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Abstract:    mathStatica is a general toolset for doing exact (symbolic) mathematical statistics with a
computer algebra system. It provides automated statistical operators  for taking expectations,  finding
probabilities,  deriving  transformations  of  random  variables,  finding  moments,  order  statistics,
cumulative  distribution  functions,  characteristic  functions  etc  –  all  for  arbitrary  user-defined
distributions. mathStatica  v1 accompanies the book: Rose and Smith (2002), Mathematical Statistics
with Mathematica, Springer-Verlag. 
This  paper  illustrates  how  mathStatica  can:  free  up  lecture  time  by  reducing  the  need  to  teach
laborious and repetitive methods;  free students from dreary and monotonous calculations;  free both
the  student  and  researcher  to  experiment  and  play  with  higher-order  concepts  in  real-time;  and  for
appropriate  classes  of  problems,  significantly  change  the  notion  of  what  is  difficult,  what  one  can
reasonably  solve,  how one solves  it, and perhaps  even the notion of  what  is publishable.  We argue
that  the  shift  from  the  traditional  numerical  approach  to  a  symbolic  approach  has  much  broader
parallels,  namely to an evolving  epistemology  of statistical  knowledge  … essentially  a shift  from a
19th  C database conception of knowledge to an algorithmic one.

Introduction
The  use  of  computer  software  in  statistics  is,  of  course,  far  from  new  –  there  already  exist

hundreds  of  statistical  computer  programs.  However,  existing  programs  almost  always  take  an
essentially  numerical / graphical  view  of  the  world.  By  contrast,  the  mathStatica  software  package
has  been  created  with  a  symbolic  engine  constructed  on  top  of  Mathematica’s  computer  algebra
system.  Living  in  a  numerical  versus  symbolic  world  is  not  merely  an  issue  of  accuracy.  Nor  is  it
merely  about  approximate  (numerical)  versus  exact  (symbolic)  solutions.  More  importantly,  a
symbolic  approach  to  computational  statistics  significantly  changes  what  one  can do,  and how one
does it. This paper illustrates such concepts over 4 sections, namely: (1) Freedom from hard labour,
(2)  Expanding  the  set  of  problems  that  one  can  solve;  (3)  The  evolving  epistemology  of statistical
knowledge; and finally (4) Is that the right answer, Dr Faustus?

1        Freedom from hard labour
A symbolic  approach  to  computational  statistics  can  make  solving  problems  both  easier  and

faster,  often  dramatically  so,  in  the  same  way  that  using  a  pocket  calculator  is  easier  than  using  a
slide  rule  or  log  book,  for  the  class  of  problems  for  which  such  tools  are  relevant.  In  particular,  a
symbolic  toolkit  can  free  one  from  laborious  mechanical  tasks  (e.g.  teaching  integration  by  parts)
which are often of little statistical interest in their own right. It seems inevitable that the teaching of
techniques that can be automated has the same future as the teaching of long division. This transition
from  laborious  and  repetitive  mechanics  to  simple  automation  means  that  one  can  ideally  use  the
time  thus  saved  to  either  explore  higher-order  concepts,  or  trying  to  solve  the  remaining  subset  of
problems that do not yield so easily to the pleasures of automation.
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          A General Toolkit
mathStatica adds over 100 new functions to Mathematica. But most of the time, we can get by

with  just  a  few  of  them.  Importantly,  the  tools  all  operate  on  general  and  arbitrary  user-specified
pdf's,  not  just  standard  built-in  distributions.  To  illustrate,  let  us  suppose  that  random  variables  X
and Y  have a Gumbel bivariate Exponential distribution with joint density f Hx, yL:

f Hx, yL = ‰-2 Hx+yL H‰x+y + aH‰x - 2L H‰y - 2L L
with domain of support x > 0, y > 0, where parameter a is such that -1 < a < 1. We enter this as:  

f = ‰-2 Hx+yL H‰x+y + a H‰x - 2L H‰y - 2L L;
domain@fD = 88x, 0, ¶<, 8y, 0, ¶<< && 8-1 < a < 1<;

