IASE/ISI Satellite, 1993: Peter Nuesch

From Brunelli, Lina & Cicchitelli, Giuseppe (editors). Proceedings of the First Scientiﬁc
Meeting (of the IASE). Universita di Perugia (Italy), 1994. Pages 385-3.93.. Copyright holder:
University of Perugia. Permission granted by Dipartmento di Scienze Statistiche to the IASE to
make this book freely available on the Internet. This pdf file is from the IASE website at _
http://www stat.auckland nz/~iase/publications/proc1993. Copies of the complete Proceedings
are available for 10 Euros from the ISI (International Statistical Institute). See
http://isi.cbs.nl/sale-iase.htm for details.

385

TEACHING THE ESSENTIALS OF ELEMENTARY
PROBABILITY THEORY OR HOW NOT TO CALCULATE
THE MEAN OF THE NEGATIVE
HYPERGEOMETRIC DISTRIBUTION

Peter Niiesch
Federal Institure of Technology, Mathematics Departiment
MA-Ecublens, CH-1015 Lausanne, Switzerland

1. Introduction

Brosch (1991) considers a binary urn model with 7 red balls out of atoral of
N. He lers his students simulare che lengeh X of the game if one draws, withour
replacement, till £ red balls have appeared. The students came up with dhe
correct answer
N+l
r+1

B = ke

He obviously does not attempe vo obtain this expectation in class but invires
readers to do so. The two submitted solutions (Bach, 1991; Janous, 1991) use
the probability law of Xand calculate the mathematical expectation by direct
summation of %, x X = x).

In the following we present a solution which reduces the problem to a
simpler one, relates it to another problem thar uses combinarorics sparingly and
which has been assigned ro the 15 to 18 year age group at an International
Mathemarties Olympiad. Not only does this make it accessible to scudents of a
first elementary course in probability theory butat the sarne it gets across to the
student a feeling of the randomness of the problem. This, of course, is a basic
principle of any course in probability. A mere simulation as in (Brosch, 1991),
or sophisticated summarions as in (Bach, 1991) and (Janous, 1991), however
beautiful marhematically, simply do not convey any sense of randomness.
Along the way, many of the basic notions of elementary probability are used.
Qur solurion then can be presented as a review example of these basic notions
or as an accompanying example while introducing them.

In the following we will adapr the notation used in Bach (1991), Brosch
(1991) and Janous (1991) 1o the accepred international standards as in Feller
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(1968). In particular, Xwill denote the random variable and not the number of
red balls in the uen.

2. Reducing the problem to a simpler one

It is clear that the waiting time Xtill the occurrence of the kth success is the
sum

XeXi+ Xot .+ X, (D

where X; is the waiting time after the (i — 1)st dll the ith success. The
proportionality of (X) with respect to 4 lets one hypothesize that the X; are
identically distributed. While a student has no difficulty in accepting this fact
when sampling is donc with replacement, he does have difficulty in exhaustive
sampling, In an elementary course we would not try to prove the identical
distribution property. The following easy example (Ross, 1988, p. 241,
problem 2 and p. 323, problem 3) shows beautifully that it is so.

A bin of 5 transistors is known to contain two that are defective. The
transistors are to be tested, one at a time, until che defective ones are identified.
Denote by X; the number of tests made until the first defective is spotted and
by X; the number of additional tests until the second defective is spotted; i) find
the joint probability mass function of X; and X;; ii) find the expected number
of tests that are made.

While i} is helpful to establish dependence between the X;, itis really if) that
interests us.

The sample space Q consists of the { 3) = 10 arrangements of the S transistors
(D for defective, Nfor non-defective).

X T BN
D D N N N 1 1 3 i 1
D N D N N 1 2 2 2 1
D N N D N 1 3 2 1 2
D N N N D 1 4 2 1 1
N D D N N 2 1 1 3 i
N b N D N 2 2 1 2 2
N D N N D 2 3 1 2 1
N N b D N 3 1 1 1 3
N N D N D 3 2 1 1 2
N N N D D 4 i 1 1 1

Table 1



IASE/ISI Satellite, 1993: Peter Nuesch

P NOESCH 387

The probability laws for X; and X; are identical. (We observe the same fact
for the random variables Y}, the respective waiting times till the non-defective
transistors show up). Here is an example of two (three) different random
variables defined on the same sample space having the same distribution.

3. The probability law of X

First we restrict our artention to X;. In order to simplify notation let us omit
for the moment the subscript 1.

