IASE/ISI Satellite, 1993: Manfred G. Borovcnik

From Brunelli, Lina & Cicchitelli, Giuseppe (editors). Proceedings of tlge F(‘:lrst Sczntt:)iliger
Meeting (of the IASE). Universita di Perugia (Italy), 1994.' Pa_ges 355-3_6 t: : OFyglge ok to.
University of Perugia. Permission granted by Dlpaﬂmento di Scwnze Statis 1ScEe ob -
make this book freely available on the Internet. This pdf file is from the 1A 1WePs1 e e
http://wmv.stat‘auckland.nz/~iase/publications/m'oc1993._ Coples of the complete Proceeding
are available for 10 Euros from the ISI (International Statistical Institute). See

htto://isi.cbs.nl/sale-iase.htm for details.

335

INTUITIVE STRATEGIES FOR TEACHING STATISTICS

Manfred G. Borovenik )
Department of Mathematics, University of Klagenfiore
Sterneckstraffe 17, A-9020 Klagenfirt, Austria

1. Trends in teaching stochastics

Statistical inference is & methodology which allows one to generalize
findings from data. Thereby data can relate to a small subser, a sample of
a bigger populadon; or they can relate to a data generating process which
has been observed for a specific period of time. In both cascs it is
probability models and the concept of random sample which goarantees
that the generalization can be done with some accuracy and with some
degree of uncertainty. This is why statistical inference has been entirely
based on probability theory, also in teaching - at lease in France and in
German speaking countries. However, probability is mathemartically
oriented, difficult, and it takes a long time to learn,

Simplifying probability theory. The increasing demand for skills to
apply statistics required this problem to be addressed. Thus in the carly
1980s there was an endeavour tw simplify access to inference. i) By
simplifying probability theorems through simularion, e.g. Watkins (1981)
or Travers (1981). Probability is not developed as a mathematical theory
for the student; instead those relations needed for inference are motivated
by simulating the underlying assaumptions. This enables a direct approach
from deseriptive statistics to inference. ii) By reducing probability theory
to samples from a finite population, the nonparamerric approach from
Noether (1973). Probability is not developed as a theory for the student.
The given data are muldiplied by systematic permutations to yield the
population. The inference then is based on whether the value of the test
statistic for the given data is among the extreme values of this scacistic for
all the possible permutarions. iii) By motivating methods through the
contexe to which they are 1o apply, e.g. Holmes (1983) or Kapadia (1983},
Many methods comply with common sense when they are bound to a
specific subject matter rather than taught as abstract proceduces.

Reduction 1o data analysis. The lace 1980s are signified by a movement
back to basics, back to data analysis. The aim of this scrand was to
climinate probability theory completely. at least in the carlier stages of
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teaching. It developed a new type of generalizing results from data which
is not based on the random sample argument. The development goes back
to Tukey’s Exploratory Data Analysis (1977) which investigates dara
without a theory of probability. Herein, data are analyzed in a detective
manner, from various angles, by multiple methods and in an inreractive
way between the results of intermediate analyses and the analyst’s
knowledge of the subject matter from which the data originate. Bibby
(1983) and the "Statistics in Society’ course from the Open University
were firse to introduce this approach int Teaching Statistics. The
Quantitative Literacy Project combined the exploratory approach with
simulation ideas from 1986 onwards (Scheaffer, 1991). Recent
developments, however, reduce this approach more and more to exploring
data for its own sake: Gordon and Gordon (1992) summarize the state of
the art,

Stochastic thinking. There is nothing to say against rthe exploratory
approach; however, there is much to argue against reducing probability and
statistics to it and neglecting the probability part of the whole. The
psychologists Falk and Konold are the only critical voice in Gordon and
Gordon (1992) who remind us that probability establishes a distiner
approach towards thinking about reality. This approach is different from
logical and causal thinking; it is difficult and at the same time important.
Therefore teaching should clarify how it could contribute to solve real
problems. The author will focus upon showing why this view on reality is
important and how one can teach it successfully.