Here is a plot of f Hx, yL when a = -0.8:
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Here is the joint distribution function, namely PHX § x, Y § yL:
Prob@8x, y<, fD
‰-2 Hx+yL H-1 + ‰xL H-1 + ‰yL H‰x+y + aL

Here is CovHX, Y L, the covariance between X and Y :

Cov@8x, y<, fD
a
ÅÅÅÅ
4

More generally, here is the variance-covariance matrix:

Varcov@fD
i
k
jjjj
1 aÅÅÅ4
aÅÅÅ4 1

y
{
zzzz

Here is the marginal density of X:

Marginal@x, fD
‰-x

Here is the conditional density of Y , given X = x:

Conditional@y, fD
‰x-2 Hx+yL H‰x+y + H-2 + ‰xL H-2 + ‰yL aL
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Here is the bivariate moment generating function E@‰ t1  X + t2  Y D:
mgf = Expect@ ‰t1  x + t2  y, fD

— This further assumes that:  8t1 < 1, t2 < 1<
4 - 2 t2 + t1 H-2 + H1 + aL t2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + t1L H-1 + t1L H-2 + t2L H-1 + t2L

Here is the product moment E@X2 Y 2D: 
Expect@x2  y2, fD

4 +
9 a
ÅÅÅÅÅÅÅÅ
4

Multivariate  transformations pose no problem either.  For instance,  let U = YÅÅÅÅÅÅÅÅÅÅÅ1+X  and V = 1ÅÅÅÅÅÅÅÅÅÅÅ1+X
denote  transformations  of  X  and  Y ,  to  U  and  V .  Then,  using  mathStatica’s  Transform  function,
we can find the joint pdf of random variables U and V , as follows:

TransformA9u ã
y

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

, v ã
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

=, fE

‰
-2-2 u+vÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅv I4 ‰ a - 2 ‰

1ÅÅÅÅv a - 2 ‰
u+vÅÅÅÅÅÅÅÅv a + ‰

1+uÅÅÅÅÅÅÅÅv H1 + aLM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

v3

Example: Products of Random Variables  (piecewise functions)
Let random variable X ~ParetoHa, bL with pdf f HxL:

f = a ba x-Ha+1L; domain@fD = 8x, b, ¶< && 8a > 0, b > 0<;
and let random variable Y  have a standard Triangular distribution with pdf gHyL defined in piecewise
form:

g =
Ø
±


2 yÅÅÅÅÅÅ
c

0 § y § c
2 H1-yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1-c

c < y § 1
; domain@gD = 8y, -¶, ¶< && 80 < c < 1<;

We seek the pdf of the product of the above random variables X  and Y , i.e. the pdf of V = X Y . The
solution is a piecewise pdf, and it can be simply obtained with mathStatica v2 as:

TransformProduct@v, 8f, g<D

Ø

±



2 a vÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2+aL b2 c 0 < v < b c

2 a Ib2 c H b cÅÅÅÅÅÅv La-H2+aL b v+H1+aL v2M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2+3 a+a2L b2 H-1+cL v b c < v < b

2 a ba H-1+c1+aL v-1-a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2+3 a+a2L H-1+cL v > b
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2        Expanding the set of problems that one can solve
A symbolic  toolset  potentially  enables  one to derive  completely  new results  in real-time.  We

illustrate with three examples that take just a few seconds to derive here, but which would require an
enormous amount of careful work to do manually.
           Example: Order statistics with non-identical distributions

Let  us  suppose  we  have  three  completely  different  distributions  defined  over  three  different
domains  of  support.  In  the  following,  f HxL  is  the  pdf  of  an  ExponentialHlL,  gHxL  is  the  pdf  of  a
standard Normal, and hHxL is the pdf of a UniformH-1, 1L random variable:

f =
1
ÅÅÅÅ
l

‰- xêl ; domain@fD = 8x, 0, ¶< && 8l > 0<;

g =
‰- x2ÅÅÅÅÅÅÅ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

; domain@gD = 8x, -¶, ¶<;

h =
1
ÅÅÅÅ
2
; domain@hD = 8x, -1, 1<;

mathStatica’s OrderStat  function (v2) finds the pdf of any order statistic given a random sample,
irrespective  of  whether  the  values  are  drawn  from  identical  or  non-identical  distributions.  As  a
simple  illustration,  let  us  find  the  pdf  of  minHX, Y , ZL,  when  X ~ ExponentialHlL,  Y ~ NormalH0, 1L
and Z ~ UniformH-1, 1L. The pdf of minHX, Y , ZL is simply the pdf of the first order statistic:

