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1. Introduction  

If among economical phenomena exist nonlinear interconnections, they are expressed with help of 
corresponding nonlinear functions. Teaching the regression analysis for the economic science students one of 
the important topic is method of Ordinary Least Square (OLS) and their application in the nonlinear 
regression analysis. Based on experience at Latvia University of Agriculture, the illustrated approach of 
teaching of nonlinear regression topics for undergraduate students in economics is presented (Arhipova I., 
2006). Teaching statistics on regression analysis, students usually have problems with interpretation of the 
transformed regression model parameters significance (Arhipova I., Balina S., 2004). The tasks of teaching 
using OLS in the nonlinear regression analysis are discussed. 

Models which are nonlinear in parameters, in sense, that by suitable (log) transformation the models 
can be made linear in parameters. In this case method of Ordinary Least Square (OLS) has been used for 
transformed equations. However, it is possible that the stochastic term has different variability related to 
dependent variable: additive or more random and unpredictable. Depending on the stochastic term variability 
the nonlinear models can be intrinsically linear (in-parameter) regression models (in the sense that by 
suitable (log) transformation the models can be made linear in the parameters) and can be intrinsically 
nonlinear in parameters.  

If for the linear models and models nonlinear in variables the least-squares criterion of minimization 
has been applied to initial (original) variables, then for the models nonlinear in parameters the least-squares 
criterion of minimization it has to be applied to transformed variables, for example LnY. However, the 
parameters estimation for the transformed models OLS is biased. It means that, although nonlinear models 
can be transformed into linear regression models and can be estimated by OLS, we have to be careful about 
the properties of the stochastic residual term that enters these models. As the preceding analysis shows, it is 
necessary to pay attention to the residual term in transforming a model for regression analysis. Otherwise, a 
formal application of OLS to the transformed model will not produce a model with correct statistical 
properties. The examples of the different nonlinear models and the application of OLS are considered, as 
well the transformed models estimated parameters has been compared. 

 
2. The least-squares criterion of minimization for linear and nonlinear models 

Consider the following regression model (1). 

i
X

i
iY εββ ⋅⋅= 21  (1) 

Models like (1) are intrinsically linear (in-parameter) regression models in the sense that by suitable 
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(log) transformation the models can be made linear in the parameters β1 and β2 (Note: Model is nonlinear in 
β1 and β2). In this case we assume that that the error variability isn’t constant at all Xi, that is, that the error 
isn’t additive. Most likely, there is more random and unpredictable fluctuation at the different levels of Xi. 
We assume that (2) 

01 == ∑∏ ii Lnor εε  (2) 
Taking the logarithms on the both sides of the equation (1), we obtain equation (3). 

iii LnLnXLnLnY εββ ++= 21  (3) 
Using OLS for the sample regression function under the minimum criterion (4) 

∑ −− 2
21 )( LnbXLnbLnY ii  (4) 

the process of differentiation yields the following normal equations (5) for estimating β1 and β2: 
 (5) 

Solving the normal equations simultaneously, we obtain (6) 

 (6) 

Let 0=X , than (7) 

∑⋅= iLnY
n

Lnb 1
1  or n

nYYYb ...211 ⋅⋅=  (7) 

It means that parameter β1 is the geometric mean of variable Y. To use the classical normal linear 
regression model, we have to assume that Lnεi ∼ N(0, σ2). Therefore, when we run the regression (3), we will 
have to apply the normality tests to the residuals obtained from this regression (Gujarati Damodar, N., 1995). 

Now consider the following regression model (8). This model is intrinsically nonlinear in parameter. In 
this model we assume that the error variability is independent of Xi, that is, that the amount of residual error 
variability is the same at any Xi. 

i
X

i
iY εββ +⋅= 21  (8) 

Using OLS for the sample regression function under the minimum criterion (9) 

∑ ⋅− 2
21 )( iX

i bbY  (9) 
the process of differentiation yields the following normal equations (10) for estimating β1 and β2: 

 (10) 

It isn’t possible to solve these normal equations analytically, and in this nonlinear case, nonlinear 
ordinary least-squares estimation can be performed iteratively using a linearization of the model with respect 
to the parameters. It is clear, that the parameters β1 and β2 estimation have got from the minimum criterion 
(8) are biased from the estimation of the parameters β1 and β2 have got from the minimum criterion (4).  

We have to be careful about the properties of the stochastic error term that enters this model. For 
hypothesis testing, we have to assume that for the model (8) stochastic residual term εi follows the normal 
distribution. But for the model (1) and its statistical counterpart (3) we have to assume that Lnεi ∼ N(0, σ2) 
and respectively stochastic error term εi must follows the log-normal distribution with mean (11) and 
variance (12): 

22σe  (11) 

)1(
22

−σσ ee  (12) 
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3. Graphical application of OLS to the transformed model 
Let examine the trend in Latvia income and identify the impact of income changes on private 

consumption distribution. Analysis is based on gross private consumption and average income per capita 
Latvia Central Statistical Bureau data for the time period from 1996 to 2005 in real 2000 year prices for the 
different regions of Latvia (Statistical Yearbook of Latvia, 2006). The following hypothesis is chosen for 
regression analysis: gross private consumption distribution depends on average income per capita. In this 
task special attention is paid to the interpretation of linear and transformed models parameters. 

The relationship between consumption and income is one of the most important issues in 
macroeconomic model building and forecasting (Takala K., 2001). The following model was chosen for the 
consumption modeling depends on income (13), where Yi is Latvia gross private consumption in mln LVL 
and Xi is the average income per capita in LVL: 

iii XY εβ β ⋅⋅= 2
1  (13) 

Taking the logarithms on the both sides of these equations, we obtain equation (14). 

iii LnLnXLnLnY εββ ++= 21  (14) 
Using OLS for the sample regression function under the minimum criterion (15) 

∑ −−= 2
211 )( ii LnXbLnbLnYZ  (15) 

the following parameters β1 and β2 estimations were obtained (16): 
 (16) 

The regression results show that parameters Lnβ1 and β2 are both significant (p-value<0,05) and gross 
private consumption is depended on average income per capita. The slope parameter β2 measures the 
elasticity of Y with respect to X, that is, the percentage change in Y for a given percentage change in X. From 
these results we see that implying that for a 1 percent increase in the real average income per capita, the 
gross private consumption increases by about 0,78 percent (figure 1). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Consumption and income relationship using models with additive and unpredictable residual 
term 

 
Let assume, that the following model was chosen for the consumption modeling (17): 

iii XY εβ β +⋅= 2
1  (17) 

78,095,79 2
38,4

1 === beb
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Using OLS for the sample regression function under the minimum criterion (18) 

∑ ⋅−= 2
12 )( 2b

ii XbYZ  (18) 
the following parameters β1 and β2 estimations (figure 1) were obtained by the iteration process (19): 

 (19) 
The conclusion is that both minimum criterions Z1(b1;b2) (15) and Z2(b1;b2) (18) have biased minimum 

solutions (figure 2). The problem is that when we run the regression (13), we will have to apply the OLS for 
the intrinsically linear (in-parameter) regression model, but when we run the regression (17) than we will 
have to apply the OLS for the model intrinsically nonlinear in parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The comparison of the models minimum criterions solutions 

 
4. Conclusions 

The application of OLS allows the students to obtain clear interpretation of the statistical models as 
well as to help them better understand the transformed models parameters interpretation. Students get clear 
explanation about the OLS field of usage in the tasks of nonlinear regression, as well the concepts about the 
statistical properties of transformed models. The preceding analysis demonstrates for students the properties 
of the stochastic residual term that enters these transformed models. 
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