2. Specific problems of stochastics and its teaching

No learning by trial and error. Trial and error is a fundamental type of
learning which accompanies us from our earliest days. This kind of :
learning is also true for mathematical concepts, even for the more difficule i
ones. Some theories of learning have integrated this fact. Piaget’s !
operational stage of learning precedes the formal stage of understanding;
more refined theories develop a murtual interplay between operations and
reflections, see e.g. Defler (1984). According to this approach operations
upon a material representation of the concept allow for feedback to the
individual to revise his intuitions if necessary. Thus more refined forms of
the concept may be established in the individual’s mind. For example, the
notion of number can be established from such concrete operations. It is
not until very sophisticated levels that counterintuitive features emerge
which are not based on concrete operations. Among such relations are: i)
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subsets can have the same cardinality as the reference set; i) the rational
numbers are countably infinite even if they have no minimal distance
berween two numbers and thus are not suitable for counting.

It is the author’s thesis that this kind of learning is not possible for
probability concepts even from the very basics. Thus, this phenomenon
establishes the difficulties which subjects encounter with learning
probability. An example similar o one from Falk and Konold (1992)
will illustrate the fundamental problem that probability concepts reveal
features which allow no direct feedback. In the diagram below are two
spinners. The player has to choose one of the spinners and wins if the
pointer will stop in the sector marked with a 1. Which wheel of fortune is
the better choice? This simple question linked to the very basis of
probability has no simple answer in terms of learning by trial and error.
The choice of the worse spinner 2 may lead to success whereas the choice
of the better spinner 1 may lead to failure. The latter event, however,
immediately causes the player to speculate about the ‘reasons’ behind the
failure and may obstruct progress in concept acquisicion. Children are led
astray by the special margin of spinner 2 (at the age of 7, this author’s own
experiment). The popularity of astrological predictions shows that such
behaviour is not bound to children,

X4 Xz

Clearly, longer series of spinning would allow for the feedback needed
for concept acquisition. However, such series are usually not the focus of
our experience. Furthermore, problems turn up again when one tries to
generalize insight from repeated experiments to a single new outcome. It
remains an open question how to supply effective experiences from which
individuals can learn from trial and error that probability is a concept
useful to apply to a single case because, basically, probability is a
theoretical and not an experimental concept (see also Steinbring, 1991).

The gap between actions and reflections. There are various approaches to
mathematics education which are based on an interplay between actions
and reflections starting with Piaget; a modern version being Dérfler
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{1984). These may be interpreted as reconstructing the leatning process as
intelligent trial and error. Actions upon a material representation of the
concept in question form the ingredient of a process of reflection during
which new objects will emerge from the concrete operations. Hierarchical
steps of action - reflection - new object lead to the concept acquisition in
an increasingly complex form.

The following simple cxample shows thar probability notions are
lacking in such an operational understanding. With coin tossing, the
operation is predicting the outcome of the next toss whereas reflection
means to evaluate the weight of heads (or rtails). The result of the
reflection process may yield the relative weights of 1:1, or the probability
of 172 for heads. However, this result is of no use, at least no direct use for
the prediction problem as the operation necessitates an exact and certain
prognosis of the next outcome. For empirical evidence of this intuitive
conflict see Falk and Konold {1992). Actions and reflections are based on
different levels and the feedback between these different levels is missing
for probability.

The basic difficulties in the coin tossing context may be best
described by a mutual interplay between individual intuitions and
theoretical demands. The individual witnesses an intuitive conflict right
from the beginning as on the one hand he feels incapable of predicring the
next outcome with absolute certainty and on the other hand he deeply
desires control of that chaotic situation. At this point mathematics enters
the stage and promises to calculate randomness. Any result of this theory
will in due course be re-interpreted as a guide for action. Consequently,
mathematical statements are either overinterpreted (like the law of large
numbers used to derive the prediction of tails after five consecutive heads)
or abandoned, reestablishing e.g. causal schemes for the prediction; see
Falk and Konold (1992} for their dominance.