OrderStat@1, 8f, g, h<D
Ø

±



‰- x2ÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
x § -1

- ‰- x2ÅÅÅÅÅÅÅÅ2 H-1+xLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!!!!2 p

+ 1ÅÅÅ4 ErfcA xÅÅÅÅÅÅÅè!!!!2 E -1 < x § 0

‰- 1ÅÅÅÅ2 x Ix+ 2ÅÅÅÅl M J-"######2ÅÅÅÅp H-1+xL l+‰
x2ÅÅÅÅÅÅÅÅ2 H1-x+lL ErfcA xÅÅÅÅÅÅÅÅè!!!!

2
EN

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 l 0 < x < 1

Here  is  a  plot  of  the  pdf  we  have  just  derived  (with  l = 1).  One can,  of  course,  easily  ‘check’  the
solution using Monte Carlo methods. 
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Example: Find the covariance between sample moments
Let HX1 , …, Xn L denote a random sample of size n drawn from a population random variable X. Find

the covariance between the sample mean 1ÅÅÅÅÅn  ⁄
i=1

n
Xi    and  ik

jjj 1ÅÅÅÅÅn  ⁄
i=1

n
Xi

3y
{
zzz ik
jjj⁄

i=1

n
Xi

2y
{
zzz.

Solution:  The  lingua franca  for  such  problems  is  the  power sum sr = ⁄i=1
n Xi

r .  Using  this  notation,
we  are seeking  CovI s1ÅÅÅÅÅÅÅÅn , s3  s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn M = m1, 1 I s1ÅÅÅÅÅÅÅÅn , s3  s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn M,  i.e.  the  covariance  is  just  the 81, 1<th  product
central moment. The solution with mathStatica is then simply:

CentralMomentToCentralA81, 1<, 9 s1
ÅÅÅÅÅÅÅ
n
,

s3  s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

=E

H-1 + nL m3
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n

+
H-1 + nL m2 m4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n
+

m6ÅÅÅÅÅÅÅ
n

Example: Find the mixture distribution PoissonHLL Ì
L

InverseGaussianHm, lL

Let random variable X have the conditional distribution X … HP = pL ~ PoissonHpL with pmf f HxL:

f =
‰-p px
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

;

domain@fD = 8x, 0, ¶< && 8p > 0< && 8Discrete<;
where parameter P, rather than being fixed, is instead a random variable P ~InverseGaussianHm, lL:

g = $%%%%%%%%%%%%%%%%l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p p3

ExpA-l
Hp - mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m2  p

E; domain@gD = 8p, 0, ¶< && 8m > 0, l > 0<;

We seek the parameter-mix distribution  EP@ f Hx » P = pLD, and the solution is simply:

Expect@f, gD

‰lêm "#####2ÅÅÅp
è!!!

l H 2ÅÅÅl + 1ÅÅÅÅÅm2 L 1ÅÅÅÅ4 H1-2 xL
BesselKA 1ÅÅÅ2 - x,

è!!!!!!!!!!!!!!!!!!!!!!!!!
l Hl+2 m2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x!

This  is  known  as  Holla’s  distribution.  The  diagram  below  plots  the  mixture  pmf  we  have  just
derived,  when  m = 3  and  l = 10.  The  same  approach,  of  course,  applies  to  deriving  any  arbitrary
desired mixture.
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3       The evolving epistemology of statistical knowledge
As  in  most  fields,  statistical  knowledge  has  developed  in  a  tree-like  manner  consisting  of