The event {X> x4 means that the waiting time up to success [ is larger than
x, or, equivalently, that the first x draws are failures. Thus the tail probability

PX> % is
P(X> x)= Ner Ner—-1 N—r-2 N-r-x+l
N N~1 N-2 N x+1
_AN=r), 2

(N},
Observe the analogy to the geometric case, i.e. when sampling is done with
replacement

P(X> x>=M _

N.l‘

It follows that

PX=x)y= P(XS x)~ P(X < x=1)
=1=P(X > x)—1+ P(X > x-1)
=P{X> x-1)-P(X> x)

- (N=7)p ~(N-~r}x
(N) ey (N},

- (Nwr)py ,
(N),

. x=1, ., Ne=rtl, (3)
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Again, observe the analogy to the geometric distribution

(N=-ry*!

x

P(X = x)= r=g"p x=1, 2,..

whe:ep:i; andg=1—-p.

(Most elementary texts treat the problem of the Nidentical keys of which only
one opens a door. To the student’s surprise the probability that the door opens
onany one attempt is 1 /Nifkeys already used ate discarded. This is formula (3)
forr=1).

The casc £> 1 leads to the negative binomial distribution when sampling
is done with replacement

13 xk
P(X= x}=(;:§) LAN=DT e ke,

N;‘f

and for sampling without replacement one obrains the analogous law

p(X:@:(;_-li)f’—)i((—%M, x=k, ktl, .., Nertk (&)

It is the expectation of this distribution which we are asked to find. In the
literature, e.g. Johnson and Kotz (1977), it has received the name “negative
hypergeometric” distribution, in analogy to the fixed sample distributions with
avariable number of successes, where “binomial” is used if sampling is done with
replacement, and “hypergeometric” for sampling without replacement. (Strickly
speaking, the name negative binomial was given to the number of failures before
success £ occurs. This stems from the fact that the binomial coefficient can be
written as (). Patil and Joshi (1968) make a further distinction between 2
negative and an inverse hypergeometric distribution).

We will not need the law for £ > 1. If we can find the mean of X; and thus
of X, the mean of X = X* X; can be obrained without explicitly knowing the
probability law of X
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4. Relation to another problem

One finds in Ross (1988, p. 145, exercise 20) che following problem:

Balls numbered 1 through N are in an urn. Suppose that r, 7< N, of them
are randomly selected without replacement. Let Y'denote the largest number
selected. Find the probability mass function of ¥,

To obtain the probability mass function of ¥ note that if yis the maximum
number drawn all »— 1 other balls in the sample must carry numbers less than

r. Thus
(]~1)
r—1
PlY= i R "
r=» (N] IET

Since the probabilicies add up to 1 we get the combinatorial identicy

N
- - | N
Z(ﬁ-il) - (:) (5)
which is the famous sum of entries on a 45° diagonal of the Pascal criangle.
We can equally easily compute the probability mass function of Z, the
smallest number selected. By the same argument used for the law of ¥
r— 1 numbers are to be selected from the N~z numbers larger than 2 Thus

(=)

r—1

y 2=l o Neral,
N

(%)

The probability space £ for N=5and r= 2 is
J

PZ=z)=

e
i
1]

PR R SR R S i
KA LA B WA LB R W B e e
T W b A e 05 W B W0 N
N R o N A i N T U ™
el T P N T S

Table 2
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By comparing Table 2 to Table 1 one abserves that

AXi=9=RZ=25
and
PXy=x)=HKY~Z= 2.

The variable Xy, the position of the first detective item of r defective oves in a roral
of N, has the same probability law as the minimum Z of all samples of size r drawm
without replacement from a total of N numbered items. Of course, this result can
be obtained in a purely formal way. Instead of transforming (3)

P(X= x)x_{_jx:f}_’;’i.
(N},
into
(4=)
PX= )=t o1 2, Nertd ©)

&)

it is easier to work with tail probabilities. We have (2)

using () . :(i) b (7

(4252,) | |
“rg 0000
forn=N,i=x, j=N—r

v x=1,2 0 Ner 8

and
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P(K=x)= P(X>x-1) -~ P{X>x)

_ [N-rxu) - (Nr—x)

using the basic relation of the Pascal triangle.

Remark: Ifone proceeds this way for the negative hypergeometric probability
law (4), one obains

P{X=x)= w (9)

This reduces for £= 1 to the form (6) obtained above.

5. The mathematical expectation of X
We take all samples of size » and order the numbers

X <X X< <X,

QOne has

)
P(X,=x) = \h-tAr—h)

, &=1,..,r
N
r

since h— 1 numbers are smaller than xand 7~ hnumbers are larger than x. Since
this is a probability law, and the probabilities are therefore summing up to 1,
we found the combinatorial relation

(10)
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g(ﬁ)wfzf}‘(‘f} an

Observe that this relation is the sum of the negative hypergeometric probabilities
(9) for 4 = k. In the literature, (11) is calied the Vandermonde convolution, e.g,
Riordan (1968, p. 8).

By using (11) and

(5)=5021) 1

we get
E()‘:i =

_ N+
r+1

(13)

(13) holds for all 7 i.e. B(X) = (N+ 1}{{r+ 1). For the random variable Xof (1)

we get therefore

&
E(X):EE(X,)zk.%.

=l
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