Mathematics offers a justification but yields no insight. Conceptual
thinking can neither be reduced to mathematics nor to its applications. To
Justify concepts necessitates modes of thoughe different from those
required to understand the concept. This might not be a problem as long
as one remains within pure mathematics but things are different when one
-applies or teaches mathematics. Then it has to be brought into che open
that a logically consistent argument to justify a concept cannot mitror all
of its features. The concept of independence, for example, is
mathematically reduced to the multiplication formula and becomes the
basic ingredient of theorems about repeated random experiments like the
law of large numbers or the central limit theorent, Independence thus gains
an important role within theory, but its matherhatical definition by no
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means affects the causal ideas individuals relate to it. In this contexr,
Freudenthal (1983) used the phrase of mathematics as turning the things
upside down,

Furthermore, the axiomatic structure of probability is not unique. The
classical approach is based on the rendency of an experiment to produce
stable relative frequencies whereas the Bayesian approach centres the theory
around the idea of probabilistic judgements in the form of a weight of
evidence. Thus, different axiomaric theories justify different intuitive
ideas and do not cover the ideas of the other position quite well.
Conditional probability for example, has a poor representation within
classical probability. Now many of the historical puzzles and paradoxes
are signified by an intermixture of intuitive ideas of both approaches.
While it may be an interesting scientific programme to develop a
selfcontained closed theory for one idea of probability, this programme
does not yield insight into the true character of probability which remains
a mixzure of different ideas. With chis in mind, Barnete (1973) tries to
reconcile the competing positions of classical and Bayesian statistics.

3. Intuitive strategies for teaching statistics

It was argued thar an operational understanding is lacking in
probability as there is no direct feedback from the level of actions to that
of reflections and vice versa. A far more promising approach to teaching
statistics is by the interplay between intuitions and theory by Fischbein
(1987). According to that, raw primary intuitions are revised by partial
theoretical inputs into secondary intuitions whereby intuitions generally
form the key to understanding and acceptance of the theory. The approach
serves to describe the specific difficulties as well as serving to design
teaching activities. For a description of the interplay in the coin tossing
context see Borovenik (1991),

Intuitive reformulation of concepts. Inner mathematical features of a
concept are only one side of concept learning. Relating these features ro
intuitive ideas of individuals will help them to understand and accepr
theorerical results which is crucial for teaching to be cffective. Some key
concepts now double the difficulties as there are inadequate related
intuitions and their mathematical representation is streamlined to a
specific form according to a theory which is far from bcing intuicive.
These difficulties will be illustrated by the Falk problem for the concept
of independence and dependence. For intuitive difficulties with these
concepts and the use of this problem in empirical research see Borovenik
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and Bentz (1991). There are a lot of related puzzles in which teaching the
usual mathematical representation will not effectively overcome the
misconceptions, as the public discussion around Marilyn vos Savant and
the Player’s Dilemma shows (Morgan ¢ 4, 1991).

The Falk problem deals with a simple urn with two white and two
black balls. The urn is thoroughly shaken, two balls are blindly drawn out
of it, one after the other without replacement. Consider two questions:

a) What is the probability that the second ball is white, given that the
first ball is white?

b} What is the probability for the first ball being white, given thac che
second is white and the colour of the first is not known?

In what follows, the event Wrefers to white balls, B to black balls; the
index describes the number of the draw. The usual solution, even if
supported by tree diagrams will not change wrong causal intuitions
because it is too formal (Borovenik and Bentz, 1991):

AW A W) W) AW W) L
Rwy) T W) 3

AR A

Intuitively there is a big difference between the timely forward
direction and the backward direction. A new urn ‘causes’ the new
probability 1/3 in the forward question a) whereas the backward question
b} s lacking in such an obvious urn. How to reformulate the representation
to make the answer and the concept intuitively more accessible?
Conditional probabilitics are simplest to introduce via odds, i.e. relative
probabilities or weights. The probability 1/3 e.g. amounts to odds of
1/3:2/3 = 1:2. A conditional bet on the first ball being white after the
second is known to be white involves comparing the relative weights for
W in the face of the information W, i.e.

W AW : PBAWY == ~= 2a12,

As odds of 4:5 yield the probability ;5. the conditional probability
in question b} is

KWAW)
AW, AW5) + (B AW~

AW 1 W) =

AW R AW W)
AW W
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Now the symmetry between forward and backward question a) and b)
is obvious. However, the full potential of this representation of conditional
probability will not unfold until the Bayes’ formula comes to che fore. In
its stmplest form Bayes’ formula deals with two prior hypotheses A and
H, with prior probabilities (), an experimental evidence £ with known
probabilities X E| H) under the two hypotheses. Bayes’ formula then gives
the posterior probabilities

. PH) - KE | H)
PN B~ Ry TRE T Hy + Kity - RET T

With odds this reads as

NE D M) RELH)
K\ B N PE Hy

posterior odds = prior odds x likelihood ratio.