main  trunks  with  branches  shooting  off  outwards,  slowly  filling  out  knowledge  space.  Such
knowledge  trees – whether  represented  by excellent  encyclopaedic  texts  such as the Johnson,  Kotz,
Balakrishnan  et  al  volumes  on  statistical  distributions,  or  represented  by  search  engines  that  index
and search published journal papers  –  all tend to work brilliantly provided that the topic that one is
trying to  find already exists  somewhere  on the  tree … if  so,  one can simply pluck the desired  fruit
from the appropriate branch. 
This concept of knowledge has a structure somewhat like a 19thC museum ... that is to say, it works
splendidly  for  classifying  your  shell  collection,  but  the  method  fails  as  soon as  one  is interested  in
something  that  lies  outside  the  tree  …  something  outside  what  is  ‘known’.  And  in  the  arena  of
education  and  research,  one  is,  of  course,  fundamentally  concerned  with  the  quest  for  new
knowledge.  Almost  by  definition,  research  is  the  white  space  that  lies  outside  the  ‘known’  tree  of
knowledge. 

The  beauty  of  a  symbolic  toolkit  is  that  it  can  escape  the  19thC  static  concept  of  knowledge  – in
particular,  a  symbolic  toolkit  allows  one  to  construct  general  algorithms  of  knowledge,  rather  than
just  collecting  facts  of  knowledge.  The symbolic  approach is  a  dynamic,  live,  elegant,  flexible  and
arguably  purer  concept  of  knowledge;  it  is  almost  the  antithesis  to  the  huge  collections  of  tables,
volumes, appendices etc that one finds attached to books. This flexibility – this ability to go, as they
say  in  Star  Trek,  where  no-one  has  gone  before  –  makes  the  symbolic  approach  an  indispensable
part of any toolkit, for anyone in the field of solving new problems.

4        Is that the right answer, Dr Faustus?
As  soon  as  one  has  a  tool  that  can  solve  problems  that  have  not  been  solved  before  …

problems  for  which  no  reference  exists  …  the  obvious  question  that  arises  is:  “Is  that  the  right
answer?”.  The joy of computerised  problem solving is arguably somewhat Faustian ... the more one
uses such tools, the more reliant one becomes on them, and the more dependent one becomes on the
accuracy of the software. This is relevant because software is not always infallible! For example, for
problems  involving  integration,  symbolic  software  can  sometimes  yield  solutions  that  are  valid
under  different  assumptions  than  one  intended,  or  which  might  simply  be  plain  wrong.  Naysayers,
Luddites  and general  followers of the knights who say ‘Ni’ might immediately  respond:  “Ni, ni …
tis a magic black box – oooer – never trust a black box.”

There are at least three replies:

First: books are also black boxes
In case the  revelation  that  symbolic  software  is  not  free  of  error  sends  some readers  running

back to trusted reference texts, it should be said that many reference books are essentially extremely
primitive  black  boxes  –  in  effect,  manual  look-up  tables  –  that  equally  produce  results  as  if  by
magic.  Even though texts might  provide a reference to a source,  this cannot  remedy that the source
itself may sometimes be faulty, or that the result may have been typeset incorrectly, or that the proof
may  be  simply  wrong,  or  that  most  people  do  not  practically  have  the  time  or  ability  to  check  a
complicated  proof should it  be provided.  All this is just as true for  books as it  is true for  numerical
software,  as it is indeed for symbolic  software. But the symbolic  approach has two key advantages,
namely …

Second: exact benchmarks
In  contrast  to  numerical  black  boxes,  there  exist  obvious  exact  benchmarks  for  symbolic

toolsets.  A  symbolic  toolkit  should  clearly  be  able  to  replicate  standard  known  textbook  problems
without  error. In designing mathStatica’s algorithms, the software has been tested against  thousands
of textbook problems.  What is surprising in running such checks is that one discovers  that even the
most respected reference texts are peppered with errors. As a quick example, consider the k-statistic
kr  which  is  an  unbiased  estimator  of  the  r th  cumulant  kr ;  that  is,  E@krD = kr ,  for  r = 1, 2, …  .  In
1928,  Fisher  published  the  product  cumulants  of  the  k-statistics,  which  are  now listed  in  reference
bibles  such as Stuart  and Ord (1994). Here we use mathStatica  to obtain the solution to the product
cumulant k2, 2 Hk3, k2L:
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bibles  such as Stuart  and Ord (1994). Here we use mathStatica  to obtain the solution to the product
cumulant k2, 2 Hk3, k2L:

