given by θ̂1 = y1 and θ̂2 = yn.

The joint likelihood function for θ1 and θ2 is thus

f(y1, yn, θ1, θ2) =
1

(θ2 − θ1)n
θ1 ≤ y1 ≤ yn ≤ θ2 (3)

and the profile likelihoods for θ1 and θ2 are

Lp(θ2) =
[
yn − y1

θ2 − y1

]n

θ2 ≥ yn andLp(θ1) =
[
yn − y1

yn − θ1

]n

θ1 ≤ y1 (4)

3 Special Case 1: Uniform θ − ρ, θ + ρ

3.1 ρ Known

This example is discussed in Cox (2006) and various other places. Let θ1 = θ − ρ and θ2 = θ + ρ then
we have that the joint density is

f(y1, yn; θ) =
n(n − 1)(yn − y1)n−2

(2ρ)n
θ − ρ ≤ y1 ≤ yn ≤ θ + ρ (5)
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It follows that the (relative) likelihood function is

L(θ) = 1 yn − ρ ≤ θ ≤ y1 + ρ (6)

i.e. all values of θ in the interval yn − ρ, y1 + ρ are equally supported by the data.

For the special case where ρ = 1/2 it is easy to show that [Y1, Yn] is a 100
(
1 − 1

2n−1

)
confidence

interval for θ. If we take n = 5, y1 = .01 and yn = .99 then the 100(1 − 1
16 )% = 93.75% confidence

interval for θ is .01 to .99. But with these values of y1 and yn we are certain that .49 ≤ θ ≤ .51 and
yet our 93.75% confidence interval is .01 ≤ θ ≤ .99. From ?.

The distribution of the range R = Yn − Y1 is given by

fR(r) =
n(n − 1)rn−2(2ρ − r)

(2ρ)n
0 ≤ r ≤ 2ρ (7)

and it follows that R is ancillary for θ. As Cox (2006) points out it is imperative to condition on this
ancillary statistic.

3.2 ρ Unknown

In this case the maximum likelihood estimate of ρ is ρ̂ = (yn − y1)/2 with density function

fρ̂(t) =
n(n − 1)tn−2(ρ − t)

ρn−1
0 ≤ t ≤ ρ (8)

This does not depend on θ so it can be used as a marginal likelihood for ρ. This marginal likelihood
is not the same as the profile likelihood for ρ which is proportional to 1/(ρn for ρ ≥ yn. We thus have
a simple example of a marginal likelihood differing from a profile likelihood. Which to use is an open
question.

4 Special Case 3: Basu Example 1

Suppose now that θ1 = θ and θ2 = 2θ. Then the joint density is given by

[f(y1, y2; θ) =
n(n − 1)(yn − y1)n−2

θn
(9)

for θ ≤ y1 ≤ yn ≤ 2θ. The maximum likelihood estimate of θ is θ̂ = yn/2 and hence the likelihood
function is

L(θ; y1, yn) =

[
θ̂

θ

]n

;
yn

2
≤ θ ≤ y1 (10)

The minimal sufficient statistic for θ is again the minimum and and the maximum of the order statistics
and the minimal sufficient statistic is not complete. An ancillary statistic is Yn/Y1

Using results in the appendix the mean square error of the maximum likelihood estimator is given
by

MSE(θ̂) =
[

1
2(n + 1)(n + 2)

]
θ2 (11)

so that θ̂n is consistent. Also note that

P

{
Wn = n(θ − θ̂n) ≤ w

}
= 1 −

(
1 − 2w

nθ

)n

(12)
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so that Wn converges in distribution to an exponential rather than a normal distribution.

Another estimator for θ is Y1 which is also consistent since its mean square error is

MSE(Y1) =
2θ2

(n + 1)(n + 2)
(13)

The ratio of the mean square error of the estimator Y1 to that of the MLE is 4. Following Basu
(Ghosh (1988)) the ratio of the mean square error of the estimator θ̃ = (4θ̂n + Y1)/5 to that of the
maximum likelihood estimator is

MSE(θ̃n)

MSE(θ̂n)
=

12
25

(
1 + 1

2n

1 + 1
n

)
(14)

which tends to 12/25 as n → ∞ i.e. the MLE has asymptotic relative efficiency of 12/25, slightly less
than 50%. Thus we have a simple example of a non-efficient maximum likelihood estimator.

The distribution of the range R = Yn − Y1 is given by

f(r; θ) =
n(n − 1)rn−2(θ − r)

θn
for 0 < r < θ (15)

U = R/θ has a Beta(n − 2, 1) distribution and hence is a pivot. Hence we can find u1 and u2 such
that P(u1 ≤ U ≤ u2) = 1 − α and a 100(1− α)% confidence interval for θ is given by(

R

u2
,

R

u1

)
(16)

which can be compared to the likelihood interval.

5 Special Case 4: Basu Example 2

Suppose that θ1 = θ and θ2 = θ2 The joint density is now given by

f(y1, y2; θ) =
n(n − 1)(yn − y1)n−2

[θ(θ − 1)]n
(17)

for θ ≤ y1 ≤ yn ≤ θ2. It follows that the maximum likelihood estimator is θ̂ =
√

yn and that the
(relative) likelihood function is

L(θ; y1, yn) =

[
θ̂(θ̂ − 1)
θ(θ − 1)

]n √
yn ≤ θ ≤ y1 (18)

There is no ancillary statistic in this case.

6 Special Case 5:Uniform (0, θ)

In this case the minimal sufficient statistic is Yn, the maximum of the Xi’s. Its distribution is complete.
The maximum likelihood estimator of θ is Yn which, from the appendix has expected value and variance

E(Yn) =
nθ

n + 1
V(Yn) =

nθ2

(n + 1)2(n + 2)
(19)
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Note that θ̂ is consistent but with a rate of order n rather than the usual
√

n associated with regular
maximum likelihood estimators. It is easily shown that Yn/θn is a pivot which can be used to construct
a 100(1− α)% confidence interval for θ of the form

{θ : yn ≤ θ ≤ yn/α1/n} (20)

7 Appendix

7.1 Moments

Letting Δ = θ2 − θ1 the expected values, variances and covariances of Y1 and Yn are given by

E(Y1) = Δ
n+1 + θ1 ; V(Y1) = nΔ2

(n+1)2(n+2)

E(Yn) = nΔ
n+1 + θ1 ; V(Yn) = nΔ2

(n+1)2(n+2)

C(Y1, Yn) = Δ2

(n+1)2(n+2)

(21)

7.2 Asymptotics

The asymptotic distributions of the smallest and largest order statistics and the range obey the
following:

W1 = n(Y1 − θ1)
d→ exponential(θ1)

W2 = n(θ2 − Yn) d→ exponential(θ2)

W3 = n(θ2 − θ1 − Rn) d→ Gamma(2, 2(θ2 − θ1))

(22)

Moreover W1 and W2 are asymptotically independent with the above distributions.

8 RESUME

In this expository paper we indicate how the uniform distribution can provide instructive examples in
the foundations of statistics including conditioning, profile likelihood, likelihood, marginal likelihood,
reference priors and confidence intervals.
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