Now one immediately sees that the posterior odds, the new weighting
of the hypotheses are linearly dependent on the prior weighting and the
relative likelihoods of the hypotheses under the empirical evidence. The
odds representation of Bayes’ formula shows the direct impact of the
various inputs to the final probability which dissolves many a related
puzzle. Furthermore, it shows that conditional probabilities are neither
bound to time direction, nor to causal influence; they merely reflect an
indication in summarizing the new state of knowledge in the form of a
new probability. The reason for the usual approach to conditional
probabilities being so clumsy is chat the approach is done completely
within classical probability whereas the concept is very natural within the
Bayesian probability theory; odds re-establish this natural character of the
concept. For further details and teaching consequences see Borovenik
(1992).

Teaching as clinical interview. A clinical interview is designed to reveal
an individual’s thoughts and thereby his/her comprehension of a
mathematical concept. This author believes that such an approach is
doomed to failure in its pure form as any question, any diagram, or any
social interaction will establish a theoretical input for the individual and
thus he will react to that. The individual will neither reveal everything of
his understanding nor will he remain unaffected by an input. This
dynamics, however, is not ar all crucial in teaching where an intervention is
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intentional. The difficulty in teaching is, as was stated already, to connect
the theoretical input to the pre-existing intuitive world of the individual.
It was also argued, that a direct feedback between the operational and
reflective level of a concept is missing, which obstructs learning by trial
and error. Any teaching in probability is therefore faced with the problem
of establishing links between theoretical demands and individual chought.

If such links are not supplied, the teacher might ask on the reflective
level whereas the student answers at the operational level. For example the
student might correetly evaluate the probability of 1/2 for heads but as
this gives no clue for action, hefshe might deliberately choose heads (or
tails), If the teacher asks for a justification for that choice, the student
might be completely confused because in his/her mind there is no such
justification. The confusion finally might lead to a complete breakdown
of the communication in class. Interviews might overcome this action
reflection conflict.

Another link between theory and intuitions are urns and other games.
They are a useful reference point which facilitates communication in class.
Students may casily read off numerical probabilities, calibrate their
individual scale of probability, and get insight into theoretical relations.
Utns may therefore be perceived as partial images of a restricted rheory
which help to clarify intuitions. It is useful 10 map a real situatior“onto a
suitable urn to deal with the questions. However, empirical investigations
do show that intuitions about urns are by no means uncontroversial even in
the simplest cases (Borovenik and Bentz, 1991). If used as a medium
between theory and intuitions, these inadequate associations have to be
eliminated first. During this phase of teaching, feedback to students’
thoughts is crucial and worthwhile. Teaching in the form of an empirical
interview might best help with the multifaceted idiosyncraric ideas.

The following variant of the Falk problem should illustrate the
potential of the interview approach to teaching. More than 50% of adult
students confronted with the backward question b) give the answer 1/2 and
justify it with causal arguments. To confront the inadequate causal scheme
in this context and to establish the idea of new weighting of possibilities
when further information is available, the author confronted students first
with a third draw and the event second and thied ball being white. As
drawing is without replacement, it is then logically impossible for the
first ball to be white. A first shock for the time dependent causal thinkers -
there might be logical reasons to integrate later information into the
weighting of earlier events. The harder causal thinkers needed more; the urn
was changed to 4 white and 4 black balls. Again, first ball is unknown,
second ball white - the answer was 1/2, the argument causal; second and
third ball white - 1/2 again. The urn was changed to 50 white and 50 black
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balls and subsequently the following events were presented to the students:
second ball white, second and third white, ... second to 49th white, second
to 50th ball white. In the last case it is still logically possible for the first
ball to be white but even the hardest causal thinkers had then become
shaky. They recognized that the later information must have an impact on
evaluating the first ball even if it is not logically cogent. The next step
was 10 ask when this information began to exist - after 45 subsequent white

balls, or after 6, or even when only one white ball in the second draw?
Now students saw that the conditional probability X W, | W5) has nothing

to do with causal deliberations, but merely reflects the new state of
information and thar there was new information to express in this problem.
This insight was facilitated by the interview teaching as neither scudents
nor teacher would otherwise have known of each other’s ideas.