CumulantMomentToCumulant@82, 2<, 8KStatistic@3DP2T, KStatistic@2DP2T<D
288 n k2

5
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

288 H-23 + 10 nL k2
2 k3

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

360 H-7 + 4 nL k2
3 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 +

36 H160 - 155 n + 38 n2L k3
2 k4ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

36 H93 - 103 n + 29 n2L k2 k4
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +
24 H202 - 246 n + 71 n2L k2 k3 k5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL3 n +

2 H113 - 154 n + 59 n2L k5
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +
6 H-131 + 67 nL k2

2 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-2 + nL H-1 + nL2 n +

3 H117 - 166 n + 61 n2L k4 k6ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL3 n2 +
6 H-27 + 17 nL k3 k7ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL2 n2 +

37 k2 k8ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + nL n2
+

k10ÅÅÅÅÅÅÅÅÅ
n3

By contrast,  the solution derived by Fisher in 1928 and which has been continuously published ever
since [see Stuart and Ord (1994, eqn 12.70)] turns out to be non-trivially false.

Third: multiple methodologies
The  best  way  to  check  one’s  work  is  to  replicate  a  result  via  a  completely  different

methodology.  Ideally,  one  should  use  a  different  symbolic  method.  More  typically,  alternative
symbolic methods may not exist or may not be solvable / tractable, in which case a quick numerical
or Monte Carlo check is the best practical alternative … Of course, a numerical check does not (and
cannot) formally prove that a symbolic solution is correct (other  than providing confidence in some
statistical  sense of  'proof').  But,  a numerical  check does provide  an extremely  simple  way to prove
that  a  solution  is  false  (i.e.  that  something  has  gone  horribly  wrong).  Numerical  checks  act  like  a
filtering  system  that  eliminates  false  answers.  To  illustrate  the  idea,  let  us  suppose  that
X ~ Chi-squaredHnL with pdf f HxL:

f =
xnê2-1  ‰-xê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2nê2  G@ nÅÅÅ

2
D ; domain@fD = 8x, 0, ¶< && 8n > 0<;

We wish to find the mean deviation EA … X - m … E. Here is the solution derived with mathStatica:

m = Expect@x, fD; sol = Expect@Abs@x - mD, fD
4 Gamma@1 + nÅÅÅ2 ,

nÅÅÅ2 D - 2 n Gamma@ nÅÅÅ2 ,
nÅÅÅ2 D
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G@ nÅÅÅ2 D

By  contrast,  if  we  refer  to  an  excellent  reference  text  like  Johnson  et  al.  (1994,  p. 420),  the  mean
deviation is listed as: 

JKBsol =
‰- nÅÅÅÅ2 nnê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

nÅÅÅÅ2 -1 G@ nÅÅÅ
2
D
;
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Let us check if the two solutions are the same, by choosing a value for n, say n = 6:

8sol, JKBsol< ê. n Ø 6.

82.6885, 1.34425<
Clearly,  at  least  one  of  the  solutions  is  wrong!  Since  our  original  attempt  was  symbolic,  we  shall
now  use  a  numerical  method  to  calculate  the  answer  when  n = 6.  Here  is  the  mean  deviation  as  a
numerical integral when n = 6: 

NIntegrate@ HAbs@x - mD fL ê. n Ø 6., 8x, 0, ¶<D
2.6885

The numerical answer suggests that mathStatica’s symbolic solution is correct, and it proves that the
known textbook solution is false. Further experimentation reveals that the solution given in Johnson
et  al.  is out  by  a  factor  of  two.  This  again  highlights  how important  it  is  to check  all  output,  from
both reference books and computers.

CODA
This paper sets out to provide a tasting of how a symbolic toolkit can benefit the learning and

research  experience.  Symbolic  tools  make  it  dramatically  easier  to  solve  problems  for  which  they
are  intended.  But,  more  importantly,  symbolic  tools change  what  one  can do,  and how one does  it
– moving  the research  process  from a laborious  mechanical  path to an almost  real-time  exploration
of the unknown. When automated tools can solve new problems that have never been solved before,
they give rise to an evolving epistemology  of statistical knowledge … a shift from tables, reference
books and databases towards a live, flexible, algorithmic concept of knowledge. 
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