Teaching by analogies. A conceprually difficult situation from proba-
bility is mapped onto a situation from another context in which the learner
is experienced and can deal with problems and restrictions of the results.
This can be extended to a teaching strategy; the potential will be
illustrated in the context of betting and error theory.

Historically, the development of central concepts in probability come
from studies of games of fortune, It is still possible to sharpen individual
ideas of probability using this contexe. Betting is a side scrand of today’s
curriculum and the fair prize of a game is a derived concept, namely the
expected value. A basic difficulty with expected value is that it only.
makes sense for a Jong series of games. With such a series, the empirical
mean will approximate the expectation. However, it is far from
uncontroversial that one can deduce what is the fair prize for a single bet
from that expecration. With odds, it is much easier. Odds are simply
another representation of probabilities. If the odds are 1:2 for the winning
condition then the stakes should amount to 2:1 which means that one has
the possibility to win $2 for a stake of $1, the stake being lost if the
winning condition fails to occur. For further details and more intuitive
justifications see Borovenik (1992).

It is important to state that with odds it is very natural to fix the
stakes for a single game withour solving the problem of predicting the
outcome of this game. This might overcome the misconception of many
individuals who accept probability only in cases where it predicts the
exact outcome with certainty. Odds also serve for a new introduction into
conditional probability and the Bayes’ formula as was already shown here.
The idea of the prize of the game makes various relations quite simple: if
one plays two games then the prizes should add which yields the
additivity of the expected value. For the binomial model situation of
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playing # times the same game with success probability of p, the single
prize of p adds up » times which gives np for the expected value of the

binomial distribution. The advantage of such analogies is that math-

ematical results may be perceived by the learner in advance and math-

ematics can focus on the issue of how the intuitive situation has to be made
precise and which assumptions still have to be considered.

Error theory within geodesy was the second big stream of development
for probability theory; the normal distribution and the method of
regression are intimately related to it. The Bernoulli law of large numbers
deals with the contraction of the distriburion of the (theoretical) relative
frequencies towards the unknown probability of the binomial experiment.
This is proven by Cebychev's inequality with the help of the variance of
the binomial distribution. This variance is tricky to calculate and the
result is usually not well motivated, a very bad basis for the interpretation
and acceptance of such an important theorem by the learners. There
remains in the learner’'s mind a vague idea thar the relative frequencies
converge to the underlying probability and this forms the basis of
misconceptions. An analogue law of large numbers holds for the mean of
repeated trials.

In the context of error theory, this result can be intuitively anticipared.
The analogy starts with the repeated measurement of a physical quantity «.
Too large and too small numbers will eliminate cach other if one
calculates the mean of the single measurements which leads to the mean
being a much better representation than the single measurement. To refer
this to the measurement of an unknown probability p, the single meas-
urements are 1 if the event occurs and 0 if the event fails to occur. Despite
unusual values however, the mean coincides with the usual fraction of trials
with the event 1, which is the relative frequency. Borovenik (1992) gives
details of how to develop a class experiment to get measurements and to
study the precision of the repeated measurement. The longer the series the
less scattered are the means (the relative frequencies); the procedure for
measuring p tends to get more precise if it is based on more data.

This analogy avoids some of the basic misconceptions about the
convergence of relative frequencies as it does not investigate a single
developmenc of the frequencies with increasing series; it focuses on the
distribution of the means (the frequencies) with a fixed number of
measurements and only then compares this distribution for different
numbers of data. The growing precision is to be expected within error
theory. Probability again gets a meaningful interpretation, without the
precise prediction of a single outcome as one investigates the vatiation of
measurement values (means) for different sizes of data. The process of
making things more precise will lead to the binomial distribution, the
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central limit theorem, and confidence intervals. Again, it is importang
that the analogy has enough potential o prepare a way for learners to
anticipate mathematical results. For more details about this and other
analogies see Borovenik (1992).

4. Summary

Probability is more a heuristic than a modelling description of reality.
There is no direct feedback from reality which is often so helpful for the
acquisition of concepts in other branches of mathematics. This is why
intuitive ideas gain such an important role for the teaching and learning of
probability. Intuitions can prove an obstacle to the acceprance and the
comprehension of the concepts. There is an urgent need for a representation
of mathemarics which relates it to the ideas of the learners so that they can
revise their intuitions wherever this is necessary. This paper illustrated
three strategies to help an intuitive understanding of probability.
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